
P*TIME: Highly Scalable OLTP DBMS for Managing
Update-Intensive Stream Workload

Sang K. Cha and Changbin Song

Transact In Memory, Inc. Seoul National University
 1600 Adams Drive School of Electrical Eng. and Computer Science

 Menlo Park, CA 94025 Kwanak P.O.Box 34, Seoul 151-600
USA Korea

{chask, tsangbi}@transactinmemory.com

Abstract
Over the past thirty years since the system R and
Ingres projects started to lay the foundation for
today’s RDBMS implementations, the
underlying hardware and software platforms
have changed dramatically. However, the
fundamental RDBMS architecture, especially,
the storage engine architecture, largely remains
unchanged. While this conventional architecture
may suffices for satisfying most of today’s
applications, its deliverable performance range is
far from meeting the so-called growing “real-
time enterprise” demand of acquiring and
querying high-volume update data streams cost-
effectively.
 P*TIME is a new, memory-centric light-
weight OLTP RDBMS designed and built from
scratch to deliver orders of magnitude higher
scalability on commodity SMP hardware than
existing RDBMS implementations, not only in
search but also in update performance. Its storage
engine layer incorporates our previous
innovations for exploiting engine-level micro-
parallelism such as differential logging and
optimistic latch-free index traversal concurrency
control protocol. This paper presents the archi-
tecture and performance of P*TIME and reports
our experience of deploying P*TIME as the
stock market database server at one of the largest
on-line brokerage firms.

1. Introduction

1.1. Demand for new OLTP DBMS architecture

Thirty years have passed since the system R and Ingres
projects started to lay the foundation for today’s RDBMS
implementations [1]. Over this period, Moore’s law has
driven CPU processing power and memory capacity to
grow million times, or 60% per year, respectively. The
underlying software platform also changed significantly.
Most operating systems now support virtually infinite
address for 64-bit CPUs. The POSIX lightweight thread
package enables efficient utilization of high-performance
commodity multiprocessor hardware.

However, despite these dramatic underlying changes,
the fundamental architecture of a single RDBMS instance
largely remains unchanged. Even though data and
indexes are cached in large buffer memory, they are
managed as disk-resident structures. The heavyweight
process architecture, which incurs high context switching
overhead among multiple processes involved in executing
a transaction, is still dominant [2]. This disk-centric
heavyweight RDBMS architecture with the multi-million-
line code base evolving over decades is inevitably subject
to growing impedance mismatch with the underlying
hardware capability. Recent research on L2-cache-
conscious database structures and algorithms such as
[3][4][5][6][7] addresses a crucial aspect of this mismatch
that was not taken into consideration when existing
RDBMS implementations, whether disk-centric or in-
memory, were architected and implemented.

While the conventional disk-centric RDBMS archi-
tecture may suffice to serve search-dominant applications,
the number of applications demanding the performance
beyond the practical limit of today’s RDBMS implemen-
tations is growing. Such applications typically deal with
update-intensive stream workload, and are often called
“real-time enterprise” applications by the business
community. Some representative examples are:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1033

 Stock market data stream in financial services.
 Call detail record (CDR) and network monitoring

data streams in communication carriers: Especially
challenging to cope with is the increasing CDR
volume with the support of packet-granularity
billing.

 Click streams in large portals.
 Update streams in on-line travel services.
 RFID data streams in supply chain management

and retail.
 Traffic data management.

With the update transaction processing capability of

typical RDBMS implementations limited to a few
hundred TPS (transactions per second) on commodity
SMP hardware, many painful hacks are commonly used in
practice for handling update-intensive stream workload.

 Use of low-level ISAM files instead of RDBMS at

the cost of giving up the high-level declarative
SQL and ACID transaction quality.

 Heavy dependence on message queue systems
placed in front of OLTP database at the cost of
increased latency and capital expenditure.

 Excessive database partitioning and tuning on top
of heavy hardware investment.

 Application-level batch processing with the risk of
data loss and at the expense of application
complexity.

1.2. P*TIME with storage engine innovations

Designed and built from scratch starting in 2000 with
about 50 man-year effort, P*TIME is a new, memory-
centric lightweight OLTP RDBMS that delivers up to two
orders of magnitude higher scalability on commodity
SMP hardware than existing RDBMS implementations.

P*TIME manages performance-critical data and
indexes in the memory of a single multithreaded process.
This architectural framework resulted from our prior
experience of developing and benchmarking an in-
memory storage engine over several years, which became
the basis of multiple in-memory DBMS products in
commercial production at Korean telecom and financial
institutions [8][9][10]. However, the internal storage
engine implementation details and capability funda-
mentally differ from those of its predecessor and other
first-generation in-memory DBMS implementations such
as [11] in following ways:

 Highly scalable durable-commit update trans-

action processing performance up to 140K TPS
on a single non-partitioned physical table
residing in a commodity 4-way 64-bit PC server.

 Highly scalable fast database recovery:
Recovering a database of several gigabytes in
memory takes only a little over 1 minute.

 Superior multiprocessor scalability: By elimi-
nating the well-known index locking bottleneck
that limits the multiprocessor scalability of the
first-generation in-memory or the memory-
cached disk-centric database, P*TIME can
execute 1.4M concurrent search TPS on a 4-way
64-bit PC server.

 Ability of dealing with time-growing database
through transparent management of the aging
portion in disks.

From the interview with major telecom and financial

institutions that have deployed or attempted to deploy the
first-generation in-memory DBMS technology for
mission-critical applications, we have learned that the
lack of these capabilities has led to the disappointment
with the technology and eventually the substantial scale-
down of planned deployments or the project cancellation
in some cases. As a specific example of the technology
disappointment, restarting a 50GB in-memory billing
database system at a major Korean wireless carrier takes
four hours on HP Super dome machine. This long
recovery time is unacceptable even with hot-standby
database replication.

Enabling the above differentiated set of P*TIME
capabilities are our own storage-engine-level innovations
that exploit micro parallelism on today’s shared-memory
multiprocessor (SMP) hardware with multi-GHz CPUs,
large memory, and a number of inexpensive disks.
Differential logging, which enables fine-grained
parallelism in logging and recovery of memory-centric
databases [12], and optimistic latch-free index traversal
(OLFIT) concurrency control, which maximizes parallel
concurrent access to index nodes on SMP machines [5],
are two representative innovations embedded in P*TIME
to exploit such micro parallelism.

Differential logging uses bitwise XOR for undo and
redo of database changes, each of which is captured as
bitwise XOR difference between the after and before
images of a fine-grained memory location. It minimizes
the log volume to flush to the secondary storage while
enabling fully parallel processing of an arbitrary number
of differential log record streams independent of
serialization order both during run time and recovery time.
With each log record stream mapped to a physical disk,
this means that the more log disks are added to a P*TIME
database system, the shorter becomes the time to recover
a database in memory and the higher durable-commit
update transaction processing performance can be
delivered.

The OLFIT defines an L2-cache-conscious concurrent
tree index access protocol focused on minimizing node
latch and unlatch operations. In an SMP environment,
these operations incur excessive coherence L2 cache
misses in reading or writing nodes, especially, upper ones,
because the control information of an index node updated
by one processor is highly likely to be updated by another

1034

processor next time [
caused by index latchin
major source of limitin
conventional in-memo
database systems. P
protocol, enables multi
nodes concurrently w
P*TIME shows almos
for indexed search, com
concurrency control. W
P*TIME shows high
performance even for 1

P*TIME currently
extensions and stan
ODBC/JDBC and a J
multi-tier and embedd
its lightweight session
a thousand concurrent
performance degradatio

P*TIME has been
November 2002 as th
Samsung Securities in
line stock brokerage c
concurrent on-line tra
database server proces
day with 2.6 million t
window for the real-ti
through SQL/ODBC A
consumes about 10% o
HP server and the
processing of up to
second per machine fo

L2-Cache-Conscious M emory-Centric Database

TDX
Partition TDX

Partit ion

Session manager

Parallel
Checkpointing

Backup DB
Partit ionBackup DB

Partit ion

Log
Partit ion Log

Partit ion

Parallel Recovery
Parallel
Logging

Logging / Recovery Manager

JDBC
clients

ODBC
clients

PHP
clients

ESQL
clients

Embedded
client logic

P*TIME
Process

TDX
Manager

Replication
Manager

P*TIM E
Replica

Index
Manager

Memory
Manager

Transaction
Manager

SQL
Processor

Data
D ictionary

Embedded JDBC-style C++ API

Update
Log

Table

Oracle
DB2

SQL SVR
Replica

Figure 1. P*TIME Architecture
5]. The coherence cache misses
g and unlatching is known for the
g the multiprocessor scalability of
ry or memory-cached disk-centric
*TIME, embedding the OLFIT
ple processors to access most index
ithout latching. For this reason,
t linear multiprocessor scalability

parable to the scalability with no
ith minimized index node latching,

ly scalable multiprocessor index
00% update workload.
 supports SQL 92 with some
dard RDBMS APIs such as
DBC-style C++ API for building
ed applications, respectively. With
management, P*TIME can sustain
ODBC/JDBC connections without
n.

 successfully in production since
e stock market database server at
Korea, one of the world-largest on-
ompanies that serves 50K – 60K

ders. P*TIME-based stock market
ses 4 million trading messages per
rading messages over the six hour
me update of the market database
PI. This real-time database update
f the CPU power of 6-way 450Hz
rest is available for concurrent
20K SQL query transactions per
r the users who query the database

through one of the best developed broadband and wireless
infrastructures in the world. Our laboratory experiment
shows that P*TIME is capable of processing up to eight
times as fast as the peak-time arrival rate of real trading
messages while reserving 70% of CPU power for con-
current query processing on a 4-way 700MHz PC server.

As another evidence for its industrial strength, porting
a major enterprise software vendor’s application with
about 500 tables took only about a week. P*TIME is also
being deployed in communications carriers, government
agencies, and RFID-based supply chain management
systems as reliable high-performance lightweight OLTP
database systems.

1.3. Contribution of this paper

This paper presents the architecture and performance of
P*TIME and reports our experience of deploying
P*TIME as the stock market database server.

The major contribution of this paper is to show
existentially that a new, carefully engineered memory-
centric OLTP DBMS with the focus of exploiting engine-
level micro parallelism can support the challenging
performance requirement of update-intensive stream
OLTP workload cost-effectively. Our previous work of
differential logging and OLFIT concurrency control
protocol plays critical roles in achieving up to two orders
of magnitude difference in performance scalability
combined with many implementation optimizations to
minimize unnecessary overhead.

Our contribution is complimentary to the recent
progress in the stream data management research focusing

1035

on the same target application domains. While the stream
data management research focuses on the incremental,
adaptive on-line analysis of stream data through a data
flow network of operators, queues, and synopsis [13], our
focus is on the high-performance storage and ad hoc
query of update data streams addressing the needs of
mission-critical enterprise applications that cannot tolerate
any loss of data or continuity of service. The new
TelegraphCQ implementation approach of starting from
PostgresSQL instead of expanding its early Java
implementation supports the need for a powerful storage
engine for building practical stream data management
systems [14].

Redo L1

L1 proceeds L2:

Redo L2

0000 0101 1001

0000

0101
L1

XOR difference

1001

1100
L2

0101

Log Disk #1

Log Disk #2

L2 proceeds L1:

Redo L2 Redo L1

0000 1100 1001

S0

S1

S2

S0

S0

S2

S2

(a) Differential Logging to Multiple Log Partition Disks

(b) Order-independent Recovery of Database

Figure 2. Inherent Parallelism of Differential Logging

This paper is organized as follows. Section 2 presents
P*TIME architecture and its components. Section 3
presents the performance scalability of P*TIME storage
engine with a brief description of the experimental
measurement environment. Section 4 describes the
challenges and experience of deploying P*TIME as the
stock market database server. Section 5 concludes this
paper.

2. P*TIME Architecture
P*TIME is a fully functional RDBMS. Figure 1 shows
P*TIME architecture. Rounded boxes represent essential
DBMS functional modules, and ovals represent appli-
cations.

2.1. Overall design goal

Based on our several years of experience of implementing
and benchmarking a multithreaded in-memory DBMS
since early 1990’s [8][9][10], we designed P*TIME
architecture with two major goals: maintaining a compact
code base structure for the ease of code changes, and
maximization of micro parallelism for exploiting the ever-
increasing hardware capability.

To meet the first goal, C++ is chosen as the implemen-
tation language to structure the P*TIME code base as a
collection of C++ classes, and the C++ template feature is
used extensively. To meet the second goal, innovations
are made to most of DBMS functionality layers, starting
from the most fundamental layer of logging and recovery.
In addition, the detailed implementation is guided by a
derived guideline of avoiding unnecessary L2 cache
misses and minimizing context switches, which also incur
substantial L2 cache misses.

Our current focus of P*TIME on micro parallelism
does not mean that we are excluding the natural extension
of P*TIME exploiting macro parallelism on a distributed
grid of P*TIME instances. In fact, to exploit the cost
advantage of commodity SMP boxes, P*TIME provides
the industry standard XA interface for supporting dis-
tributed transactions on partitioned databases, and the fast
active-active database replication based on asynchronous
fine-grained log propagation.

2.2. L2-cache-conscious in-memory database

P*TIME manages performance-critical data and indexes
primarily in the memory of a single multithreaded process.
For the data, memory is divided into a set of pages, each
of which contains multiple homogeneous slots for holding
records, large variable-length fields, or pieces of BLOB
data. A container is defined to manage a list of homoge-
neous pages. By default, a table is mapped to a container.
Optionally, a table may be mapped to multiple containers,
each of which stores a vertical partition of a table for
efficient column-wise scan.

In P*TIME, indexes are by default managed as non-
persistent structures supporting isolation and rollback and
are rebuilt in parallel during the database restart process.
P*TIME implements CPU-optimized hash and B+-tree
index structures with direct memory addressing. In
implementing B+-tree, we optimized the node layout and
search and insertion procedures to minimize L2 cache
misses. We chose B+-tree instead of CSB+-tree, the well-
known cache-conscious B+-tree ([3]), because the
optimized version of B+-tree performs better than CSB+-
tree in the overall performance for the update-intensive
workload.

2.3. Fine-grained parallel differential logging and
recovery

P*TIME supports ACID transactions by storing every
update log, first in an in-memory log buffer, and
eventually in one of log partition disks. To recycle the log
disk space and to shorten the database recovery time,
P*TIME uses the parallelized version of fuzzy
checkpointing. Dirty in-memory database pages are occa-
sionally flushed in parallel to backup partition disks
without interrupting transaction processing.

Compared with existing in-memory or disk-centric
RDBMS implementations, P*TIME takes a very different

1036

architectural approach to logging. Based on the fine-
grained differential logging of updates, P*TIME first
minimizes log volume for maximal utilization of CPU
processing power and memory and IO bandwidth.
Dynamic selection of field-level or record-level logging
represents the degree of P*TIME optimization for log
volume minimization. Even for the same logging granu-
larity, differential logging stores the XOR difference
between “before” and “after” images and thus reduces the
log volume by almost half compared with the conven-
tional “before/after image” logging such as ARIES [15]
[16]. Compared with the block-level “before/after image”
logging implementations, the fine-grained differential
logging of P*TIME reduces the log volume by an order of
magnitude without sacrificing the recovery performance.

Figure 2 illustrates the inherent parallelism of
differential logging as two serial transactions change a
data item from S0 to S2. When the first transaction T1
changes the data from “0000” to “0101”, the log record
L1 with the XOR difference “0101” is flushed to the log
disk #1 and T1 commits. When the second transaction T2
changes the data from “0101” to “1001”, the log record
L2 with the XOR difference “1100” is flushed to the log
disk #2, and T2 commits. At this point, if the system
crashes, the database is restarted by initializing the data
item with the backup image S0 (“0000”). Differential
logging uses the bit-wise XOR operation as redo and undo.
Figure 2 (b) shows that the log records in two log disks
can be processed in parallel because the associativity and
commutativity of XOR enables the correct recovery of the
state S2 can be recovered independent of the order of
applying L1 and L2. Note that if the system crashed
before the transaction T2 writing the commit record to the
disk #2, T2 can be undone by applying L2 to S2 after
doing all redo operations. Alternatively, the single pass
recovery is possible by scanning the log files backward
and applying only log records of committed transactions.

Parallel nature of differential logging further
multiplies the gain in logging performance with the
number of log partition disks, making it possible for
P*TIME to deliver up to two orders of magnitude higher
scalability in durable-commit update performance than
existing RDBMS implementations. P*TIME supports hot
spot updates by allowing a transaction to proceed to
access the updates of a proceeding transaction waiting for
the commit record to be flushed to log disks.

The scalability of durable-commit update performance
is essential for the mission-critical real-time enterprise
applications that cannot tolerate any loss of data. For less
mission-critical applications, P*TIME also supports the
so-called “deferred-commit” update mode, with which the
system does not wait for the commit record to be flushed
to the log disk to issue the commit signal to applications.
In section 3, we shall demonstrate that the engine-internal
performance of P*TIME in both durable-commit and
deferred-commit modes is superior to the reported
deferred-commit update performance of a popular in-

memory DBMS implementation on a comparable
hardware platform [17].

P*TIME supports high availability first with fine-
grained parallel recovery of in-memory database.
Breaking the common misconception that parallel logging
lengthens database recovery time because of the overhead
of sorting multiple log streams by serialization order,
which is true for most conventional RDBMS implemen-
tations, the inherent parallelism of differential logging
enables fast recovery of P*TIME database, scalable with
the number of log and backup partition disks. Differential
logging even permits simultaneous processing of multiple
log partitions and backup database partitions. In addition
to fast database recovery, P*TIME supports active-active
log-based N-way asynchronous and synchronous
replication to meet the high availability requirement of
mission-critical applications.

2.4. Concurrency control

Another distinguishing feature of P*TIME is the OLFIT
index concurrency control [5], which minimizes
expensive coherence L2 cache misses incurred by
conventional, latch-based index locking protocols in the
SMP environment. The OLFIT scheme, based on the
optimistic assumption that the conflict is rare and even if
it occurs, can be resolved by retrying the node access, is
designed to avoid latching and unlatching operations as
much as possible. With OLFIT maximizing hardware-
level parallelism in concurrent index node access,
P*TIME does not suffer from the well-known index
locking bottleneck of existing in-memory or memory-
cached disk-centric RDBMS implementations. Since the
effectiveness of the OLFIT depends on how well it is
implemented, P*TIME uses assembly language to
implement its key primitives to make sure that
unnecessary L2 cache misses do not occur.

For the concurrency control of base tables, P*TIME
implements multi-level locking and supports all four
isolation levels of SQL.

2.5. Transparent Disk eXtension

For the time-growing data such as stream data, it is not
feasible to keep the entire table in memory. P*TIME TDX
(Transparent Disk eXtension) transparently migrates
aging or infrequently accessed portion of a table to TDX
partitions on disk. Each TDX partition is a self-
describing indexed data set which supports compression
and direct SQL access. TDX manager pins a TDX
partition in memory when it is frequently accessed.

2.6. Application binding

On top of P*TIME core modules lies the SQL processor
which includes a cost-based query optimizer and a query
plan execution engine. This SQL processor is accessed
through the standard programming interfaces such as
ODBC, JDBC, ESQL, PHP, and a JDBC-style embedded

1037

C++ API.
To protect the database system from application errors,

application processes are completely decoupled from the
multithreaded P*TIME database server. This differ-
entiates P*TIME from the more tightly coupled heavy-
weight process architecture such as TimesTen, where
multiple application processes directly access the database
and the lock information in the shared memory. While
this tightly coupled heavyweight process architecture has
the advantage of eliminating client/server communication
overhead for the clients running on the same machine
with the database, it runs the risk of corrupting the
database or blocking legitimate access by other processes
because of locks unreleased by hanging applications.
Furthermore, the gain in client/server communication
disappears for the remote applications.

P*TIME also supports tight coupling of P*TIME with
application logic but takes a different approach of
providing an embedded C++ API. An application logic of
accessing P*TIME database through a collection of
JDBC-style C++ classes can be embedded inside a
P*TIME server. This is useful for building P*TIME-
embedded tools such as LDAP server.

To maximize multi-tier application performance,
P*TIME transparently supports transaction group
shipping (TGS) between P*TIME server and multi-
threaded application servers. This feature reduces the
number of interactions by shipping temporally adjacent
independent transaction requests or responses in a group
between P*TIME server and application servers.

2.7. Heterogeneous database integration interface

To facilitate the integration with heterogeneous RDBMS
implementations, P*TIME provides an elegant interface
called update log table whose entries representing recent
update, insert, or delete on individual records can be
accessed and deleted in SQL.

Compared with the common approach of vendor-
specific, black-box synchronization functionality, this
open-ended API enables application developers to
implement arbitrary application-specific update propa-
gation semantics to heterogeneous databases. With this
feature, P*TIME can function as the transaction pro-
cessing front-end to existing RDBMS implementations.

3. Performance Scalability
To measure the internal OLTP performance scalability of
P*TIME, we embedded a simple benchmark logic inside
the P*TIME server using its JDBC-style embedded C++
API. Workload clients are emulated by embedded
connection objects iterated by several worker threads,
which carry out actual transaction execution.

The test database consists of a single non-partitioned
table of 8 million records that we adopted from a telco
database. Since we are interested in measuring the
scalability limit, we have intentionally avoided the

creation of multiple tables or multiple partitions, which
may distribute the internal contention pressure. The
standard TPC benchmark was not adequate first because it
is not intended for the OLTP of high-volume stream data,
and secondly because the specification includes preset
parameters such as think time that limit the maximum
deliverable performance given a database size.

 K

20 K

40 K

60 K

80 K

100 K

120 K

140 K

160 K

0 1600 3200 4800 6400

Number of connections

TP
S

Update* Update

Delete* Delete

Insert* Insert

Figure 3. Update/Insert/Delete Performance with Varying
Number of Connections

 (The symbol * denotes that on-disk write cache is enabled.)

Each record of our test database is 168 bytes long. A
hash index is built on its primary key field of BIGINT
type. While we created the hash index in this experiment,
the result is more or less the same for the B+-tree
supporting range queries. The size of the initial database
is about 1.4GB, including 100MB for the non-persistent
hash index.

Each tested transaction type contains a single
operation which is one of the following:

 Search a record with a given primary key and

return a BIGINT-type column of the selected
record.

 Update a BIGINT-type column of the record
matching a given primary key.

 Insert a record.
 Delete a record matching a given primary key.

The experiment was mainly conducted on a Compaq

ML 570 server running UNIX, with four 700MHz Xeon
CPUs, each with 2MB L2 cache, 100MHz front-side bus,
6GB PC-100 SDRAM, Ultra 160 SCSI card, and several
7200 rpm SCSI disks. Each disk has 300KB of on-disk
write cache (WC) for track buffering.

3.1. Update/Insert/Delete performance

From the durability perspective, we have two options in
measuring the durable-commit update performance:

1038

 K

20 K

40 K

60 K

80 K

100 K

120 K

140 K

160 K

1 2 3 4

Number of log disks

TP
S

WC disabled, 4800
connections
WC enabled, 800
conections

Figure 4. Update Scalability with Varying Number of Log
Disks

enabling and disabling on-disk write cache. The use of
on-disk write cache is acceptable if the power supply to
disk drives is securely backed up by UPS to cope with
power failure.

Figure 3 shows that P*TIME can process 140K field
update transactions per second (TPS) with four log disks
used for parallel logging. For pure insert and delete
workloads, P*TIME handles 80K and 100K TPS,
respectively. The response time with on-disk write cache
enabled (1~3 ms) is better than that disabled (9~16 ms).
In both cases, the response time improves significantly
with the reduced number of connections.

This figure also shows that the performance with on-
disk write cache disabled converges to the performance
with on-disk cache enabled as the number of connections
increases. With the “deferred commit” option, P*TIME
can deliver the same peak performance with one log disk
with slightly better response time. However, with this

option, the durability of updates is not guaranteed in case
that the operating system failure occurs.

Figure 4 shows the scalability of P*TIME update
performance with the varying number of log disks. As the
number of log disks increases, the update throughput also
increases until CPU, memory bus or IO channel capacity
is saturated by a specific hardware configuration.

3.2. Search performance

Figure 5 shows that P*TIME can process 650K search
transactions per second on the 4-way 700MHz Xeon
server, and more than 1.4 million transactions per second
on a 4-way 1.4GHz AMD Opteron server running RedHat
AS 3.0 with 1MB L2 cache. Careful design of P*TIME
internal data structures and algorithms minimizing L2
cache misses enables such linear search scalability with
the number and the speed of CPUs.

Figure 6 shows the overall throughput when update
and search transactions are intermixed, ranging from
100 % search to 100 % update. When the search/update
ratio is 90/10, 80/20 and 50/50, the overall throughput is
about 430K, 350K and 200K TPS, respectively.

 K

200 K

400 K

600 K

800 K

1000 K

1200 K

1400 K

1600 K

1 2 3 4

Number of CPUs

TP
S

1.4 GHz Opteron
0.7 GHz Xeon

Figure 5. Search Scalability with Varying Number of
CPUs

 K

100 K

200 K

300 K

400 K

500 K

600 K

700 K

0 20 40 60 80 100

Update transaction ratio (%)

TP
S

Figure 6. Mixed Workload Performance with Varying
Ratio of Updates (WC disabled, 4800 connections)

3.3. Multi-tier performance

To evaluate P*TIME performance in a multi-tier
application environment, we created a number of
multithreaded Java application processes on several
machines, which are connected to the P*TIME server
process on the 4-way 700MHz Xeon server via gigabit
Ethernet. In this environment, P*TIME shows 70,000
TPS for search-only workload and 42,000 TPS for the
update-only workload. Transaction group shipping was
turned on to utilize the server’s communication bandwidth
efficiently. When only a single client thread is connected,
P*TIME shows 5,800 search TPS with the average
response time of 0.17ms or 1,320 update TPS with the

1039

average response time of 0.76ms with WC enabled.
Although these numbers represent significant drops from
the peak engine performance numbers, they correspond to
ten times in search and hundred times in update compared
with a fully-memory-cached disk-centric database running
in the same environment.

3.4. Restart time

To see the impact of P*TIME parallel recovery, we
measured the time to recover the whole database from
1.3GB of backup database (8M records), 1GB of log
records (10M update transactions), and 0.1GB of non-
persistent index. The recovery time is broken down to
loading the checkpointed backup database, replaying the

log records, and rebuilding non-persistent indexes. The
first column in Figure 8 shows that the total recovery time
of the sequential recovery based on a single log disk and a
single checkpoint backup database is 107 seconds, which
is reduced to only 41 seconds by parallelizing all
individual recovery steps: loading backup database,
replaying log records, and rebuilding indexes. Note that
even the sequential recovery time of P*TIME is shorter
than that of existing in-memory RDBMS implementations.

0

20

40

60

80

100

120

140

160

180

200

Xeon (1) Xeon (4) Opteron (1) Opteron (4)

R
ec

ov
er

y
tim

e
(s

ec

1.3GB of Backup DB + 1GB
of log + 0.1GB of index

6.5 GB of Backup DB + 2GB
of log + 0.7GB of index

Figure 8. Database Recovery Time (The number in
parentheses denotes the number of CPUs and disks.)

To measure the restart time for a larger database, we
scaled the database size five times (6.5GB of backup
database and 0.7GB of non-persistent index for 40M
records) and the log size twice (20M update transactions
or 2 GB). Since this database size exceeds the process
address limit of the 32 bit Xeon machine, we used the 4-
way 1.4GHz 64 bit Opteron server with 16GB DDR
memory and several 15000 rpm disks connected through
U320 SCSI controller. The fourth column in Figure 8
shows that the recovery time with 4 CPUs and 4 disks is
only 72 seconds, while the recovery time with 1 CPU and
1 disk is 184 seconds. This experimental result leads us
to conclude that the database recovery performance of
P*TIME is scalable with the number of log and
checkpoint disks used and the CPU/IO capability of the
underlying hardware system.

4. Stock Market Database Case

4.1. Challenges

The stock market database keeps track of the current state
and history of individual stock item’s bid-and-ask and
settled price and volume data. It is critical for this
database to minimize the latency in capturing the
continuous stream of stock trading messages and

WAN

P*TIME
Servers

HP UX (6*450MHz, 8GB)

100Mbps LAN Remote Backup
P*TIME Server

HP UX (6*450MHz, 8GB)

TCP/IP
HTTP

Mobile Users

Mobile Trading App
Servers

ODBCJDBC

HTTP

Broadband Users

JDBC

…Web Trading
App Servers

Trading Message Streams
UDP

ODBC

Figure 7. P*TIME-based Stock Market Database Servers

1040

delivering updates to the interested users or responding to
ad hoc user queries. Another important requirement is to
lower the cost of quality service because of the
competition among the stock brokerage firms.
Conventional RDBMS implementations observing the
ACID transaction quality is not adequate for cost-
effective management of stock market data because of the
amount of update volume to process.

4.2. Samsung Securities, Inc. case study

Samsung Securities, Inc. is the number 1 brokerage firm
in Korea, serving 50K – 60K concurrent users out of
800K registered on-line users. Korean stock market is
well known for its volatility and fast adoption of on-line
trading because of the well-developed broadband and
wireless infrastructures enabling easy access to the market
database and the low transaction fee which resulted from
the competition among many on-line brokerage firms.

Recognizing that implementing the market database
servers with conventional RDMBS technology is cost-
prohibitive, Samsung Securities, Inc. maintained a farm of
about 50 C-ISAM-based market data servers communi-
cating with the user’s fat MS Windows client program in
a custom protocol. Each server runs on a SUN Enterprise
3500 or 4500 hardware with six to eight CPUs. There is
no clear separation of database and applications in this
architecture, and the IT staffs has the burden of
maintaining the application code base of manipulating C-
ISAM and shared memory with ad hoc concurrency
control.

When Samsung Securities, Inc. planned to launch the
mobile trading service to mobile phone and PDA users in
August 2002, it decided to separate the database server
from the application because of the various difficulties
that it has experienced in maintaining the C-ISAM-based
server. Samsung Securities, Inc. chose P*TIME to

manage the market database because its update scalability
will lower the long-term capital expenditure and the
standard RDBMS interface will lower the application
maintenance cost.

Figure 7 shows the architecture of P*TIME-based
market database server deployment at Samsung Securities,
Inc. For the high availability reason, two copies of
P*TIME servers are co-located with a single remote
backup server. Since the trading message streams are
broadcast via UDP from the stock exchange and the
message processing burden is not severe for P*TIME,
each P*TIME server is responsible for updating its own
database. After a few months of operation, Samsung
Securities, Inc. also decided to move the customer’s
profile of watch list groups from eight LDAP servers to
the operational P*TIME servers. For this database,
P*TIME servers are configured as active-active replicas.
Although the operational systems were not planned to
serve web trading services, the IT staffs of Samsung
Securities, Inc. also implements the new functionalities to
introduce in the web trading service using the operational
P*TIME servers because of the ease of manipulating the
database with SQL and JDBC.

4.3. Schema and Workload

The stock market database consists of 50+ relations.
Figure 9 shows five representative relations. For each
relation, the number of columns and the record length in
bytes are shown as well as some column names. The
primary key columns are printed in bold face.

STOCK_MASTER relation holds the reference
information of stock items such as code, name, and trade
status. The Korean stock market has 1700+ stock items
managed by KSE and KOSDAQ. BIDNASK relation
keeps track of ten closest bid and ask prices/volume pairs
for each stock item. TRADE relation keeps track of the

TRADE_HISTORY
20 columns, 120 byte record

stock_code
trade_time
settled_price
price_change
settled_volume
settled_amount
...

TRADE
20 columns, 120 byte record

stock_code
trade_time
settled_price
price_change
settled_volume
settled_amount
closest_bid
closest_ask
...

TRADE_DAILY_AGGREGATE
16 columns, 84 byte record

stock_code
aggregate_date
finish_price
start_price
highest_price
lowest_price
total_volume
...

STOCK_MASTER
74 columns, 372 byte record

stock_code
stock_name
total_volume
total_price
trade_status
...

BIDNASK
76 columns, 384 byte record

stock_code
bidnask_time
bid1,…,bid10
ask1,…,bid10
bid_vol1,…,bid_vol10
ask_vol1,…,ask_vol10
bid_chg1,…,ask_chg10
ask_chg1,…,ask_chg10
bid_total_vol
ask_total_vol
...

Figure 9. Representative Relations of P*TIME-Based Market Database

1041

latest settled trade information of each stock item, such as
settled price and volume. In addition, it also keeps track
of the closest bid and ask prices and volumes.
TRADE_HISTORY relation stores the history of settled
trades. TRADE_DAILY_AGGREGATE stores the daily
aggregates of stock items such as high and low prices and
traded volume. In addition, there are relations, which are
not shown in the figure, for keeping track of options,
futures, market indexes, and market statistics.

The challenging workload from DBMS perspective is
processing the trading message stream from the stock
exchange. Figure 10(a) shows the time distribution of
one-day volume of real trading messages from Korean
stock market. A major portion of this message stream
consists of bid-and-asks and settled trades. Figure 10(b)

shows the distribution of required update / insert and
search queries to process the trading message stream.

QF1: Retrieve the latest settled trade
SELECT settled_price, price_change, settled_amount,

settled_volume, closest_bid, closest_ask
FROM TRADE
WHERE stock_code=?

QF2: Retrieve 60 day price changes
SELECT TOP 60 aggregate_date, start_price, finish_price,

highest_price, lowest_price, total_volume
FROM TRADE_DAILY_AGGREGATE
WHERE stock_code = ?
ORDER BY aggregate_date DESC

(e) Form 1: Chart of 60 Day Price Changes of a Stock

QF3: Retrieve the current price quote by joining three tables
SELECT <49 columns>
FROM STOCK_MASTER M, TRADE T, BIDNASK B
WHERE M.stock_code=? AND M.stock_code=T.stock_code

AND M.stock_code=B.stock_code

QF4: Retrieve the latest 20 settled trades
SELECT TOP 20 trade_time, settled_price, price_change,

settled_volume, settled_amount
FROM TRADE_HISTORY
WHERE stock_code=?
ORDER BY trade_time DESC

(f) Form 2: Current Price Quote of a Stock

0

40

80

120

160

200

0 40 60 100
% of Form1

m
s

0K

2K

4K

6K

8K

10K

12K

0 40 60 100
% of Form1

Fo
rm

s /
 se

c

P*TIME without real-time update
P*TIME with real-time update
Disk DBMS without real-time update
Disk DBMS with real-time update

0K

1K

2K

3K

4K

5K

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Time

M
es

sa
ge

 /
m

in
Bid&Ask

Trade

Etc.

0K

4K

8K

12K

16K

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Time

O
pe

ra
tio

ns
 /

m
in

Update / Insert
Search

(a) Trading message distribution / minute

(b) Number of database operations / minute

(c) Throughput

(d) Response Time

Figure 10. P*TIME-Based Stock Market Database Performance

For each bid-and-ask message, the following two
updates are required.

 Update a row of BIDNASK with new values of bid

and ask prices/volumes, etc.
 Update a row of TRADE with new values of the

closest bid and ask information.

To process each settled trade message, the following

operations are needed.

 Check the trade_status value of STOCK_MASTER.
 If the status is ok, search BIDNASK relation with a

1042

given stock item to get the closest bid-and-ask match
(bid1, ask1, bid_vol1, ask_vol1) because this
information is not contained in the message.

0K

3K

6K

9K

12K

Fo
rm

s
/ s

ec

0

20

40CP
U

 u
sa

ge
 (%

)
fo

r m
ar

ke
t

da
ta

ba
se

 u
pd

at
e

No 1x 2x 4x 8x

Figure 11. Concurrent Query Processing Throughput with

Varying Rate of Trading Message Arrival

 Update TRADE with new values of settled price,
volume, etc.

 Insert the new trade record into TRADE_HISTORY.

Another type of major workload is query processing.

Figure 10 (e) and (f) show two popular query forms. The
first one displays the 60-day price changes of a stock item.
The second one queries the current price quote of a stock
item. Both forms generate two SQL queries in sequence,
and each query is processed as a separate transaction.

In addition, there are periodic batch jobs conducted
during night time or weekends to compute the daily,
weekly, monthly aggregates.

4.4. Comparative P*TIME performance

To measure the comparative gain of using P*TIME over
the existing DBMS implementation, we selected one of
the easily accessible disk-centric DBMS implementations,
and created two databases, one for P*TIME and another
for the selected disk-centric DBMS, on the same Compaq
ML 570 server that we use to report the experiment result
of Section 3. In-memory DBMS implementations were
not available for experimental comparison.

We used the real trading message stream of Figure 10
(a) to generate the update stream workload, and two query
forms in Figure 10 (e), (f) to measure the concurrent
query processing capability.

Figure 10 (c) and (d) shows the throughput and
average response time with the varying ratio of two query
forms. For each ratio, four values are shown. The first
two values represent P*TIME and the remaining two
values the disk-centric database. For each DBMS, the
first value represents the performance without real-time
market database update, and the second represents the
performance with real-time market database update. The
graphs shows that P*TIME is up to 40 times more
scalable than the disk-centric database in throughput
while the disk-centric database experiences severe
degradation of response time.

4.5. Scalability with respect to stream data volume

To measure the scalability of update stream processing
capability of P*TIME, we ran the experiment of
accelerating trading message arrival using the one-day
real trading message volume set. Figure 11 shows the
throughput of concurrent query processing with the
varying acceleration of trading message arrival rate. The
query form 2, shown in Figure 10 (f), which has more
interference with the real-time market database update is
used to measure the throughput. In this figure, “No”
means that there is no market database update load, 1x
means the original speed of the stream, and 8x means that
the message arrives at the eight times of the original speed.

At 8x, about 2000 update transactions and 1000 search
query transactions are performed per second to update the
market database.

From Figure 11 we observe that the concurrent query
processing is not much affected even though the rate of
arrival changes from 1x to 8x. The minor drop in the
concurrent query throughput is roughly proportional to the
CPU usage for the real-time market database update.

5. Summary and Related Work
In this paper, we have presented:

 Rationale for the new OLTP DBMS for handling

update-intensive stream workload which is
frequently found in the so-called real-time enterprise
applications.

 Architecture and performance scalability of P*TIME.
 Real-world deployment of P*TIME as the stock

market database server.

With the exponentially growing gap between the CPU
speed and the memory access speed, there has been much
research lately on the L2-cache-conscious index structures
([3][4]), database layout ([6]), index concurrency control
([5]), and query processing ([7]).

Based on our experience of building, benchmarking,
and deploying P*TIME in the real world transaction
processing environment, we believe that careful
implementation of L2-cache-conscious DBMS-internal
protocols and algorithms such as the OLFIT and
minimizing thread context switches leveraging the
lightweight multithread architecture are more crucial than
L2 cache-conscious data structures alone, which provide
only marginal gain in improving overall throughput. As
future work, we expect to formalize this experience
further through experiment.

1043

P*TIME architecture design and implementation has
benefited from the author’s experience of building and
benchmarking the first-generation in-memory DBMS over
several years [8][9][10], which was motivated by the
exposure to the early in-memory query processing project
at HP Laboratories [18].

Building P*TIME follows the vision of RISC-style
DBMS [19]. Although we have not yet incorporated the
self-tuning functionality, our compact code, which uses
the C++ template feature extensively, coupled with the
inherent simplicity of the memory-centric database
performance model compared with the disk-centric one
would be make it easier to incorporate the self-tuning
capability.

As future work, we plan to extend P*TIME to
incorporate the continuous query processing capability,
and exploit the macro parallelism using a number of
inexpensive SMP blades connected through a high-speed
switch fabric. In another direction of research, we plan to
refine the stock market database domain further so that it
can serve as a benchmark database for the update-
intensive stream workload.

Acknowledgement
The authors thank Gio Wiederhold at Stanford University
for his invaluable comment on the early version of this
paper. They also thank other members of P*TIME
development team for their contribution.

REFERENCES
[1] Paul McJones, Ed.. The 1995 SQL Reunion: People,

Projects, and Politics. Digital SRC Technical Note. 1997-
018. http://www.mcjones.org/System_R/T

[2] Jack L. Lo, Luiz A. Barroso, Sujan J. Eggers, Kourosh
Gharachorloo, Henry M. Levy, and Sujay S. Parekh. An
Analysis of Database Workload Performance on
Simultaneous Multithreaded Processors. In Proceedings of
the 25th Annual International Symposium on Computer
Architecture, June 1998.

[3] Jun Rao and Kenneth Ross. Making B+-trees Cache
Conscious in Main Memory. In Proceedings of ACM
SIGMOD Conference, 2000.

[4] Kihong Kim, Sang K. Cha, and Keunjoo Kwon. Optimizing
Multidimensional Index Trees for Main Memory Access. In
Proceedings of ACM SIGMOD Conference, 2001.

[5] Sang K. Cha, Sangyong Hwang, Kihong Kim, and Keunjoo
Kwon. Cache-Conscious Concurrency Control of Main-
Memory Indexes on Shared-Memory Multiprocessor
Systems. In Proceedings of VLDB Conference, 2001.
(Under patent application)

[6] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and

Marios Skousnakis. Weavering Relations for Cache
Performance. In Proceedings of VLDB Conference, 2001.

[7] Peter Boncz, Stefan Manegold, and Martin Kersten. Data
Architecture Optimized for the new Bottleneck: Memory
Access. In Proceedings of VLDB Conference, 1999.

[8] Sang K. Cha, Jang Ho Park, Sung Jik Lee, Sae Hyeok Song,
Byung Dae Park, S. J. Lee, S. Y. Park, and G. B. Kim.
Object-Oriented Design of Main-Memory DBMS for Real-
Time Applications. In Proceedings of the 2nd International
Workshop on Real-Time Computing Systems and Appli-
cations, 1995.

[9] Sang K. Cha, Jang Ho Park, Sung Jik Lee, Byung Dae Park,
and J. S. Lee. An Extensible Architecture for Main-
Memory Real-Time Storage Systems. In Proceedings of the
3rd International Workshop on Real-Time Computing
Systems and Applications, 1996.

[10] Jang Ho Park, Yong Sik Kwon, Ki Hong Kim, Sangho Lee,
Byoung Dae Park, and Sang K. Cha. Xmas: An Extensible
Main-Memory Storage System for High-Performance
Applications. Demo in Proceedings of ACM SIGMOD
Conference, 1998.

[11] TimesTen Performance Software. http://www.timesten.com
[12] Juchang Lee, Kihong Kim, and Sang K. Cha. Differential

Logging: A Commutative and Associative Logging Scheme
for Highly Parallel Main Memory Databases. In
Proceedings of IEEE ICDE Conference, 2001. (Under
patent application)

[13] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and Issues in Data Stream Systems. In Proceedings
of ACM PODS Conference, 2002.

[14] S. Krishnarmurthy, S. Chanrasekaran, O. Cooper, A.
Deshpande, M. Franklin, J. Hellerstein, W. Hong, S.
Madden, F. Reiss, M. Shah. TelegraphCQ: An
Architectural Status Report. IEEE Data Engineering
Bulletin, Vol 26(1), March 2003

[15] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh,
and Peter Schwarz. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging. ACM Transactions
on Database Systems, Vol. 17, No. 1, pp. 94-162, 1992.

[16] IBM, ARIES Family of Locking and Recovery Algorithms.
http://www.almaden.ibm.com/u/mohan/ARIES_Impact.html

[17] M-A. Neimat, TimesTen Caching Infrastructure and Tools,
An Industry Session Presentation, In IEEE ICDE
Conference, 2002.

[18] Tore Risch. The Translation of Object-Oriented Queries to
Optimized Datalog Programs. HPL-DTD-91-9, Hewlett-
Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA
94303.

[19] Surajit Chaudhuri and Gerhard Weikum. Rethinking
Database System Architecture: Towards a Self-Tuning
RISC-style Database System. In Proceedings of VLDB
Conference, 2000.

1044

http://www.mcjones.org/System_R/

