
Final Project:
Query Rewriter

Final Presentation
15-721: Advanced Database Systems
Newton Xie, William Zhang, Erik Sargent



Goals & Progress

● 75% Goal: Extendible framework and simple transformations (DONE)

● 100% Goal: Multi-level syntax-based transformations (DONE)

● 125% Goal: Catalog-based transformations (35% DONE)
○ 35% done: Checking non-null columns in tables (e.g. “T.X IS NULL” ⇒ “FALSE” if X is a non-null 

attribute in table T)
○ 65% left: Other catalog-based constraints (e.g. CHECK constraints -- looking up “tomato” in a 

column whose only allowed values are “broccoli”, “cucumber”, and “lettuce” should evaluate to 
FALSE)



Rules Implemented
● SPECIAL RULE: Swapping order of arguments in symmetric operators (AND, OR, =)

● Comparing two constants (=, !=, <, >, <, >) ⇒ TRUE or FALSE (depending on whether 

constants agree with the comparison)

● Predicate short-circuiting:
○ FALSE AND X ⇒ FALSE
○ TRUE OR X ⇒ TRUE

● Comparing an attribute against two distinct constants
○ A=3 AND A=4 ⇒ FALSE

● Transitivity of attribute-constant, attribute-attribute comparisons
○ A=3 AND B=A ⇒ A=3 AND B=3

● Checking IS NULL and IS NOT NULL on non-null columns (Catalog-based rule!)
○ Assume T.X is non-null, but T.Y is possibly null
○ T.X IS NULL ⇒ FALSE, T.X IS NOT NULL ⇒ TRUE
○ T.Y IS NULL and T.Y IS NOT NULL stay the same



Testing & Code Quality
● Manually-written test cases for each of our rewrite rules

● Mix tests for some combinations of rules

● No performance benchmarks at the moment

Comparator Elimination AND Short-Circuiting



Problems Encountered & Lessons Learned
● Working in Peloton was a lot different than working in terrier for Project 1

○ A lot more dependencies with existing code, how things affect each other wasn’t always super 
intuitive

● Leveraging the Cascades framework already used for the optimizer required touching a 

lot of files, and even more so to switch from templates to abstract classes
○ Also used a lot of levels of indirection and a lot of different types (Lesson: don’t cover a file with 

auto declarations when your teammates need to read your code)



Future Improvements
● Migration to terrier and possible fixes

○ Pointer management
○ AbstractExpression tree equality

● Associative Transform Rule / Passing “context” through rewrite stages

● Improved group collapse / rule application logic

● Other catalog based transformations (as mentioned previously)

● Adding some more purely syntax-based functionality:
○ Reducing operator nodes on constants (e.g. 2 + 2 ⇒ 4)
○ Recursively applying rewriter to subquery expressions



Peloton Demo...



Thank you


