
CODE GENERATION IN 
PELOTON

Prashanth Menon

23/01/2018



QUERY EXECUTION FLOW

2

Parsing
Binding/

Planning
Optimization

Code

Generation
CompilationExecution

SQL

Results

Catalog



QUERY EXECUTION FLOW

2

Parsing

Code

Generation

Catalog



QUERY EXECUTION FLOW

2

Parsing

Code

Generation

Catalog

F: PlanTree → IR



QUERY EXECUTION FLOW

2

Parsing

Code

Generation

Catalog

F: PlanTree → IRF: IR→ x86



CATALOG

•All built-in functions are registered statically in 
catalog
• More specifically, in ‘catalog.cpp’

1. Built-ins are associated with an OperatorId
• Add new entries to OperatorId enum for your builtins

2. Add new catalog entry to pg_proc catalog
• Associate with newly added OperatorId

3



CODE GENERATION

•All functions are associated with a TypeSystem

•A TypeSystem defines the interface for a SQL type
• Essentially a function pointer table

1. Implement appropriate interface
• Unary, Binary, or N-ary function

2. Create instance of function for your SQL type

3. Install instance in function pointer table

4



UNARY OPERATORS

5

•UPPER/LOWER are unary functions
• UnaryOperatorHandleNull takes care of NULL 
handling



N-ARY OPERATOR

•CONCAT is an N-ary operator
• It can accept NULL inputs

• You need to handle this

•Use provided Concat implementation!

6



PROXIES

7

• You may want to call C/C++ to do work
• Do not perform regex compilation in codegen

• Use macros to outline all (static) functions you want 
to call from codegen

• Use CodeGen::Call(F, args…) to invoke C/C++

• Only use C/C++ native types!
• Integer types, float, doubles, and pointers

• Pointers to complex objects are okay, provided you have a 
proxy definition for it



PROXIES EXAMPLE - ASCII

8

• Define your plain old C/C++ function:



PROXIES EXAMPLE - ASCII

9

• Declare a proxy

• Define the proxy:



PROXIES EXAMPLE - ASCII

10

• Usage:



PROXIES EXAMPLE - ASCII

10

• Usage:



Value

11

• All operators return a codegen::Value

• Values have a type, value, length and NULL bit

• Almost the same API as type::Value

• Cannot mix codegen::Value and type::Value

• codegen::Value is a symbolic, compile-time 

representation of a SQL value



TESTING

•Use psql to test through command line

•Write test case for your function
• Modify existing function unit tests

•Use test scripts in ”testing/dml”

•Use LOGGING statements

12


