
IMPLEMENTATION TECHNIQUES FOR MAIN MEMORY DATABASE SYSTEMS

David J. DeWitt1, Randy H. Katz^, Frank Olken®,
Leonard D. Shapiro4, Michael R. Stonebraker , David Wood^

2 Computer Sciences Department, University of Wisconsin
gECS Department, University of California at Berkeley

CSAM Department, Lawrence Berkeley Laboratory
* Department of Computer Science, North Dakota State University

ABSTRACT: With the availability of very large, relatively inexpen
sive main memories, it is becoming possible keep large databases
resident in main memory. In this paper we consider the changes
necessary to permit a relational database system to take advantage
of large amounts of main memory. We evaluate AVL vs. B +-tree
access methods for main memory databases, hash-based query pro
cessing strategies vs. sort-merge, and study recovery issues when
most or all of the database fits in main memory. As expected, B-f- -
trees are the preferred storage mechanism unless more than 80-90%
of the database fits in main memory. A somewhat surprising result is
that hash based query processing strategies are advantageous for
large memory situations.

Key Word» and Phrates: Main Memory Databases, Access Methods,
Join Algorithms, Access Planning, Recovery Mechanisms

1. Introduction
Throughout the past decade main memory prices have plum-

metted and are expected to continue to do so. At the present time,
memory for super-minicomputers such as the VAX 11/780 costs
approximately $1,500 a megabyte. By 1990, 1 megabit memory
chips will be commonplace and should further reduce prices by
another order of magnitude. Thus, in 1990 a gigabyte of memory
should cost less than $200,000. If 4 megabit memory chips are avail
able, the price might be as low as $50,000.

With the availability of larger amounts of main memory, it
becomes possible to contemplate the storage of databases as main
memory objects. In fact, IMS Fast Path [DATE82J has supported
such databases for some time. In this paper we consider the changes
that might be needed to a relational database system if most (or all)
of a relation(s) is (are) resident in main memory.

In Section 2, the performance of alternative access methods for
main memory database systems are considered. Algorithms for rela
tional database operators in this environment are presented and
evaluated in Section 3. In Section 4, we describe how access plan
ning will be affected by the availability of large amounts of main
memory for query processing. Section 5 discusses recovery in
memory resident databases. Our conclusions and suggestions for

This research m s partially supported by the National Science Foundation under
p a n ts MCS82-01360, MCS82-01870, by the Department of Energy under contracts
#DE-AC02-81ER10«20, #DE-AC03-76SF000i8, #W-740S-ENG-48, and by the Air
Force Office of Scientific Research nnder Grant 88-0021.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-128-8/84/006/0001 $00.75

future research are contained in Section 6.

2. Acceas Methods for Memory Resident Databases
The standard access method for data on disk is the B +-tree

[COME79J, providing both random and sequential key access. A
B-f--tree is specially designed to provide fast access to disk-resident
data and makes fundamental use of the page 6ize of the device. On
the other hand, if a keyed relation is known to reside in main
memory, then an AVL (or other binary) tree organization may be a
better choice. In this section we analyze the performance of both
structure for a relation R with the following characteristics:

(|R|| number of tuples in relation R
K width of the key for R in bytes
L width of a tuple in bytes
P page size in bytes
4 size of a pointer in bytes

We have analyzed two cases of interest. The first is the cost of
retrieving a single tuple using a random key value. An example of
this type of query is:

retrieve (emp.salary) where emp.name = ’’Jones’
The second case analyzed is the cost of reading N records sequen
tially. Consider the query

retrieve (emp.salary, emp.name) where emp.name = ’ J*”
which requests data on all employees whose names begin with J. To
execute this query, the database system would locate the first
employee with a name beginning with J and then read sequentially.
This second case analyzes the sequential access portion of such a
command.

For both cases (random and sequential access), there are two
costs that are specific to the access method:

|page reads| the number of pages read to execute the query

|comparisons| the number of record comparisons required to
isolate the particular data of interest.

The number of comparisons is indicative of the CPU time required to
process the command while the number of page reads approximates
the I/O costs.

To compare the performance AVL and B+ -trees, we propose
the following cost function:

cost = Z * |page-reads| + |comparisons|
Since a page read consumes perhaps 2000 instructions of operating
system overhead and 30 milliseconds of elapsed time while a com
parison can easily be done in 200, we expect realistic values of Z to
be in the range of 10 to 30. Later in the section we will use several
values in this range.

Moreover, it is possible (although not very likely) that an
AVL-tree comparison will be cheaper than a B +-tree comparison.
The reasoning is that the B+ -tree record must be located within a
page while an AVL tree does not contain any page structure and
records can be directly located. Consequently, we assume that an
AVL-tree comparison costs Y times a B+ -tree comparison for some

Y < 1.

From Knuth [KNUT73], we can observe that in an ||R ||-tuple
AVL tree approximately

C = log2||f l || + 0.25 comparisons

are required to find a tuple in a relation. Without any special pre
cautions each of the C nodes to be inspected will be on a different
page.1 Hence, the number of pages accessed is approximately C.
The AVL structure will occupy approximately

5 = S * * 8) jpages

Here \ X 1 denotes the smallest integer larger than X. If |M| pages
of main memory are available, and if | Af | < 15 1, and if a random
replacement algorithm is used, the number of page faults to find a
tuple in a relation will be approximately:

faults = C * (1—LiLL.)

Consequently the cost of a random access by key is:

coH(AVL) = L y L) + Y»C

Next we derive the approximate cost for a random access to a
tuple using a B+ -tree. According to YAO [YA078], B-tree nodes are
approximately 69 percent full on the average. Hence, the fanout of a
B+ -tree is approximately

. .69 »P
A K + 4

The number of leaf nodes will be about
„ ll«IK , .D = » - data pages

.69 »P B
The height of a B+ -tree index is thereby

]0gjP 1
height =

log-jA I
The number of comparisons required to locate a tuple with a particu
lar value is:

C ' = [log2||P |i

The number of pages which the tree consumes is about

S 1 = D + \2 -

;h the tree j

To a first approximation S’ is

S ' = D *

Again the number of page faults is approximately

fault! — (height + 1) » (1—^ /)

A

A
A - 1

= J>E

As a result the cost of a B+ -tree access by key is:

coet(B + -tree) = Z*(height+ 1)*(1
IMI

■) + C '

An AVL-Tree will be the preferred structure for case 1 if
DIFF = cost(B+ -tree) - cost(AVL-Tree) > 0

If we assume that C «= C 1 = log2||J?|| and rearrange the terms in
the inequality, then an AVL-Tree will be preferred if:

(l-Y)*log2||f i || > Z*log2||J? ||* (l—L y L) - Z*(height+ 1)*(1—I ^ L)

Note that if L > > 8 then S =* 0.69 * S’. Define H = »■I ’,,1 •

Some simplification yields:
| M | Z * (l-H) + Y -l

S
Obviously, if |M |> S , then AVL trees are the preferred structure
regardless of the values of H, Y, and Z. In this situation, the entire
AVL-Tree is resident in main memory and there are no disk accesses.
Since both data structures require the same number of comparisons
and the AVL comparisons are cheapers, then the AVL-Tree is
guaranteed to have lower cost. If | M | < 5 then AVL trees will be

preferred if the value of I is larger than the value of min(|M|/S)

shown as in Table 1. As can be seen, essentially all of a relation has
to be resident in main memory before an AVL tree is the preferred
structure. For reasonable values of H, Y and Z, at least 80 percent
and sometimes more than 90 percent of a relation must be main

1 If a paged binary tree orgamtation is used instead, the fanont per node will be
slightly worse than the B-tiee. Furthermore, paged binary trees are not balanced and
the worst case access time may be significantly poorer than in the case of a B-tree.

memory resident.

We turn now to sequential access. For an AVL-Tree, the cost
of reading N records sequentially is N comparisons and N page reads,

ieq-coet(AVL) = Y*N + V * Z * (l-!y -L

On the other hand, N records ip a B+-Tree^wil! occupy>rds in a d + -

= | J ™ _ + i
|0.69*P 2

data pages
and consequently:

eeq-coet(B+ -Tree) = TV + Q*Z*(\-^j)-)
An AVL-Tree will be preferred if:

] M | Z (l - H ') + (Y - l)
S Z * (l - H '/1 .45)

where H ' = It appears that reasonable values for H’ are

similar to reasonable values for H; hence, Table 1 also applies to
sequential access.

In both random and sequential access, a very high percentage
of the tree must be in main memory for an AVL-Tree to be competi
tive. Hence, it is likely to be a structure of limited general utility
and B+ -Trees will continue to remain the dominant access method
for database management systems.

Table 1 - Minimum Residency Factor For Random Access

z Y H min (|M|/S)
10 .5 .1 .91
10 .5 .2 .87
10 .5 .3 .82
10 .75 .1 .94
10 .75 .2 .90
10 .75 .3 .86
15 .75 .1 .96
15 .75 .2 .91
15 .75 .3 .86

3. Algorithms for Relational Database Operations

3.1. Introduction
In this section we explore the performance of alternative algo

rithms for relational database operations in an environment with
very large amounts of main memory. Since many of the techniques
used for executing the relational join operator can also be used for
other relational operators (e.g. aggregate functions, cross product,
and division), our evaluation efforts have concentrated on the join
operation. However, at the end of the section, we discuss how our
results extend to these other algorithms.

After introducing the notation used in our analysis, we present
an analysis of the familiar sort-merge [BLAS77J join algorithm using
this notation. Next we analyze a multipass extension of the simple
hashing algorithm. The third algorithm described is similar to an
algorithm that has been proposed by the Japanese 5th generation
project (KITS83], and is called GRACE. In the first phase, the join
of two large relations is reduced to the join of several small sets of
tuples. During the second phase, the tuple sets are joined using a
hardware sorter and a sort-merge algorithm. Finally, we present a
new algorithm, called the Hybrid algorithm. This algorithm is simi
lar to the GRACE algorithm in that it partitions a join into a set of
smaller joins. However, during the second phase, hashing is used
instead of sort merge.

In the following sections we develop cost formulas for each of
the four algorithms and report the result of analytic simulations of
the four algorithms. Our results indicate that that the Hybrid algo
rithm is preferable to all others over a large range of parameter
values.

3.2. Notation and Assumption*
Let R and S be the two relations to be joined. The number of

pages in these two relations is denoted |R | and |S|, respectively. The
number of tuples in R and S are represented by ||R || and ||S||. The
number of pages of main memory available to perform the join
operation is denoted as |M|. Given |M| pages of main memory,
{Af}fi, {Af}s specify the number of tuples from R and S that can fit
in main memory at one time.

We have used the following parameters to characterize the per*
formance of the computer system used:

comp time to compare keys
hash time to hash a key
move time to move a tuple
swap time to swap two tuples
IOseq time to perform a sequential IO operation
W ft AND time to execute a random IO operation

To simplify our analysis we have made a number of assumptions.
First, we have assumed that | R \ < \ S | . Next, several quantities
need to be incremented by slight amounts to be accurate. For exam
ple, a hash table or a sort structure to hold R requires somewhat
more pages than |R |, and finding a key value in a hash table requires,
on the average, somewhat more than one probe. We use ”F ” to
denote any and all of these increments, so for example a hash table
to hold R will require |R |*F pages. To simplify cost calculations, we
have assumed no overlap of CPU and IO processing. We have also
ignored the cost of reading the relations initially and the cost of writ
ing the result of the join to disk since these costs are the same for
each algorithm.

In any sorting or hashing algorithm, the implementor must
make a decision as to whether the sort structure or hash table will
contain entire tuples or only Tuple IDs (TIDs) and perhaps keys. If
only TIDs or TID-key pairs are used, there is a significant space sav
ings since fewer bytes need to be manipulated. On the other hand,
every time a pair of joined tuples is output, the original tuples must
be retrieved. Since these tuples will most likely reside on disk, the
cost of the random accesses to retrieve the tuples can exceed the sav
ings of using TIDs if the join produces a large number of tuples.
Fortunately, we can avoid making a choice as the decision affects our
algorithms only in the values assigned to certain parameters. For
example, if only TID-key pairs are used then the parameter measur
ing the time for a move will be smaller than if entire tuples are mani
pulated.

Three algorithms (Sort-merge, GRACE, and Hybrid hash) are
much easier to describe if they require at most two passes. Hence we
assume the necessary condition \ / 1S | *F < \M \. For example, if F
= 1.2, and |M| is only 1,000 pages (4 megabytes at 4K bytes/page),
then |S| (and |R |, since | R | < | S |) can be as large as 800,000 pages
(3.2 gigabytes)!

changes the X sets to compensate, check the new R-sets again, etc.
Despite the apparent difficulties of selecting the sets X lt X j, ..., there
are two mitigating circumstances. Suppose that the key distribution
has a bounded density and that the hash function effectively random
izes the keys. If the number of keys in each partition is large, then
the central limit theorem assures us that the relative variation in the
number of keys (and hence the number of tuples) in each partition
will be small. Furthermore, if we err slightly we can always apply
the hybrid hash join recursively, thereby adding an extra pass for the
overflow tuples.

3.4. Sort-Merge Join Algorithm
The standard sort-merge algorithm begins by producing sorted

runs of tuples which are on the average twice as long as the number
of tuples that can fit into a priority queue in memory [KNUT73|.
This requires one pass over each relation. During the second phase,
the runs are merged using an n-way merge, where n is as large as
possible (since only one output page is needed for each run, n can be
equal to |M|-1). If n is less than the number of runs produced by the
first phase, more than two phases will be needed. Our assumptions
guarantee that only two phases are needed.

(1)

(2)

The steps of the sort-merge join algorithm are:

Scan S and produce output runs using a selection tree or some
other priority queue structure. Do the same for R. A typical

run will be approximately -* pages long [KNUT73],

Since the runs of R have an average length of
2* Ml

there are l * l « ~ such runs. Similarly, there are

- pages,

2 * \M \ 2 * |M |
runs of S. Since S is the larger relation, the total number of

i c —
runs is at most

a t once if | M |

assumed |M| to be at least \/1 S | *F pages. Thus all runs can
be merged a t once.

1£L*1 ,

“ IM I ’

Therefore, all the runs can be merged

or |M | > \ / | 5 | *F , and we have

Allocate one page of memory for buffer space for each run of R
and S. Merge runs from R and S concurrently. When a tuple
from R matches one from S, output the pair.

The cost of this algorithm (ignoring the cost of reading the relations
initially and the cost of writing the result of the join) is:

/* Insert tuples into priority queue to form initial runs */

(||fl||log2i ^ - + ||S ||log2- ^ -) * (comp+swap)

/* write initial runs */

3.3. Partitioning a Relation by Hash Values
If |M| < |R|*F, each of the hashing algorithms described in

this paper requires that R and/or S be partitioned into disjoint sub
sets such that any two tuples which bash to the same value lie in the
same subset. One such partitioning is into the sets R t such that R x
contains those tuples r for which b(r) = x. We call such a partition
compatible with h.

A general way to create a partition of R compatible with h is
to partition the set of hash values X that h can assume into subsets,
say -Xj.....X„. Then, for i = l,...,n define ft, to be all tuples r such
that h(r) is in X , . In fact, every partition of R compatible with h
can be derived in this general way, beginning with a partition of the
hash values. The power of this method is that if we partition both R
and S using the same h and the same partition of hash values, say
into R 1}...,Rn and , then the problem of joining R and S is
reduced to the task of joining R i with 5 ,, f?2 with S2, etc.
[BABB79, GOOD81].

In order for the hash table of each set of R tuples to fit in
memory, |ff , | *F must be < | Af | . This is not easily guaranteed.
For example, how can one choose a partition of R, compatible with
h, into two sets of equal size? One might try trial and error: Begin
by partitioning the set of hash values into two sets X \ and X 2 of
equal size and then consider the sizes of the two corresponding sets of
tuples R t and ff2. If the R-sets are not of equal size then one

+ (| R | + | S |)*IOSEQ

/« reread initial runs for final merge */

+ (if? |+ |S|)*f0»,4/VD

/ • insert tuples into priority queue for final merge * /

+ * (comp+swap)

/» join results of final merge »/

+ (11*11+It* ||) »comp

This cost formula holds only if a tuple from R does not join with
more than a page of tuples from S.

3.5. Simple-Hash Join Algorithm
If a hash table containing all of R fits into memory, i.e. if

| ft | *F < | M | , the simple-hash join algorithm proceeds as fol
lows: build a hash table for R in memory and then scan S, hashing
each tuple of S and checking for a match with R (to obtain reason
able performance the hash table for R should contain at least TID-
key pairs). If the hash table for R will not fit in memory, the

simple-bash join algorithm fills memory with a hash table for part of
R, then scans S against that hash table, then it continues with
another part of R , scans the remainder of S again, etc.

The steps of the simple-hash join algorithm are:

(1) Scan R. Using h, hash each tuple and place in the appropriate
output buffer. When an output buffer fills, it is written to disk.
Atter R has been completely scanned, flush all output buffers to
disk.

(1) Let P — min(|M|, |R|*F). Choose a hash function h and a
P

range of hash values so that — pages of R-tuples will hash into
F

that range. Scan the (smaller) relation R and consider each
tuple. If the tuple hashes into the chosen range, insert the
tuple into a P-page hash table in memory. Otherwise, write the
tuple into a new file on disk.

(2) Scan S. Using h, hash each tuple and place in the appropriate
output buffer. When an output buffer fills, it is written to disk.
After S has been completely scanned, flush all output buffers to
disk.

Steps (3) and (4) below are repeated for each set /?, , 1 < « < | Af | , in
the partition for R, and its corresponding 6et S,.

(2) Scan the larger relation S and consider each tuple. If the tuple
hashes into the chosen range, check the hash table of R-tuples
in memory for a match and output the pair if a match occurs.
Otherwise, write the tuple to disk. Note that if key values of
the two relations are distributed similarly, there will be
p | g |
-=■ ■/ p l pages of the larger relation S processed in this pass.
* I " I

(3) Repeat steps (1) and (2), replacing each of the relations R and
S by the set of tuples from R and S that were "passed over”
and written to disk in the previous pass. The algorithm ends
when no tuples from R are passed over.

The algorithm requires \ * \ 1 F

\ M \

passes to execute. We denote this

quantity by A. Also note that on the ith pass, i — 1, ..., A-l,

- tuples of R are passed over. The cost of the algo

rithm is:

/* Place each tuple of R in a hash table */

||R || * (hash + move)

+ ||S || * (hash + comp*F)

/* hash and move passed-over tuples in R */

+ ((A -1)*||Ä || -) » (hash+move)

(3) Read R, into memory and build a hash table for it.

We pause to check that a hash table tor R, can fit in memory.
Assuming that all the sets R, are of equal size, since there are

|M| of them, |i? , | will equal -f-rrj- pages. The inequality

| R , | *F < | Af | is equivalent to v [R | *F < | Af (, and we
have assumed that V | S | *F < | M \ .

(4) Hash each tuple of 5, with the same hash function used to
build the hash table in (3). Probe for a match. It there is one,
output the result tuple, otherwise proceed with then next tuple
of 5,.

The cost of this algorithm is:

/* Hash tuple and move to output buffer */

(||R)| + ||S ||) * (hash + move)

/* write partitioned relations to disk «/

+ (|R| + |S|) * IORjiND

/* read partitioned sets */

+ (|R |+ |S|) * IOSeq

/* build hash tables in memory * /

/* hash and move passed-over tuples in S */ + ||R || * (hash + move)

+ ((A -1 M |S 1 | - A ^) • (hash+ move)

/* write and read passed-over tuples in R */

+ ((A -l)* | R | - A Z id z l l « i£L) , 2*10¡eg

/* write and read passed-over tuples in S * /

+ ((A -l)* I 5 1 - V -L ^ L v J | L) . 2 « / O ^

3.0. GRACE-Hash Join Algorithm
As outlined in [KITS83], the GRACE-hash join algorithm exe

cutes as two phases. The first phase begins by choosing an h and
partitioning the set of hash values for h into |M| sets, corresponding
to a partition of R and S into |M| sets each, such that R is parti
tioned into sets of approximately equal size. No assumptions are
made about set sizes in the partition of S. The algorithm uses one
page of main memory as an output buffer for each of the (M| sets in
the partition of R and S. During the second phase of the algorithm,
the join is performed using a hardware sorter to execute a sort-merge
algorithm on each pair of sets in the partition. To provide a fair com
parison between the different algorithms, we have used hashing to
perform the join during the second phase. The algorithm proceeds as
follows:

/* probe for a match */

+ ||S || » (hash + comp*F)

3.7. Hybrid-Hash Join Algorithm
In our hybrid-hash algorithm, we use the large main memory

to minimize disk traffic. On the first pass, instead of using all of
memory as a buffer as is done in the GRACE algorithm, only as
many pages (B, defined below) as are necessary to partition R into
sets that can fit in memory are used. The rest of memory is used for
a hash table that is processed a t the same time that R and S are
being partitioned.

Let B = maz(0, IF j *F. I —I). There will be B+ 1 steps i

, Firsl
-1

the hybrid-hash algorithm. First, choose a hash function h and parti
tion R into R o, - - ■ ,Rb , such that a hash table for Ro has \ U \ - B
pages, and R lt...,Rg are of equal size.

Before describing the algorithm we first show that a hash table
for R, will fit into memory. Assuming that all sets R, are of equal
size, we denote |f?,| by p. We must show that:

p*F< | A/1 (a)
Since R 0 is chosen so that a hash table for it fits into | A /|-B pages
of memory, we have:

| f i 0|* F = |M |- B (b)
Since the sum of all the R ,-sets is R, we have

| R | —B*p + | f?0| (c)

If a hash table for all of R fits into memory, we can choose B = 0
and be done with it. So henceforth we assume | M | < | R \ *F.

Thus, B = j 1 ^ 1 -, If we solve (c) for p and substitute (b) in
1*1

the result we get:
R I l«o |R| [M j-B

' B B B F*B
Now we multiply id) by F and simplify to get:

l ; „ = l * K - | * l + 1 (e)

(d)

Finally, we substitute for B in (e) to get (a), which was our goal.
Thus we have demonstrated that a hash table for R, fits into
memory.

Now we continue with the algorithm. Allocate B pages of
memory to output buffer space, and assign the other | At | -B pages
of memory to a hash table for R 0. We pause again to check that
there are enough pages in memory to hold the output buffers, i.e.
that B < | M | . If we substitute for B in the inequality B < | M | and
simplify, we get >/ | R j *F < | M | , which is true since we have
assumed that that v'l S *F < | M | .

The steps of the hybrid-hash algorithm are:

(1) Assign the ith output buffer page to R, for i —t,...,B . Scan R.
Hash each tuple with h. If it belongs to R 0, place it in memory
in the hash table for R 0. Otherwise it belongs to R, for some
t> 0 , so move it to the ith output buffer page. When this step
has finished, we have a hash table for R 0 in memory, and
R ly...,RB are on disk. The partition of R corresponds to a par
tition of S compatible with h, into sets So.....SB.

(2) Assign the ith output buffer page to S, for i= l,...,B . Scan S,
hashing each tuple with h. If the tuple is in 50l probe the hash
table in memory for a match. If there is a match, output the
the result tuple. If there is no match, toss the tuple. Other
wise, the hashed tuple belongs to S, for some t> 0 , so move it
to the ith output buffer page. Now R l,...,RB and S 1,...,SB are
on disk.

+ ||S||*Fvcomp

/» move tuples to hash tables for R * /

+ ||R||*move

/* read sets into memory */

+ (|R |+ |S|)»(l-q)*/Os£Q

3.8. Comparison of the 4 Join Algorithms
In Figure 1 we have displayed the relative performance of the

four join algorithms. The vertical axis is execution time in seconds.
IM I

The horizontal axis is the ratio of - -. Note that above a ratio
| R | *F '

of 1.0 all algorithms have the same execution time as at 1.0, except
that sort-merge will improve to approximately 900 seconds, since
fewer IO operations are needed. The parameter settings used are
shown in Table 2. We have assumed that there are a t least
\ f | 5 | *F pages in memory. For the values specified in Table 2, this

corresponds to .■ I ■ = 0.009.
IB I *'

Table 2 — Parameter Settings Used

comp
hash
move
swap
IOSEQ
IOrand
F
S|
R|
|R||/|R|
|S ||/|S |

time to compare keys
time to hash a key
time to move a tuple
time to swap two tuples
sequential IO operation time
random IO operation time
universal "fudge” factor
size of S relation
size of R relation
number of R tuples/page
number of S tuples/page

3 microseconds
9 microseconds
20 microseconds
60 microseconds
10 milliseconds
25 milliseconds
1.2
10.000 pages
10.000 pages
40
40

Repeat steps (3) and (4) for i = 1,...,B.

(3) Read R, and build a hash table for it in memory. We have
already shown that a hash table for it will St in memory.

(4) Scan S,, hashing each tuple, and probing the hash table for R„
which is in memory. If there is a match, output the result
tuple, otherwise toss the S tuple.

I R0|
For the cost computation, denote by q the quotient namely

the fraction of R represented by R 0. To calculate the cost of this
join we need to know the size of So, and we estimate it to be q*|S|.
Then the fraction of R and S sets remaining on the disk is 1-q. The
cost of the hybrid-hash join is:

/* Partition R and S */

(l|R|| + ||S||)*hash

/* move tuples to output buffers */

+ (l|R||+ l|S||)*(l-q)*move

/* write from output buffers »/

+ (|R |+ |S|)*(l-q)*/0/fxra>

/* build hash tables for R and find where to probe for S * /

+ (l|R|l+l|S||)*(l-<0*hash

/* move tuples to hash tables for R */

In generating these graphs we have used the cost formulas
given above with one exception. The 10Band term used in the cost
formula for hybrid hash should be replaced by IOSeq in the case that
there is only one output buffer. There is only one output buffer

whenever | M | > I--J — (0.5 on the horizontal axis of Figure 1).

The abrupt discontinuity in the performance of the hybrid hash algo
rithm at 0.5 occurs because when memory space decreases slightly,
changing the number of output buffers from one to two, the IO time
is suddenly calculated as a multiple of IOrand instead of IOseq-
Even when there are only two or three buffers, IOBAnd is probably
too large a figure to use to measure IO cost, but we have not made
that change. This is what causes our graphs to indicate that simple
hash will outperform hybrid hash in a small region; in practice
hybrid hash will probably always outperform simple hash.

We have generated similar graphs for the range of parameter
values shown in Table 3. For each of these values we observed the
same qualitative shape and relative positioning of the different algo
rithms as shown in Figure 1. Thus our conclusions do not appear to
depend on the particular parameter values that we have chosen.

Table 3 — Other Parameter Settings Tested

comp 1 to 10 microseconds
hash 2 to 50 microseconds
move 10 to 50 microseconds
swap 20 to 250 microseconds
IOseq 5 to 10 milliseconds
¡Orand 15 to 35 milliseconds
F 1.0 to 1.4

N 10,000 to 200,000 pages
P H 100,000 to 1,000,000 tuples

PERFORMANCE OF THE 4 JOIN ALGORITHMS

F ig u re 1

3.0. Algorithms for Other Relational Operations
While we have not analyzed algorithms for the remaining rela

tional operations such as aggregate function and projection with
duplication elimination, we can offer the following observations. For
aggregate functions in which related tuples must be grouped together
(compute average employee salary by manager), the result relation
will contain one tuple per group. If there is enough memory to hold
the result relation, then the fastest algorithm will be a one pass hash
ing algorithm in which each incoming tuple is hashed on the group
ing attribute. If there is not enough memory to hold the result rela
tion (probably a very unlikely event as who would ever want to read
even a 4 million byte report), then a variant of the hybrid-hash algo
rithm described for the join operator appears fastest. This same
hybrid-hash algorithm appears to be the algorithm of choice for the
projection operator as projection with duplicate elimination is very
similar in nature to the aggregate function operation (in projection
we are grouping identical tuples while in an aggregate function
operation we are grouping tuples with an identical partitioning attri
bute).

4. Access Planning and Query Optimization
In the classic paper on access path selection by Selinger

(SELI79|, techniques are developed by choosing the "best” processing
strategy for a query. ’’Best” is defined to be the plan that minimizes
the function W*|CPU| + |I /0 | where |CPU| is the amount of CPU
time consumed by a plan, |I /0 | is the number of I/O operations
required for a plan, and W is a weighting factor between CPU and
I/O resources. Choosing a "best” plan involves enumerating all pos
sible "interesting” orderings of the operators in query, all alternative
algorithms for each operator, and all alternative access paths. The
process is complicated by the fact the order in which tuples are pro
duced by an operator can have a significant effect on the execution
time of the subsequent operator in the query tree.

The analysis presented in Section 3 indicates that algorithms

based on hashing (the hybrid-hash algorithm in the case of the join
operator and the simple-hash algorithm to process projection and
aggregate function operators) are the fastest algorithms when a large
amount of primary memory is available. Since the performance of
these algorithms is not affected by the input order of the tuples and
since there is only one algorithm to choose from, query optimization
is reduced to simply ordering the operators so that the most selective
operations are pushed towards the bottom of the query tree.

5. Recovery In Large Memory Databases

5.1. Introduction and Assumptions
High transaction processing rates can be obtained on a proces

sor with a large amount of main memory, since input/output delays
can be significantly reduced by keeping the database resident in
memory. For example, if the entire database is resident in memory,
a transaction would never need to access data pages on disk.

However, keeping a large portion of the database in volatile
memory presents some unique challenges to the recovery subsystem.
The in-memory version of the database may differ significantly from
its latest snapshot on disk. A simple recovery scheme would proceed
by first reloading the snapshot on disk, and then applying the tran
saction log to bring it up to date. Unless the recovery system does
more than simple logging during normal transaction processing,
recovery times would become intolerably long using this approach.

Throughout this section, we will assume that the entire data
base fits in main memory. In such an environment, we need only be
concerned with log writes. A "typical” transaction writes 400 bytes
of log data (40 bytes for transaction begin/end, 360 bytes for old
vaiues/new values),2 which takes 10 ms (time to write one 4096 byte
page without a disk seek). We also assume that a small portion of
memory can be made stable by providing it with a back-up battery
power supply.

5.2. Limita to Transaction Throughput
In conventional logging schemes, a transaction cannot commit

until its log commit record has been written to stable storage. Most
transactions have very simple application logic, and perform three to
four page reads and writes. While transactions no longer need to
read or write data pages if the database is memory resident, they still
need to perform at least one log I/O. Assuming a single log device,
the system could commit a t m œ t 100 transactions per second (1
second / 10 ms per commit = 100 committed transactions per
second). The time to write the log becomes the major bottleneck.

A scheme that amortizes this log I/O across several transac
tions is based on the notion of a pre-committei transaction. When a
transaction is ready to complete, the transaction management system
places its commit record in the log buffer. The transaction releases
all locks without waiting for the commit record to be written to disk.
The transaction is delayed from committing until its commit record
actually appears on disk. The "user” is not notified that the transac
tion has committed until this event has occurred.* 3

By releasing its locks before it commits, other transactions can
read the pre-committed transaction’s dirty data. Call these depen
dent transactions. Reading uncommitted data in this way does not
lead to an inconsistent state as long as the pre-committed transaction
actually commits before its dependent transactions. A pre-committed
transaction does not commit only if the system crashes, never
because of a user or system induced abort. As long as records are
sequentially added to the log, and the pages of the log buffer are
written to disk in sequence, a pre-committed transaction will have its
commit record on disk before its dependent transactions.

The transactions with commit records on the same log page are
committed as a group, and are called the commit group. A single log
I/O is incurred to commit all transactions within the group. The size
of a commit group depends on how many transactions can fit their
logs within a unit of log write (i.e., a log buffer page). Assuming the
”typ icar transaction, we could have up to ten transactions per com
mit group. The transaction throughput can be increased by another
order of magnitude, to 1000 transactions per second (1 second / 10
ms to commit 10 transactions = 1000 transactions committed per
second).

The throughput can be further increased by writing more than
one log page at a time, by partitioning the log across several devices.
Since more than one log I/O can be active simultaneously, the
recovery system must maintain a topological ordering among the log
pages, so the commit record of a dependent transaction is not written
to disk before the commit record of its associated pre-committed
transaction. The roots of the topological lattice can be written to
disk simultaneously.

To maintain the ordering, and thus the serialization of the
transactions, the lock table of the concurrency control component
must be extended. Associated with each lock are three sets of tran
sactions: active transactions that currently hold the lock, transactions
that are waiting to be granted the lock, and pre-committed transac
tions that have released the lock but have not yet committed. When
a transaction is granted a lock, it becomes dependent on the pre
committed transactions that formerly held the lock. The dependency
list is maintained in the transaction’s descriptor in the active transac
tion table. When a transaction becomes pre-committed, it moves
from the holding list to the pre-committed list for all of its locks (we
assume all locks are held until pre-commit), and the committed tran
sactions in its dependency list are removed. In becoming pre
committed, the transaction joins a commit group. The commit
groups of the remaining transactions in its dependency list are added
to those on which its commit group depends. A commit group can
not be written to disk, and thus commit, until all the groups it
depends on have previously been committed.

For recovery processing, a single log is recreated by merging
the log fragments, as in a sort-merge. For example, to roll back

3 These are ballpark estimates, based on the example bnnking database aad
transactions in Jim Gray, "Notes on Database Operating Systems," IBM
RJ2188(30001), (February 23,1278).

3 The notion of gronp commits appears to be past of the unwritten database
folklore. The System-R implementors claim to have implemented it. To onr

wards through the log, the most recent log page in each fragment is
examined. The page with the most recent timestamp is processed
first, it is replaced by the next page in that fragment, and the most
recent log page of the group is again determined. By a careful
buffering strategy, the reading of log pages from different fragments
can be overlapped, thus reducing recovery time.

5.3. Checkpointing the Database
An approach for reducing recovery time is to periodically

checkpoint the database to stable storage |GRAY81). Checkpointing
limits recovery activities to those transactions that are active a t the
checkpoint or who have begun since the last checkpoint. System-R,
for example, takes an action consistent checkpoint, during which no
storage system operations may be in progress (a transaction consists
of several such actions, which correspond roughly to logical reads and
writes of the database). Dirty buffer pool pages are forced to disk.
Since the database is assumed to be large, a large number of dirty
pages will need to be written to disk, making the database
unavailable for an intolerably long amount of time. Consider the
case of 1000 transactions per second, two dirty pages per transaction,
and 30 seconds between checkpoints. In the worst case, 60,000 pages
would need to be written at the checkpoint!

We would like to overlap checkpoint with transaction activity.
Let A m(m be the set of pages that have been updated since the last
checkpoint. Once a checkpoint begins, transaction activity can con
tinue if updates to pages of A nnl cause new in-memory versions to
be created, leaving the old versions available to be written to disk.
A checkpointed, action consistent state of the database is always
maintained on disk. At a checkpoint, a portion of the state is
replaced by A „m . To guarantee that the state is updated ’’care
fully,’’ we use a batch update approach by first writing these pages to
stable storage. We denote the batch update file by A If the sys
tem crashes while the disk state is being overwritten from memory, it
can be reconstructed from the pages in A ^,t .

The algorithm proceeds in two phases. In phase 1, A „m is
written to A ilit. During phase 2, the pages in A*,» are copied to
their original locations on disk. For the algorithm to work, we must
assume:

(1) Extra disk space is available to hold A j„t.

(2) Extra memory space is available to hold A nem.

(3) No dirty page is ever written to disk except during a check
point.

Time stamps are used to determine membership in A „m . The
timestamp T # indicates when the current checkpoint began, or is
zero if no checkpoint is in progress. When a transaction attempts to
update a page, the page’s timestamp Tm , is compared to Tcr. If
Tpa„ < Tcp and the page is dirty, a new version of the page is
created and the in-core page table points to the new page. The
update is applied to the new page. The page’s timestamp is updated
to reflect the latest modification.

To obtain an action consistent state for the checkpoint, the sys
tem is initially quiesced. Tcp is set to the current time clock to indi
cate that a checkpoint has begun. The active transaction list is con
structed for later inclusion in the log. Transaction activity can now
resume, since the old versions in A „en can no longer be updated.
Memory pages who are dirty and for which Ttll , < are written
to A as*. After A Jlst has been created, a begin checkpoint record is
written to the log with T ^ and the list of active transactions, indi
cating that phase 1 of checkpoint is complete. The pages of A mtm
are then written to their original locations on disk, making the disk
state identical to the in-memory state as of T ^ . An end checkpoint
record is written to the log to indicate the completion of phase 2,
A Act b removed, and Tcf is reset.

The advantage of the algorithm is that checkpointing can be
done in parallel with transaction activity while maintaining an action
consistent state on disk. This is particularly needed in a high update
transaction environment, which can generate a large number of
updated pages between checkpoints. Further, as soon as a check
point completes, another can commence with only a negligible interr
uption of service. Checkpointing proceeds a t the maximum rate

knowledge, neither the ¡den nor the implementation detnile hns yet nppenred in print.

possible, i.e., as fast as pages can be written to disk, thus keeping the
log processing time to a minimum during recovery.

6.4. Reducing Log Sine

While checkpointing will reduce the time to process the log, by
reducing the necessary redo activity, it does not help reduce the log
size. The large amount of real memory available to us can be used
to reduce the log size, if we assume that a portion of memory can be
made stable against system power failures. For example, batteries
can be used as a back-up power supply for low power CMOS memory
chips. We further assume that such memory is too expensive to be
used for all of real memory.

Partition real memory into a stable portion and a conventional,
non-stable portion. The stable portion will be used to hold an in
memory log, which can be viewed as a reliable disk output queue for
log data. Transactions commit as soon as they write their commit
records into the in-memory log. Log data is written to disk as soon
as a log buffer page fills up. Given the buffering of the log in
memory, it may be more efficient to write the log a track at a time.
In addition, multiple log writes can be directed to different log dev
ices without the need for the bookkeeping described above. However,
in the steady state, the number of transactions processed per second
is still limited by how fast we can empty buffer pages by writing
them to disk-based stable storage.

Stable memory does not seem to gain much over the group
commit mechanism. However, the log can be significantly
compressed while it is buffered in stable memory. The log entries for
a particular transaction are of the form

Begin Transaction
COld Value, New Value>

<O ld Value, New Va!ue>
End Transaction

A transaction’s space in the log can be significantly reduced if only
new values are written to the disk based log (approximately half of
the size of the log stores the old values of modified data — this is
only needed if the transaction must be undone). This is advanta
geous for space management, and also reduces the recovery time by
shortening the log.

In the conventional approach, log entries for all transactions are
intermixed in the log. The log manager maintains a list of commit
ted transactions, and removes their old value entries from log pages
before writing them to disk. A transaction is removed from the list
as soon as its commit record has been written to disk. A more space
efficient alternative is to maintain the log on a per transaction basis
in the stable memory. If enough space can be set aside to accommo
date the logs of all active transactions, then only new values of com
mitted transactions are ever written to disk.

Stable memory also assists in reducing the recovery time. To
recover committed updates to pages since the last checkpoint, the
recovery system needs to find the log entry of the oldest update that
refers to an uncheckpointed page. A table can be placed in stable
memory to record which pages have been updated since their last
checkpoint, and the log record id of the first operation that updated
the page. When a page is checkpointed to disk, its update status is
reset. The log record id of the next update on the page is entered
into the table. The oldest entry in the table determines the point in
the log from which recovery should commence.

6. Conclusions and F u tu re Research

In this paper we have examined changes to the organization of
relational database management systems to permit effective utiliza
tion of very large main memories. We have shown that the B+ -tree
access method will remain the preferred access method for keyed
access to tuples in a relation unless more than 80% - 90% of the
database can be kept in main memory. We have also evaluated
alternative algorithms for complex relational operators. We have
shown that once the size of main memory exceeds the square root of
the Bize of the relations being processed, that the fastest algorithms
for the join, projection, and aggregate operators are based on a hash

ing. It is interesting to note that this result also holds for ” small’
main memories and ’ small” databases. Finally, we have discussed
recovery techniques for memory-resident databases.

There appear to be a number of promising areas for future
research- These include buffer management strategies (how to
efficiently manage very large buffer pools), the effect of virtual
memory on query processing algorithms, and concurrency control.
While locking is generally accepted to the algorithm of choice for
disk resident databases, a versioning mechanism |REED83| may pro
vide superior performance for memory resident systems.

7. References

[BABB79] Babb, E. ’ Implementing a Relational Database by Means
of Specialized Hardware," ACM TODS, Voi. 4, No, 1, March
1979.

[BLAS77] Blasgen, M-W. and K.P. Eswaran, ’ Storage and Access in
Relational Databases,” IBM Systems Journal, Voi. 16, No. 4,
1977.

|CESA82j Cesarmi, F. and G. Soda, ’ Binary Trees Paging”, Informa
tion Systems, Voi. 7, No. 4, pp 337-344, 1982.

[COME79] Comer, D., "The Ubiquitous B-tree,” ACM Computing
Surveys, Voi. 11, No. 2, June 1979.

[DATE82] Date, C.J., ’ An Introduction to Database Systems,” Third
Edition, Addison-Wesley, 1982.

|GOOD81] Goodman, J. R., ’An Investigation of Multiprocessor
Structures and Algorithms for Data Base Management,” Elec
tronics Research Laboratory Memorandum No. UCB/ERL
M81/33, University of California, Berkeley, May 1981.

[GRAY81] Gray, J., et. al., ’ The Recovery Manager of the System R
Database Manager,” ACM Computing Surveys, Voi. 13, No. 2,
June 1981.

(KNUT73) Knuth, D., ’ The Art of Computer Programming: Sorting
and Searching,” Volume III, Addison-Wesley, Reading, MA,
1973.

(KITS83| Kitsuregawa, M. et al, ’Application of Hash to Data Base
Machine and its Architecture”, New Generation Computing, No.
1, 1983, 62-74.

[MUNT70] Muntz, R. and R. Uzgalis, ’Dynamic Storage Allocation
for Binary Search Trees in a Two-Level Memory,” Proceedings of
the Princeton Conference on Information Sciences and Systems,
No. 4, pp. 345-349, 1970.

[REED83) Reed, D., ’ Implementing Atomic Actions on Decentralized
Data,” ACM Transactions on Computer Systems, V 1, N 1,
(March 1983).

|SELI79) Selinger, P.G., et. al., ’ Access Path Selection in a Rela
tional DBMS,” Proceedings of the 1979 SIGMOD Conference on
the Management of Data, June 1979.

|YA078] Yao, S. B., and D. DeJong, ’ Evaluation of Database Access
Paths,” Proceedings of the 1978 SIGMOD Conference on the
Management of Data, May 1978.

