
Lazy add/drop columns

Project Overview
Summary: Implement a lazy, non-blocking
backend for schema changes that only migrates a
tuple to the new version once an update occurs on
a new column.

1. Support Drop Column - Done
2. Support Add (75%) - Done
3. Support Lazy Updates (100%) - Done
4. Add a compactor to remove old versions (110%) - Framework in-place
5. Unsafe ALTER TABLE (Stretch goal, 125%) - Framework in-place

Milestones

● SqlTable:
○ Maintains multiple version
○ API refactored to require schema versions
○ Implements more efficient version transformations

● Transactions:
○ Implemented Action framework for processing deferred actions

■ Framework for aborting transactions and cleaning up
○ Implemented Constraint framework for checking unsafe transactions

● Tests & Benchmarks:
○ Sequential correctness tests complete
○ Concurrent tests complete
○ Concurrent benchmarks complete (thanks to Yangjuns!)

Development Status

Test Coverage & Correctness
● sql_table.h - 96%
● sql_table.cpp - 96%
● Single-Threaded Tests

○ Insert Test - Update schema, verify inserts go to latest schema
○ Select Test - Update schema, retrieve tuple in old schema version
○ Update Test - Update schema, update tuple in old schema version
○ Scan Test - Scan a table that has tuples in multiple versions

● Concurrent Tests - Performs inserts, selects, and updates concurrently with
schema updates and uses scan to verify correctness.

https://codecov.io/gh/yash620/terrier/branch/schema_change

https://codecov.io/gh/yash620/terrier/branch/schema_change

Code Quality Assessment
● Multiversion handling of data - Strong

● Tracking schema versions - Needs review (choice of backend/container)

● Default values - Needs review (better abstraction?)

● Single-threaded tests - Needs to be refactored (inherited a hacky codebase)

Benchmarks

Future Work
● Finish implementation of compaction:

○ Decide on API
○ Use event framework to implement (deferred scans that delete & insert)

● Finish support unsafe ALTER TABLE:
○ Needs execution engine and catalog
○ Finish implementing rollback (tied to backend/container)

