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Abstract 
Over the past thirty years since the system R and 
Ingres projects started to lay the foundation for 
today’s RDBMS implementations, the 
underlying hardware and software platforms 
have changed dramatically. However, the 
fundamental RDBMS architecture, especially, 
the storage engine architecture, largely remains 
unchanged. While this conventional architecture 
may suffices for satisfying most of today’s 
applications, its deliverable performance range is 
far from meeting the so-called growing “real-
time enterprise” demand of acquiring and 
querying high-volume update data streams cost-
effectively. 
 P*TIME is a new, memory-centric light-
weight OLTP RDBMS designed and built from 
scratch to deliver orders of magnitude higher 
scalability on commodity SMP hardware than 
existing RDBMS implementations, not only in 
search but also in update performance. Its storage 
engine layer incorporates our previous 
innovations for exploiting engine-level micro-
parallelism such as differential logging and 
optimistic latch-free index traversal concurrency 
control protocol. This paper presents the archi-
tecture and performance of P*TIME and reports 
our experience of deploying P*TIME as the 
stock market database server at one of the largest 
on-line brokerage firms. 
 

1. Introduction 

1.1. Demand for new OLTP DBMS architecture 

Thirty years have passed since the system R and Ingres 
projects started to lay the foundation for today’s RDBMS 
implementations [1]. Over this period, Moore’s law has 
driven CPU processing power and memory capacity to 
grow million times, or 60% per year, respectively. The 
underlying software platform also changed significantly. 
Most operating systems now support virtually infinite 
address for 64-bit CPUs. The POSIX lightweight thread 
package enables efficient utilization of high-performance 
commodity multiprocessor hardware.  

However, despite these dramatic underlying changes, 
the fundamental architecture of a single RDBMS instance 
largely remains unchanged.  Even though data and 
indexes are cached in large buffer memory, they are 
managed as disk-resident structures. The heavyweight 
process architecture, which incurs high context switching 
overhead among multiple processes involved in executing 
a transaction, is still dominant [2]. This disk-centric 
heavyweight RDBMS architecture with the multi-million-
line code base evolving over decades is inevitably subject 
to growing impedance mismatch with the underlying 
hardware capability. Recent research on L2-cache-
conscious database structures and algorithms such as 
[3][4][5][6][7] addresses a crucial aspect of this mismatch 
that was not taken into consideration when existing 
RDBMS implementations, whether disk-centric or in-
memory, were architected and implemented. 

While the conventional disk-centric RDBMS archi-
tecture may suffice to serve search-dominant applications, 
the number of applications demanding the performance 
beyond the practical limit of today’s RDBMS implemen-
tations is growing.  Such applications typically deal with 
update-intensive stream workload, and are often called 
“real-time enterprise” applications by the business 
community. Some representative examples are: 
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 Stock market data stream in financial services. 
 Call detail record (CDR) and network monitoring 

data streams in communication carriers: Especially 
challenging to cope with is the increasing CDR 
volume with the support of packet-granularity 
billing. 

 Click streams in large portals. 
 Update streams in on-line travel services. 
 RFID data streams in supply chain management 

and retail. 
 Traffic data management. 

 
With the update transaction processing capability of 

typical RDBMS implementations limited to a few 
hundred TPS (transactions per second) on commodity 
SMP hardware, many painful hacks are commonly used in 
practice for handling update-intensive stream workload.   

 
 Use of low-level ISAM files instead of RDBMS at 

the cost of giving up the high-level declarative 
SQL and ACID transaction quality. 

 Heavy dependence on message queue systems 
placed in front of OLTP database at the cost of 
increased latency and capital expenditure. 

 Excessive database partitioning and tuning on top 
of heavy hardware investment. 

 Application-level batch processing with the risk of 
data loss and at the expense of application 
complexity. 

1.2. P*TIME with storage engine innovations 

Designed and built from scratch starting in 2000 with 
about 50 man-year effort, P*TIME is a new, memory-
centric lightweight OLTP RDBMS that delivers up to two 
orders of magnitude higher scalability on commodity 
SMP hardware than existing RDBMS implementations.   

P*TIME manages performance-critical data and 
indexes in the memory of a single multithreaded process. 
This architectural framework resulted from our prior 
experience of developing and benchmarking an in-
memory storage engine over several years, which became 
the basis of multiple in-memory DBMS products in 
commercial production at Korean telecom and financial 
institutions [8][9][10]. However, the internal storage 
engine implementation details and capability funda-
mentally differ from those of its predecessor and other 
first-generation in-memory DBMS implementations such 
as [11] in following ways: 

 
 Highly scalable durable-commit update trans-

action processing performance up to 140K TPS 
on a single non-partitioned physical table 
residing in a commodity 4-way 64-bit PC server. 

 Highly scalable fast database recovery: 
Recovering a database of several gigabytes in 
memory takes only a little over 1 minute. 

 Superior multiprocessor scalability: By elimi-
nating the well-known index locking bottleneck 
that limits the multiprocessor scalability of the 
first-generation in-memory or the memory-
cached disk-centric database, P*TIME can 
execute 1.4M concurrent search TPS on a 4-way 
64-bit PC server. 

 Ability of dealing with time-growing database 
through transparent management of the aging 
portion in disks. 

 
From the interview with major telecom and financial 

institutions that have deployed or attempted to deploy the 
first-generation in-memory DBMS technology for 
mission-critical applications, we have learned that the 
lack of these capabilities has led to the disappointment 
with the technology and eventually the substantial scale-
down of planned deployments or the project cancellation 
in some cases.  As a specific example of the technology 
disappointment, restarting a 50GB in-memory billing 
database system at a major Korean wireless carrier takes 
four hours on HP Super dome machine.  This long 
recovery time is unacceptable even with hot-standby 
database replication. 

Enabling the above differentiated set of P*TIME 
capabilities are our own storage-engine-level innovations 
that exploit micro parallelism on today’s shared-memory 
multiprocessor (SMP) hardware with multi-GHz CPUs, 
large memory, and a number of inexpensive disks. 
Differential logging, which enables fine-grained 
parallelism in logging and recovery of memory-centric 
databases [12], and optimistic latch-free index traversal 
(OLFIT) concurrency control, which maximizes parallel 
concurrent access to index nodes on SMP machines [5], 
are two representative innovations embedded in P*TIME 
to exploit such micro parallelism. 

Differential logging uses bitwise XOR for undo and 
redo of database changes, each of which is captured as 
bitwise XOR difference between the after and before 
images of a fine-grained memory location. It minimizes 
the log volume to flush to the secondary storage while 
enabling fully parallel processing of an arbitrary number 
of differential log record streams independent of 
serialization order both during run time and recovery time. 
With each log record stream mapped to a physical disk, 
this means that the more log disks are added to a P*TIME 
database system, the shorter becomes the time to recover 
a database in memory and the higher durable-commit 
update transaction processing performance can be 
delivered. 

The OLFIT defines an L2-cache-conscious concurrent 
tree index access protocol focused on minimizing node 
latch and unlatch operations. In an SMP environment, 
these operations incur excessive coherence L2 cache 
misses in reading or writing nodes, especially, upper ones, 
because the control information of an index node updated 
by one processor is highly likely to be updated by another 
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through one of the best developed broadband and wireless 
infrastructures in the world. Our laboratory experiment 
shows that P*TIME is capable of processing up to eight 
times as fast as the peak-time arrival rate of real trading 
messages while reserving 70% of CPU power for con-
current query processing on a 4-way 700MHz PC server. 

As another evidence for its industrial strength, porting 
a major enterprise software vendor’s application with 
about 500 tables took only about a week.  P*TIME is also 
being deployed in communications carriers, government 
agencies, and RFID-based supply chain management 
systems as reliable high-performance lightweight OLTP 
database systems. 

1.3. Contribution of this paper 

This paper presents the architecture and performance of 
P*TIME and reports our experience of deploying 
P*TIME as the stock market database server. 

The major contribution of this paper is to show 
existentially that a new, carefully engineered memory-
centric OLTP DBMS with the focus of exploiting engine-
level micro parallelism can support the challenging 
performance requirement of update-intensive stream 
OLTP workload cost-effectively.  Our previous work of 
differential logging and OLFIT concurrency control 
protocol plays critical roles in achieving up to two orders 
of magnitude difference in performance scalability 
combined with many implementation optimizations to 
minimize unnecessary overhead. 

Our contribution is complimentary to the recent 
progress in the stream data management research focusing 
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on the same target application domains.  While the stream 
data management research focuses on the incremental, 
adaptive on-line analysis of stream data through a data 
flow network of operators, queues, and synopsis [13], our 
focus is on the high-performance storage and ad hoc 
query of update data streams addressing the needs of 
mission-critical enterprise applications that cannot tolerate 
any loss of data or continuity of service. The new 
TelegraphCQ implementation approach of starting from 
PostgresSQL instead of expanding its early Java 
implementation supports the need for a powerful storage 
engine for building practical stream data management 
systems [14]. 
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Figure 2. Inherent Parallelism of Differential Logging 

This paper is organized as follows.  Section 2 presents 
P*TIME architecture and its components. Section 3 
presents the performance scalability of P*TIME storage 
engine with a brief description of the experimental 
measurement environment.  Section 4 describes the 
challenges and experience of deploying P*TIME as the 
stock market database server. Section 5 concludes this 
paper. 

2. P*TIME Architecture 
P*TIME is a fully functional RDBMS. Figure 1 shows 
P*TIME architecture. Rounded boxes represent essential 
DBMS functional modules, and ovals represent appli-
cations. 

2.1. Overall design goal 

Based on our several years of experience of implementing 
and benchmarking a multithreaded in-memory DBMS 
since early 1990’s [8][9][10], we designed P*TIME 
architecture with two major goals: maintaining a compact 
code base structure for the  ease of code changes, and 
maximization of micro parallelism for exploiting the ever-
increasing hardware capability.  

To meet the first goal, C++ is chosen as the implemen-
tation language to structure the P*TIME code base as a 
collection of C++ classes, and the C++ template feature is 
used extensively.  To meet the second goal, innovations 
are made to most of DBMS functionality layers, starting 
from the most fundamental layer of logging and recovery.  
In addition, the detailed implementation is guided by a 
derived guideline of avoiding unnecessary L2 cache 
misses and minimizing context switches, which also incur 
substantial L2 cache misses. 

Our current focus of P*TIME on micro parallelism 
does not mean that we are excluding the natural extension 
of P*TIME exploiting macro parallelism on a distributed 
grid of P*TIME instances. In fact, to exploit the cost 
advantage of commodity SMP boxes, P*TIME provides 
the industry standard XA interface for supporting dis-
tributed transactions on partitioned databases, and the fast 
active-active database replication based on asynchronous 
fine-grained log propagation. 

2.2. L2-cache-conscious in-memory database 

P*TIME manages performance-critical data and indexes 
primarily in the memory of a single multithreaded process. 
For the data, memory is divided into a set of pages, each 
of which contains multiple homogeneous slots for holding 
records, large variable-length fields, or pieces of BLOB 
data. A container is defined to manage a list of homoge-
neous pages. By default, a table is mapped to a container. 
Optionally, a table may be mapped to multiple containers, 
each of which stores a vertical partition of a table for 
efficient column-wise scan. 

In P*TIME, indexes are by default managed as non-
persistent structures supporting isolation and rollback and 
are rebuilt in parallel during the database restart process.  
P*TIME implements CPU-optimized hash and B+-tree 
index structures with direct memory addressing. In 
implementing B+-tree, we optimized the node layout and 
search and insertion procedures to minimize L2 cache 
misses. We chose B+-tree instead of CSB+-tree, the well-
known cache-conscious B+-tree ([3]), because the 
optimized version of B+-tree performs better than CSB+-
tree in the overall performance for the update-intensive 
workload. 

2.3. Fine-grained parallel differential logging and 
recovery 

P*TIME supports ACID transactions by storing every 
update log, first in an in-memory log buffer, and 
eventually in one of log partition disks. To recycle the log 
disk space and to shorten the database recovery time, 
P*TIME uses the parallelized version of fuzzy 
checkpointing.  Dirty in-memory database pages are occa-
sionally flushed in parallel to backup partition disks 
without interrupting transaction processing. 

Compared with existing in-memory or disk-centric 
RDBMS implementations, P*TIME takes a very different 

1036



architectural approach to logging.  Based on the fine-
grained differential logging of updates, P*TIME first 
minimizes log volume for maximal utilization of CPU 
processing power and memory and IO bandwidth. 
Dynamic selection of field-level or record-level logging 
represents the degree of P*TIME optimization for log 
volume minimization. Even for the same logging granu-
larity, differential logging stores the XOR difference 
between “before” and “after” images and thus reduces the 
log volume by almost half compared with the conven-
tional “before/after image” logging such as ARIES [15] 
[16]. Compared with the block-level “before/after image” 
logging implementations, the fine-grained differential 
logging of P*TIME reduces the log volume by an order of 
magnitude without sacrificing the recovery performance. 

Figure 2 illustrates the inherent parallelism of 
differential logging as two serial transactions change a 
data item from S0 to S2. When the first transaction T1 
changes the data from “0000” to “0101”, the log record 
L1 with the XOR difference “0101” is flushed to the log 
disk #1 and T1 commits. When the second transaction T2 
changes the data from “0101” to “1001”, the log record 
L2 with the XOR difference “1100” is flushed to the log 
disk #2, and T2 commits. At this point, if the system 
crashes, the database is restarted by initializing the data 
item with the backup image S0 (“0000”). Differential 
logging uses the bit-wise XOR operation as redo and undo. 
Figure 2 (b) shows that the log records in two log disks 
can be processed in parallel because the associativity and 
commutativity of XOR enables the correct recovery of the 
state S2 can be recovered independent of the order of 
applying L1 and L2. Note that if the system crashed 
before the transaction T2 writing the commit record to the 
disk #2, T2 can be undone by applying L2 to S2 after 
doing all redo operations.  Alternatively, the single pass 
recovery is possible by scanning the log files backward 
and applying only log records of committed transactions. 

Parallel nature of differential logging further 
multiplies the gain in logging performance with the 
number of log partition disks, making it possible for 
P*TIME to deliver up to two orders of magnitude higher 
scalability in durable-commit update performance than 
existing RDBMS implementations.  P*TIME supports hot 
spot updates by  allowing a transaction to proceed to 
access the updates of a proceeding transaction waiting for 
the commit record to be flushed to log disks.  

The scalability of durable-commit update performance 
is essential for the mission-critical real-time enterprise 
applications that cannot tolerate any loss of data. For less 
mission-critical applications, P*TIME also supports the 
so-called “deferred-commit” update mode, with which the 
system does not wait for the commit record to be flushed 
to the log disk to issue the commit signal to applications.  
In section 3, we shall demonstrate that the engine-internal 
performance of P*TIME in both durable-commit and 
deferred-commit modes is superior to the reported 
deferred-commit update performance of a popular in-

memory DBMS implementation on a comparable 
hardware platform [17].  

P*TIME supports high availability first with fine-
grained parallel recovery of in-memory database. 
Breaking the common misconception that parallel logging 
lengthens database recovery time because of the overhead 
of sorting multiple log streams by serialization order, 
which is true for most conventional RDBMS implemen-
tations, the inherent parallelism of differential logging 
enables fast recovery of P*TIME database, scalable with 
the number of log and backup partition disks.  Differential 
logging even permits simultaneous processing of multiple 
log partitions and backup database partitions. In addition 
to fast database recovery, P*TIME supports active-active 
log-based N-way asynchronous and synchronous 
replication to meet the high availability requirement of 
mission-critical applications.  

2.4. Concurrency control 

Another distinguishing feature of P*TIME is the OLFIT 
index concurrency control [5], which minimizes 
expensive coherence L2 cache misses incurred by 
conventional, latch-based index locking protocols in the 
SMP environment. The OLFIT scheme, based on the 
optimistic assumption that the conflict is rare and even if 
it occurs, can be resolved by retrying the node access, is 
designed to avoid latching and unlatching operations as 
much as possible. With OLFIT maximizing hardware-
level parallelism in concurrent index node access, 
P*TIME does not suffer from the well-known index 
locking bottleneck of existing in-memory or memory-
cached disk-centric RDBMS implementations. Since the 
effectiveness of the OLFIT depends on how well it is 
implemented, P*TIME uses assembly language to 
implement its key primitives to make sure that 
unnecessary L2 cache misses do not occur.  

For the concurrency control of base tables, P*TIME 
implements multi-level locking and supports all four 
isolation levels of SQL. 

2.5. Transparent Disk eXtension 

For the time-growing data such as stream data, it is not 
feasible to keep the entire table in memory. P*TIME TDX 
(Transparent Disk eXtension) transparently migrates 
aging or infrequently accessed portion of a table to TDX 
partitions on disk.  Each TDX partition is a self-
describing indexed data set which supports compression 
and direct SQL access. TDX manager pins a TDX 
partition in memory when it is frequently accessed. 

2.6. Application binding 

On top of P*TIME core modules lies the SQL processor 
which includes a cost-based query optimizer and a query 
plan execution engine. This SQL processor is accessed 
through the standard programming interfaces such as 
ODBC, JDBC, ESQL, PHP, and a JDBC-style embedded 
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C++ API. 
To protect the database system from application errors, 

application processes are completely decoupled from the 
multithreaded P*TIME database server. This differ-
entiates P*TIME from the more tightly coupled heavy-
weight process architecture such as TimesTen, where 
multiple application processes directly access the database 
and the lock information in the shared memory.  While 
this tightly coupled heavyweight process architecture has 
the advantage of eliminating client/server communication 
overhead for the clients running on the same machine 
with the database, it runs the risk of corrupting the 
database or blocking legitimate access by other processes 
because of locks unreleased by hanging applications.  
Furthermore, the gain in client/server communication 
disappears for the remote applications. 

P*TIME also supports tight coupling of P*TIME with 
application logic but takes a different approach of 
providing an embedded C++ API.  An application logic of 
accessing P*TIME database through a collection of 
JDBC-style C++ classes can be embedded inside a 
P*TIME server.  This is useful for building P*TIME-
embedded tools such as LDAP server. 

To maximize multi-tier application performance, 
P*TIME transparently supports transaction group 
shipping (TGS) between P*TIME server and multi-
threaded application servers.  This feature reduces the 
number of interactions by shipping temporally adjacent 
independent transaction requests or responses in a group 
between P*TIME server and application servers.   

2.7. Heterogeneous database integration interface 

To facilitate the integration with heterogeneous RDBMS 
implementations, P*TIME provides an elegant interface 
called update log table whose entries representing recent 
update, insert, or delete on individual records can be 
accessed and deleted in SQL.  

Compared with the common approach of vendor-
specific, black-box synchronization functionality, this 
open-ended API enables application developers to 
implement arbitrary application-specific update propa-
gation semantics to heterogeneous databases.  With this 
feature, P*TIME can function as the transaction pro-
cessing front-end to existing RDBMS implementations. 

3. Performance Scalability 
To measure the internal OLTP performance scalability of 
P*TIME, we embedded a simple benchmark logic inside 
the P*TIME server using its JDBC-style embedded C++ 
API. Workload clients are emulated by embedded 
connection objects iterated by several worker threads, 
which carry out actual transaction execution.  

The test database consists of a single non-partitioned 
table of 8 million records that we adopted from a telco 
database. Since we are interested in measuring the 
scalability limit, we have intentionally avoided the 

creation of multiple tables or multiple partitions, which 
may distribute the internal contention pressure. The 
standard TPC benchmark was not adequate first because it 
is not intended for the OLTP of high-volume stream data, 
and secondly because the specification includes preset 
parameters such as think time that limit the maximum 
deliverable performance given a database size. 
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Figure 3. Update/Insert/Delete Performance with Varying 
Number of Connections 

 (The symbol * denotes that on-disk write cache is enabled.) 
 

Each record of our test database is 168 bytes long. A 
hash index is built on its primary key field of BIGINT 
type.  While we created the hash index in this experiment, 
the result is more or less the same for the B+-tree 
supporting range queries.  The size of the initial database 
is about 1.4GB, including 100MB for the non-persistent 
hash index. 

Each tested transaction type contains a single 
operation which is one of the following: 

 
 Search a record with a given primary key and 

return a BIGINT-type column of the selected 
record. 

 Update a BIGINT-type column of the record 
matching a given primary key. 

 Insert a record. 
 Delete a record matching a given primary key. 

 
The experiment was mainly conducted on a Compaq 

ML 570 server running UNIX, with four 700MHz Xeon 
CPUs, each with 2MB L2 cache, 100MHz front-side bus, 
6GB PC-100 SDRAM, Ultra 160 SCSI card, and several 
7200 rpm SCSI disks. Each disk has 300KB of on-disk 
write cache (WC) for track buffering.  

 

3.1. Update/Insert/Delete performance 

From the durability perspective, we have two options in 
measuring the durable-commit update performance: 
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Figure 4. Update Scalability with Varying Number of Log 
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enabling and disabling on-disk write cache. The use of 
on-disk write cache is acceptable if the power supply to 
disk drives is securely backed up by UPS to cope with 
power failure.  

Figure 3 shows that P*TIME can process 140K field 
update transactions per second (TPS) with four log disks 
used for parallel logging. For pure insert and delete 
workloads, P*TIME handles 80K and 100K TPS, 
respectively. The response time with on-disk write cache 
enabled (1~3 ms) is better than that disabled (9~16 ms). 
In both cases, the response time improves significantly 
with the reduced number of connections.  

This figure also shows that the performance with on-
disk write cache disabled converges to the performance 
with on-disk cache enabled as the number of connections 
increases. With the “deferred commit” option, P*TIME 
can deliver the same peak performance with one log disk 
with slightly better response time.  However, with this 

option, the durability of updates is not guaranteed in case 
that the operating system failure occurs. 

Figure 4 shows the scalability of P*TIME update 
performance with the varying number of log disks. As the 
number of log disks increases, the update throughput also 
increases until CPU, memory bus or IO channel capacity 
is saturated by a specific hardware configuration. 

3.2. Search performance 

Figure 5 shows that P*TIME can process 650K search 
transactions per second on the 4-way 700MHz Xeon 
server, and more than 1.4 million transactions per second 
on a 4-way 1.4GHz AMD Opteron server running RedHat 
AS 3.0 with 1MB L2 cache. Careful design of P*TIME 
internal data structures and algorithms minimizing L2 
cache misses enables such linear search scalability with 
the number and the speed of CPUs. 

Figure 6 shows the overall throughput when update 
and search transactions are intermixed, ranging from 
100 % search to 100 % update. When the search/update 
ratio is 90/10, 80/20 and 50/50, the overall throughput is 
about 430K, 350K and 200K TPS, respectively.  
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3.3. Multi-tier performance 

To evaluate P*TIME performance in a multi-tier 
application environment, we created a number of 
multithreaded Java application processes on several 
machines, which are connected to the P*TIME server 
process on the 4-way 700MHz Xeon server via gigabit 
Ethernet. In this environment, P*TIME shows 70,000 
TPS for search-only workload and 42,000 TPS for the 
update-only workload.  Transaction group shipping was 
turned on to utilize the server’s communication bandwidth 
efficiently.  When only a single client thread is connected, 
P*TIME shows 5,800 search TPS with the average 
response time of 0.17ms or 1,320 update TPS with the 
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average response time of 0.76ms with WC enabled.  
Although these numbers represent significant drops from 
the peak engine performance numbers, they correspond to 
ten times in search and hundred times in update compared 
with a fully-memory-cached disk-centric database running 
in the same environment.  

3.4. Restart time 

To see the impact of P*TIME parallel recovery, we 
measured the time to recover the whole database from 
1.3GB of backup database (8M records), 1GB of log 
records (10M update transactions), and 0.1GB of non-
persistent index. The recovery time is broken down to 
loading the checkpointed backup database, replaying the 

log records, and rebuilding non-persistent indexes. The 
first column in Figure 8 shows that the total recovery time 
of the sequential recovery based on a single log disk and a 
single checkpoint backup database is 107 seconds, which 
is reduced to only 41 seconds by parallelizing all 
individual recovery steps: loading backup database, 
replaying log records, and rebuilding indexes. Note that 
even the sequential recovery time of P*TIME is shorter 
than that of existing in-memory RDBMS implementations.  
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Figure 8. Database Recovery Time (The number in 
parentheses denotes the number of CPUs and disks.) 

To measure the restart time for a larger database, we 
scaled the database size five times (6.5GB of backup 
database and 0.7GB of non-persistent index for 40M 
records) and the log size twice (20M update transactions 
or 2 GB). Since this database size exceeds the process 
address limit of the 32 bit Xeon machine, we used the 4-
way 1.4GHz 64 bit Opteron server with 16GB DDR 
memory and several 15000 rpm disks connected through 
U320 SCSI controller. The fourth column in Figure 8 
shows that the recovery time with 4 CPUs and 4 disks is 
only 72 seconds, while the recovery time with 1 CPU and 
1 disk is 184 seconds.  This experimental result leads us 
to conclude that the database recovery performance of 
P*TIME is scalable with the number of log and 
checkpoint disks used and the CPU/IO capability of the 
underlying hardware system. 

4. Stock Market Database Case 

4.1. Challenges 

The stock market database keeps track of the current state 
and history of individual stock item’s bid-and-ask and 
settled price and volume data.  It is critical for this 
database to minimize the latency in capturing the 
continuous stream of stock trading messages and 
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Figure 7. P*TIME-based Stock Market Database Servers 
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delivering updates to the interested users or responding to 
ad hoc user queries.  Another important requirement is to 
lower the cost of quality service because of the 
competition among the stock brokerage firms.  
Conventional RDBMS implementations observing the 
ACID transaction quality is not adequate for cost-
effective management of stock market data because of the 
amount of update volume to process.   

4.2. Samsung Securities, Inc.  case study 

Samsung Securities, Inc. is the number 1 brokerage firm 
in Korea, serving 50K – 60K concurrent users out of 
800K registered on-line users. Korean stock market is 
well known for its volatility and fast adoption of on-line 
trading because of the well-developed broadband and 
wireless infrastructures enabling easy access to the market 
database and the low transaction fee which resulted from 
the competition among many on-line brokerage firms. 

Recognizing that implementing the market database 
servers with conventional RDMBS technology is cost-
prohibitive, Samsung Securities, Inc. maintained a farm of 
about 50 C-ISAM-based market data servers communi-
cating with the user’s fat MS Windows client program in 
a custom protocol.  Each server runs on a SUN Enterprise 
3500 or 4500 hardware with six to eight CPUs.  There is 
no clear separation of database and applications in this 
architecture, and the IT staffs has the burden of 
maintaining the application code base of manipulating C-
ISAM and shared memory with ad hoc concurrency 
control.   

When Samsung Securities, Inc. planned to launch the 
mobile trading service to mobile phone and PDA users in 
August 2002, it decided to separate the database server 
from the application because of the various difficulties 
that it has experienced in maintaining the C-ISAM-based 
server.  Samsung Securities, Inc. chose P*TIME to 

manage the market database because its update scalability 
will lower the long-term capital expenditure and the 
standard RDBMS interface will lower the application 
maintenance cost. 

Figure 7 shows the architecture of P*TIME-based 
market database server deployment at Samsung Securities, 
Inc. For the high availability reason, two copies of 
P*TIME servers are co-located with a single remote 
backup server.  Since the trading message streams are 
broadcast via UDP from the stock exchange and the 
message processing burden is not severe for P*TIME, 
each P*TIME server is responsible for updating its own 
database.  After a few months of operation, Samsung 
Securities, Inc. also decided to move the customer’s 
profile of watch list groups from eight LDAP servers to 
the operational P*TIME servers.   For this database, 
P*TIME servers are configured as active-active replicas.  
Although the operational systems were not planned to 
serve web trading services, the IT staffs of Samsung 
Securities, Inc. also implements the new functionalities to 
introduce in the web trading service using the operational 
P*TIME servers because of the ease of manipulating the 
database with SQL and JDBC. 

4.3. Schema and Workload 

The stock market database consists of 50+ relations.  
Figure 9 shows five representative relations.  For each 
relation, the number of columns and the record length in 
bytes are shown as well as some column names.  The 
primary key columns are printed in bold face. 

STOCK_MASTER relation holds the reference 
information of stock items such as code, name, and trade 
status. The Korean stock market has 1700+ stock items 
managed by KSE and KOSDAQ. BIDNASK relation 
keeps track of ten closest bid and ask prices/volume pairs 
for each stock item. TRADE relation keeps track of the 

 

TRADE_HISTORY
20 columns, 120 byte record

stock_code
trade_time
settled_price
price_change
settled_volume
settled_amount
...

TRADE
20 columns, 120 byte record

stock_code
trade_time
settled_price
price_change
settled_volume
settled_amount
closest_bid
closest_ask
...

TRADE_DAILY_AGGREGATE
16 columns, 84 byte record

stock_code
aggregate_date
finish_price
start_price
highest_price
lowest_price
total_volume
...

STOCK_MASTER
74 columns, 372 byte record

stock_code
stock_name
total_volume
total_price
trade_status
...

BIDNASK
76 columns, 384 byte record

stock_code
bidnask_time
bid1,…,bid10
ask1,…,bid10
bid_vol1,…,bid_vol10
ask_vol1,…,ask_vol10
bid_chg1,…,ask_chg10
ask_chg1,…,ask_chg10
bid_total_vol
ask_total_vol
...

 

Figure 9. Representative Relations of P*TIME-Based Market Database 
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latest settled trade information of each stock item, such as 
settled price and volume.  In addition, it also keeps track 
of the closest bid and ask prices and volumes. 
TRADE_HISTORY relation stores the history of settled 
trades. TRADE_DAILY_AGGREGATE stores the daily 
aggregates of stock items such as high and low prices and 
traded volume. In addition, there are relations, which are 
not shown in the figure, for keeping track of options, 
futures, market indexes, and market statistics. 

The challenging workload from DBMS perspective is 
processing the trading message stream from the stock 
exchange. Figure 10(a) shows the time distribution of 
one-day volume of real trading messages from Korean 
stock market. A major portion of this message stream 
consists of bid-and-asks and settled trades. Figure 10(b) 

shows the distribution of required update / insert and 
search queries to process the trading message stream. 

QF1: Retrieve the latest settled trade
SELECT    settled_price, price_change, settled_amount, 

settled_volume, closest_bid, closest_ask
FROM       TRADE
WHERE    stock_code=?

QF2: Retrieve 60 day price changes
SELECT      TOP 60 aggregate_date, start_price, finish_price,

highest_price, lowest_price, total_volume
FROM          TRADE_DAILY_AGGREGATE
WHERE       stock_code = ?
ORDER BY aggregate_date DESC

(e) Form 1: Chart of 60 Day Price Changes of a Stock

QF3: Retrieve the current price quote by joining three tables
SELECT  <49 columns>
FROM     STOCK_MASTER M, TRADE T, BIDNASK B
WHERE   M.stock_code=? AND M.stock_code=T.stock_code

AND M.stock_code=B.stock_code

QF4: Retrieve the latest 20 settled trades
SELECT      TOP 20 trade_time, settled_price, price_change,

settled_volume, settled_amount
FROM          TRADE_HISTORY
WHERE       stock_code=?
ORDER BY trade_time DESC

(f) Form 2: Current Price Quote of a Stock
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Figure 10. P*TIME-Based Stock Market Database Performance  
 

For each bid-and-ask message, the following two 
updates are required. 

 
 Update a row of BIDNASK with new values of bid 

and ask prices/volumes, etc. 
 Update a row of TRADE with new values of the 

closest bid and ask information. 
 
To process each settled trade message, the following 

operations are needed. 
 

 Check the trade_status value of STOCK_MASTER. 
 If the status is ok, search BIDNASK relation with a 
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given stock item to get the closest bid-and-ask match 
(bid1, ask1, bid_vol1, ask_vol1) because this 
information is not contained in the message. 
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Figure 11. Concurrent Query Processing Throughput with 

Varying Rate of Trading Message Arrival  

 Update TRADE with new values of settled price, 
volume, etc.  

 Insert the new trade record into TRADE_HISTORY. 
 
Another type of major workload is query processing. 

Figure 10 (e) and (f) show two popular query forms.  The 
first one displays the 60-day price changes of a stock item. 
The second one queries the current price quote of a stock 
item. Both forms generate two SQL queries in sequence, 
and each query is processed as a separate transaction.  

In addition, there are periodic batch jobs conducted 
during night time or weekends to compute the daily, 
weekly, monthly aggregates. 

4.4. Comparative P*TIME performance   

To measure the comparative gain of using P*TIME over 
the existing DBMS implementation, we selected one of 
the easily accessible disk-centric DBMS implementations, 
and created two databases, one for P*TIME and another 
for the selected disk-centric DBMS, on the same Compaq 
ML 570 server that we use to report the experiment result 
of Section 3. In-memory DBMS implementations were 
not available for experimental comparison. 

We used the real trading message stream of Figure 10 
(a) to generate the update stream workload, and two query 
forms in Figure 10 (e), (f) to measure the concurrent 
query processing capability. 

Figure 10 (c) and (d) shows the throughput and 
average response time with the varying ratio of two query 
forms.  For each ratio, four values are shown. The first 
two values represent P*TIME and the remaining two 
values the disk-centric database.  For each DBMS, the 
first value represents the performance without real-time 
market database update, and the second represents the 
performance with real-time market database update. The 
graphs shows that P*TIME is up to 40 times more 
scalable than the disk-centric database in throughput 
while the disk-centric database experiences severe 
degradation of response time. 

4.5. Scalability with respect to stream data volume   

To measure the scalability of update stream processing 
capability of P*TIME, we ran the experiment of 
accelerating trading message arrival using the one-day 
real trading message volume set. Figure 11 shows the 
throughput of concurrent query processing with the 
varying acceleration of trading message arrival rate. The 
query form 2, shown in Figure 10 (f), which has more 
interference with the real-time market database update is 
used to measure the throughput. In this figure, “No” 
means that there is no market database update load, 1x 
means the original speed of the stream, and 8x means that 
the message arrives at the eight times of the original speed. 

At 8x, about 2000 update transactions and 1000 search 
query transactions are performed per second to update the 
market database. 

From Figure 11 we observe that the concurrent query 
processing is not much affected even though the rate of 
arrival changes from 1x to 8x.  The minor drop in the 
concurrent query throughput is roughly proportional to the 
CPU usage for the real-time market database update. 

5. Summary and Related Work 
In this paper, we have presented: 

 
 Rationale for the new OLTP DBMS for handling 

update-intensive stream workload which is 
frequently found in the so-called real-time enterprise 
applications. 

 Architecture and performance scalability of P*TIME. 
 Real-world deployment of P*TIME as the stock 

market database server. 
 

With the exponentially growing gap between the CPU 
speed and the memory access speed, there has been much 
research lately on the L2-cache-conscious index structures 
([3][4]), database layout ([6]), index concurrency control 
([5]), and query processing ([7]).  

Based on our experience of building, benchmarking, 
and deploying P*TIME in the real world transaction 
processing environment, we believe that careful 
implementation of L2-cache-conscious DBMS-internal 
protocols and algorithms such as the OLFIT and 
minimizing thread context switches leveraging the 
lightweight multithread architecture are more crucial than 
L2 cache-conscious data structures alone, which provide 
only marginal gain in improving overall throughput.  As 
future work, we expect to formalize this experience 
further through experiment. 
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P*TIME architecture design and implementation has 
benefited from the author’s experience of building and 
benchmarking the first-generation in-memory DBMS over 
several years [8][9][10], which was motivated by the 
exposure to the early in-memory query processing project 
at HP Laboratories [18].  

Building P*TIME follows the vision of RISC-style 
DBMS [19].  Although we have not yet incorporated the 
self-tuning functionality, our compact code, which uses 
the C++ template feature extensively, coupled with the 
inherent simplicity of the memory-centric database 
performance model compared with the disk-centric one 
would be make it easier to incorporate the self-tuning 
capability. 

As future work, we plan to extend P*TIME to 
incorporate the continuous query processing capability, 
and exploit the macro parallelism using a number of 
inexpensive SMP blades connected through a high-speed 
switch fabric. In another direction of research, we plan to 
refine the stock market database domain further so that it 
can serve as a benchmark database for the update-
intensive stream workload. 
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