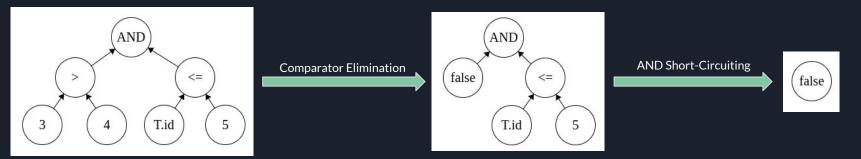
15-721: Advanced Database Systems Newton Xie, William Zhang, Erik Sargent

Final Project: Query Rewriter Final Presentation

Goals & Progress

- **75% Goal:** Extendible framework and simple transformations (**DONE**)
- **100% Goal:** *Multi-level* syntax-based transformations (**DONE**)
- 125% Goal: Catalog-based transformations (35% DONE)
 - 35% done: Checking non-null columns in tables (e.g. "T.X IS NULL" ⇒ "FALSE" if X is a non-null attribute in table T)
 - 65% left: Other catalog-based constraints (e.g. CHECK constraints -- looking up "tomato" in a column whose only allowed values are "broccoli", "cucumber", and "lettuce" should evaluate to FALSE)



Rules Implemented

- SPECIAL RULE: Swapping order of arguments in symmetric operators (AND, OR, =)
- Comparing two constants (=, !=, <, >, <, >) ⇒ TRUE or FALSE (depending on whether constants agree with the comparison)
- Predicate short-circuiting:
 - $\Rightarrow \quad \mathsf{FALSE} \, \mathsf{AND} \, \mathsf{X} \Rightarrow \mathsf{FALSE}$
 - TRUE OR X \Rightarrow TRUE
- Comparing an attribute against two distinct constants
 - $\circ \qquad A=3 \text{ AND } A=4 \Rightarrow \text{FALSE}$
- Transitivity of attribute-constant, attribute-attribute comparisons
 - \circ A=3 AND B=A \Rightarrow A=3 AND B=3
- Checking IS NULL and IS NOT NULL on non-null columns (*Catalog-based rule!*)
 - Assume T.X is non-null, but T.Y is possibly null
 - T.X IS NULL \Rightarrow FALSE, T.X IS NOT NULL \Rightarrow TRUE
 - T.Y IS NULL and T.Y IS NOT NULL stay the same

Testing & Code Quality

- Manually-written test cases for each of our rewrite rules
- Mix tests for some combinations of rules

• No performance benchmarks at the moment

Problems Encountered & Lessons Learned

- Working in Peloton was a lot different than working in terrier for Project 1
 - A lot more dependencies with existing code, how things affect each other wasn't always super intuitive
- Leveraging the Cascades framework already used for the optimizer required touching a lot of files, and even more so to switch from templates to abstract classes
 - Also used a lot of levels of indirection and a lot of different types (Lesson: don't cover a file with *auto* declarations when your teammates need to read your code)


Future Improvements

- Migration to terrier and possible fixes
 - > Pointer management
 - AbstractExpression tree equality
- Associative Transform Rule / Passing "context" through rewrite stages
- Improved group collapse / rule application logic
- Other catalog based transformations (as mentioned previously)
- Adding some more purely syntax-based functionality:
 - Reducing operator nodes on constants (e.g. $2 + 2 \Rightarrow 4$)
 - Recursively applying rewriter to subquery expressions

Peloton Demo...

