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ABSTRACT: With the availability of very large, relatively inexpen
sive main memories, it is becoming possible keep large databases 
resident in main memory. In this paper we consider the changes 
necessary to permit a relational database system to take advantage 
of large amounts of main memory. We evaluate AVL vs. B +-tree 
access methods for main memory databases, hash-based query pro
cessing strategies vs. sort-merge, and study recovery issues when 
most or all of the database fits in main memory. As expected, B-f- - 
trees are the preferred storage mechanism unless more than 80-90% 
of the database fits in main memory. A somewhat surprising result is 
that hash based query processing strategies are advantageous for 
large memory situations.
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1. Introduction
Throughout the past decade main memory prices have plum- 

metted and are expected to continue to do so. At the present time, 
memory for super-minicomputers such as the VAX 11/780 costs 
approximately $1,500 a megabyte. By 1990, 1 megabit memory 
chips will be commonplace and should further reduce prices by 
another order of magnitude. Thus, in 1990 a gigabyte of memory 
should cost less than $200,000. If 4 megabit memory chips are avail
able, the price might be as low as $50,000.

With the availability of larger amounts of main memory, it 
becomes possible to contemplate the storage of databases as main 
memory objects. In fact, IMS Fast Path [DATE82J has supported 
such databases for some time. In this paper we consider the changes 
that might be needed to a  relational database system if most (or all) 
of a relation(s) is (are) resident in main memory.

In Section 2, the performance of alternative access methods for 
main memory database systems are considered. Algorithms for rela
tional database operators in this environment are presented and 
evaluated in Section 3. In Section 4, we describe how access plan
ning will be affected by the availability of large amounts of main 
memory for query processing. Section 5 discusses recovery in 
memory resident databases. Our conclusions and suggestions for
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future research are contained in Section 6.

2. Acceas Methods for Memory Resident Databases
The standard access method for data on disk is the B +-tree 

[COME79J, providing both random and sequential key access. A 
B-f--tree is specially designed to provide fast access to disk-resident 
data and makes fundamental use of the page 6ize of the device. On 
the other hand, if a keyed relation is known to reside in main 
memory, then an AVL (or other binary) tree organization may be a 
better choice. In this section we analyze the performance of both 
structure for a relation R with the following characteristics:

(|R|| number of tuples in relation R
K width of the key for R in bytes
L width of a tuple in bytes
P  page size in bytes
4 size of a pointer in bytes

We have analyzed two cases of interest. The first is the cost of 
retrieving a  single tuple using a random key value. An example of 
this type of query is:

retrieve (emp.salary) where emp.name =  ’’Jones’
The second case analyzed is the cost of reading N records sequen
tially. Consider the query

retrieve (emp.salary, emp.name) where emp.name =  ’ J*” 
which requests data on all employees whose names begin with J. To 
execute this query, the database system would locate the first 
employee with a name beginning with J and then read sequentially. 
This second case analyzes the sequential access portion of such a 
command.

For both cases (random and sequential access), there are two 
costs that are specific to the access method:

|page reads| the number of pages read to execute the query

|comparisons| the number of record comparisons required to 
isolate the particular data of interest.

The number of comparisons is indicative of the CPU time required to 
process the command while the number of page reads approximates 
the I/O  costs.

To compare the performance AVL and B+ -trees, we propose 
the following cost function:

cost =  Z * |page-reads| +  |comparisons|
Since a page read consumes perhaps 2000 instructions of operating 
system overhead and 30 milliseconds of elapsed time while a com
parison can easily be done in 200, we expect realistic values of Z to 
be in the range of 10 to 30. Later in the section we will use several 
values in this range.

Moreover, it is possible (although not very likely) that an 
AVL-tree comparison will be cheaper than a B +-tree comparison. 
The reasoning is that the B+ -tree record must be located within a 
page while an AVL tree does not contain any page structure and 
records can be directly located. Consequently, we assume that an 
AVL-tree comparison costs Y times a B+ -tree comparison for some



Y <  1.

From Knuth [KNUT73], we can observe that in an ||R ||-tuple 
AVL tree approximately

C =  log2||f l || +  0.25 comparisons

are required to find a tuple in a  relation. Without any special pre
cautions each of the C nodes to be inspected will be on a different 
page.1 Hence, the number of pages accessed is approximately C. 
The AVL structure will occupy approximately

5 =  S * * 8) jpages

Here \ X  1 denotes the smallest integer larger than X. If |M| pages 
of main memory are available, and if | Af | <  15 1, and if a  random 
replacement algorithm is used, the number of page faults to find a 
tuple in a relation will be approximately:

faults =  C * (1—LiLL.)

Consequently the cost of a random access by key is:

coH(AVL) =  L y L ) +  Y»C

Next we derive the approximate cost for a random access to a 
tuple using a  B+ -tree. According to YAO [YA078], B-tree nodes are 
approximately 69 percent full on the average. Hence, the fanout of a 
B+ -tree is approximately

. .69 »P
A K + 4

The number of leaf nodes will be about
„ ll«IK , .D =  » - data pages

.69 »P B
The height of a B+ -tree index is thereby

]0gjP 1
height =

log-jA I
The number of comparisons required to locate a tuple with a particu
lar value is:

C '  =  [log2||P |i

The number of pages which the tree consumes is about

S 1 =  D +  \2 -

;h the tree j

To a first approximation S’ is

S '  =  D *

Again the number of page faults is approximately

fault! — (height + 1) » (1—^ /  )

A

A  
A - 1

= J>E

As a result the cost of a B+ -tree access by key is: 

coet(B + -tree) =  Z*(height+ 1)*(1
IMI

■ ) + C '

An AVL-Tree will be the preferred structure for case 1 if 
DIFF =  cost(B+ -tree) - cost(AVL-Tree) >  0 

If we assume that C «= C 1 =  log2||J?|| and rearrange the terms in 
the inequality, then an AVL-Tree will be preferred if:

(l-Y )*log2||f i || >  Z*log2||J? ||* (l—L y L ) -  Z*(height+ 1)*(1—I ^ L )  

Note that if L > >  8 then S =* 0.69 * S’. Define H  =  »■I ’,,1 •

Some simplification yields:
| M | Z * (l-H ) + Y -l

S
Obviously, if |M |> S ,  then AVL trees are the preferred structure 
regardless of the values of H, Y, and Z. In this situation, the entire 
AVL-Tree is resident in main memory and there are no disk accesses. 
Since both data structures require the same number of comparisons 
and the AVL comparisons are cheapers, then the AVL-Tree is 
guaranteed to have lower cost. If | M | <  5  then AVL trees will be

preferred if the value of I is larger than the value of min(|M|/S)

shown as in Table 1. As can be seen, essentially all of a relation has 
to be resident in main memory before an AVL tree is the preferred 
structure. For reasonable values of H, Y and Z, at least 80 percent 
and sometimes more than 90 percent of a relation must be main

1 If a paged binary tree orgamtation is used instead, the fanont per node will be 
slightly worse than the B-tiee. Furthermore, paged binary trees are not balanced and 
the worst case access time may be significantly poorer than in the case of a B-tree.

memory resident.

We turn now to sequential access. For an AVL-Tree, the cost 
of reading N records sequentially is N comparisons and N page reads,

ieq-coet(AVL) =  Y*N + V * Z * (l-!y -L  

On the other hand, N records ip a B+-Tree^wil! occupy>rds in a d +  -

=  | J ™ _ + i
|0.69*P 2

data pages 
and consequently:

eeq-coet(B+ -Tree) =  TV +  Q*Z*(\-^j)-)
An AVL-Tree will be preferred if:

] M | Z ( l - H ') + ( Y - l )
S  Z * ( l - H  '/1 .45)

where H ' =  It appears that reasonable values for H’ are

similar to reasonable values for H; hence, Table 1 also applies to 
sequential access.

In both random and sequential access, a very high percentage 
of the tree must be in main memory for an AVL-Tree to be competi
tive. Hence, it is likely to be a structure of limited general utility 
and B+ -Trees will continue to remain the dominant access method 
for database management systems.

Table 1 -  Minimum Residency Factor For Random Access

z Y H min (|M|/S)
10 .5 .1 .91
10 .5 .2 .87
10 .5 .3 .82
10 .75 .1 .94
10 .75 .2 .90
10 .75 .3 .86
15 .75 .1 .96
15 .75 .2 .91
15 .75 .3 .86

3. Algorithms for Relational Database Operations

3.1. Introduction
In this section we explore the performance of alternative algo

rithms for relational database operations in an environment with 
very large amounts of main memory. Since many of the techniques 
used for executing the relational join operator can also be used for 
other relational operators (e.g. aggregate functions, cross product, 
and division), our evaluation efforts have concentrated on the join 
operation. However, at the end of the section, we discuss how our 
results extend to these other algorithms.

After introducing the notation used in our analysis, we present 
an analysis of the familiar sort-merge [BLAS77J join algorithm using 
this notation. Next we analyze a multipass extension of the simple 
hashing algorithm. The third algorithm described is similar to an 
algorithm that has been proposed by the Japanese 5th generation 
project (KITS83], and is called GRACE. In the first phase, the join 
of two large relations is reduced to the join of several small sets of 
tuples. During the second phase, the tuple sets are joined using a 
hardware sorter and a sort-merge algorithm. Finally, we present a 
new algorithm, called the Hybrid algorithm. This algorithm is simi
lar to the GRACE algorithm in that it partitions a join into a set of 
smaller joins. However, during the second phase, hashing is used 
instead of sort merge.

In the following sections we develop cost formulas for each of 
the four algorithms and report the result of analytic simulations of 
the four algorithms. Our results indicate that that the Hybrid algo
rithm is preferable to all others over a large range of parameter 
values.

3.2. Notation and Assumption*
Let R and S be the two relations to be joined. The number of



pages in these two relations is denoted |R | and |S|, respectively. The 
number of tuples in R and S are represented by ||R || and ||S||. The 
number of pages of main memory available to perform the join 
operation is denoted as |M|. Given |M| pages of main memory, 
{Af}fi, {Af}s specify the number of tuples from R and S that can fit 
in main memory at one time.

We have used the following parameters to characterize the per* 
formance of the computer system used:

comp time to compare keys
hash time to hash a key
move time to move a tuple
swap time to swap two tuples
IOseq time to perform a sequential IO operation
W ft AND time to execute a random IO operation

To simplify our analysis we have made a number of assumptions. 
First, we have assumed that | R  \ <  \ S  | . Next, several quantities 
need to be incremented by slight amounts to be accurate. For exam
ple, a hash table or a sort structure to hold R requires somewhat 
more pages than |R |, and finding a key value in a hash table requires, 
on the average, somewhat more than one probe. We use ”F ” to 
denote any and all of these increments, so for example a hash table 
to hold R will require |R |*F pages. To simplify cost calculations, we 
have assumed no overlap of CPU and IO processing. We have also 
ignored the cost of reading the relations initially and the cost of writ
ing the result of the join to disk since these costs are the same for 
each algorithm.

In any sorting or hashing algorithm, the implementor must 
make a decision as to whether the sort structure or hash table will 
contain entire tuples or only Tuple IDs (TIDs) and perhaps keys. If 
only TIDs or TID-key pairs are used, there is a significant space sav
ings since fewer bytes need to be manipulated. On the other hand, 
every time a pair of joined tuples is output, the original tuples must 
be retrieved. Since these tuples will most likely reside on disk, the 
cost of the random accesses to retrieve the tuples can exceed the sav
ings of using TIDs if the join produces a large number of tuples. 
Fortunately, we can avoid making a choice as the decision affects our 
algorithms only in the values assigned to certain parameters. For 
example, if only TID-key pairs are used then the parameter measur
ing the time for a move will be smaller than if entire tuples are mani
pulated.

Three algorithms (Sort-merge, GRACE, and Hybrid hash) are 
much easier to describe if they require at most two passes. Hence we 
assume the necessary condition \ / 1S  | *F <  \M \.  For example, if F 
=  1.2, and |M| is only 1,000 pages (4 megabytes at 4K bytes/page), 
then |S| (and |R |, since | R  | <  | S  | ) can be as large as 800,000 pages 
(3.2 gigabytes)!

changes the X sets to compensate, check the new R-sets again, etc. 
Despite the apparent difficulties of selecting the sets X lt X j, ..., there 
are two mitigating circumstances. Suppose that the key distribution 
has a  bounded density and that the hash function effectively random
izes the keys. If the number of keys in each partition is large, then 
the central limit theorem assures us that the relative variation in the 
number of keys (and hence the number of tuples) in each partition 
will be small. Furthermore, if we err slightly we can always apply 
the hybrid hash join recursively, thereby adding an extra pass for the 
overflow tuples.

3.4. Sort-Merge Join Algorithm
The standard sort-merge algorithm begins by producing sorted 

runs of tuples which are on the average twice as long as the number 
of tuples that can fit into a priority queue in memory [KNUT73|. 
This requires one pass over each relation. During the second phase, 
the runs are merged using an n-way merge, where n is as large as 
possible (since only one output page is needed for each run, n can be 
equal to |M|-1). If n is less than the number of runs produced by the 
first phase, more than two phases will be needed. Our assumptions 
guarantee that only two phases are needed.

(1)

(2)

The steps of the sort-merge join algorithm are:

Scan S and produce output runs using a selection tree or some 
other priority queue structure. Do the same for R. A typical

run will be approximately -*  pages long [KNUT73],

Since the runs of R have an average length of
2* Ml

there are l * l « ~ such runs. Similarly, there are

- pages,

2 * \M \  ................  ............. ................... 2 * |M |
runs of S. Since S is the larger relation, the total number of

i c  —
runs is at most

a t once if | M | 

assumed |M| to be at least \/1 S | *F pages. Thus all runs can 
be merged a t once.

1£L*1 ,

“  IM I ’

Therefore, all the runs can be merged 

or |M | > \ / |  5 |  *F , and we have

Allocate one page of memory for buffer space for each run of R 
and S. Merge runs from R and S concurrently. When a tuple 
from R matches one from S, output the pair.

The cost of this algorithm (ignoring the cost of reading the relations 
initially and the cost of writing the result of the join) is:

/*  Insert tuples into priority queue to form initial runs */ 

(||fl||log2i ^ -  +  ||S ||log2- ^ - )  * (comp+swap)

/* write initial runs */

3.3. Partitioning a Relation by Hash Values
If |M| <  |R|*F, each of the hashing algorithms described in 

this paper requires that R and/or S be partitioned into disjoint sub
sets such that any two tuples which bash to the same value lie in the 
same subset. One such partitioning is into the sets R t such that R x 
contains those tuples r for which b(r) =  x. We call such a partition 
compatible with h.

A general way to create a partition of R compatible with h is 
to partition the set of hash values X that h can assume into subsets,
say -Xj.....X„. Then, for i =  l,...,n define ft, to be all tuples r such
that h(r) is in X , . In fact, every partition of R compatible with h 
can be derived in this general way, beginning with a partition of the 
hash values. The power of this method is that if we partition both R 
and S using the same h and the same partition of hash values, say 
into R 1}...,Rn and , then the problem of joining R and S is
reduced to the task of joining R i  with 5 ,, f?2 with S2, etc. 
[BABB79, GOOD81].

In order for the hash table of each set of R tuples to fit in 
memory, |ff , | *F must be <  | Af | . This is not easily guaranteed. 
For example, how can one choose a partition of R, compatible with 
h, into two sets of equal size? One might try trial and error: Begin 
by partitioning the set of hash values into two sets X \  and X 2 of 
equal size and then consider the sizes of the two corresponding sets of 
tuples R t  and ff2. If the R-sets are not of equal size then one

+  ( | R  | +  | S  | )*IOSEQ 

/« reread initial runs for final merge */

+  (if?  |+  |S|)*f0»,4/VD

/ •  insert tuples into priority queue for final merge * /

+  * (comp+swap)

/» join results of final merge »/

+  (11*11+It* ||) »comp

This cost formula holds only if a tuple from R does not join with 
more than a page of tuples from S.

3.5. Simple-Hash Join Algorithm
If a hash table containing all of R fits into memory, i.e. if 

| ft  | *F <  | M  | , the simple-hash join algorithm proceeds as fol
lows: build a hash table for R in memory and then scan S, hashing 
each tuple of S and checking for a match with R (to obtain reason
able performance the hash table for R should contain at least TID- 
key pairs). If the hash table for R will not fit in memory, the



simple-bash join algorithm fills memory with a hash table for part of 
R, then scans S against that hash table, then it continues with 
another part of R , scans the remainder of S again, etc.

The steps of the simple-hash join algorithm are:

(1) Scan R. Using h, hash each tuple and place in the appropriate 
output buffer. When an output buffer fills, it is written to disk. 
Atter R has been completely scanned, flush all output buffers to 
disk.

(1) Let P  — min(|M|, |R|*F). Choose a hash function h and a
P

range of hash values so that — pages of R-tuples will hash into
F

that range. Scan the (smaller) relation R and consider each 
tuple. If the tuple hashes into the chosen range, insert the 
tuple into a P-page hash table in memory. Otherwise, write the 
tuple into a new file on disk.

(2) Scan S. Using h, hash each tuple and place in the appropriate 
output buffer. When an output buffer fills, it is written to disk. 
After S has been completely scanned, flush all output buffers to 
disk.

Steps (3) and (4) below are repeated for each set /?, , 1 < « <  | Af | , in 
the partition for R, and its corresponding 6et S,.

(2) Scan the larger relation S and consider each tuple. If the tuple 
hashes into the chosen range, check the hash table of R-tuples 
in memory for a  match and output the pair if a match occurs. 
Otherwise, write the tuple to disk. Note that if key values of 
the two relations are distributed similarly, there will be
p  | g  |
-=■ ■/ p l  pages of the larger relation S processed in this pass.
* I "  I

(3) Repeat steps (1) and (2), replacing each of the relations R and 
S by the set of tuples from R and S that were "passed over” 
and written to disk in the previous pass. The algorithm ends 
when no tuples from R are passed over.

The algorithm requires \ * \ 1 F

\ M \

passes to execute. We denote this

quantity by A. Also note that on the ith pass, i — 1, ..., A-l, 

- tuples of R are passed over. The cost of the algo

rithm is:

/*  Place each tuple of R in a hash table */

||R || * (hash +  move)

+ ||S || * (hash +  comp*F)

/*  hash and move passed-over tuples in R */

+  ((A -1)*||Ä || -  ) » (hash+move)

(3) Read R, into memory and build a  hash table for it.

We pause to check that a  hash table tor R, can fit in memory. 
Assuming that all the sets R, are of equal size, since there are

|M| of them, |i? , | will equal -f-rrj- pages. The inequality

| R , | *F <  | Af | is equivalent to v [ R  | *F <  | Af (, and we 
have assumed that V  | S  | *F <  | M  \ .

(4) Hash each tuple of 5, with the same hash function used to 
build the hash table in (3). Probe for a  match. It there is one, 
output the result tuple, otherwise proceed with then next tuple 
of 5,.

The cost of this algorithm is:

/*  Hash tuple and move to output buffer */

(||R)| +  ||S ||) * (hash +  move)

/*  write partitioned relations to disk «/

+  (|R| +  |S|) * IORjiND

/*  read partitioned sets */

+  ( |R |+  |S|) * IOSeq

/*  build hash tables in memory * /

/* hash and move passed-over tuples in S */ + ||R || * (hash +  move)

+  ((A -1 M |S 1 | -  A ^  ) •  (hash+ move)

/*  write and read passed-over tuples in R */

+  ((A -l)*  | R  | -  A Z id z l l  « i£L) ,  2*10¡eg

/*  write and read passed-over tuples in S * /

+  ((A -l)*  I 5 1 -  V -L ^ L  v J | L )  .  2 « / O ^

3.0. GRACE-Hash Join Algorithm
As outlined in [KITS83], the GRACE-hash join algorithm exe

cutes as two phases. The first phase begins by choosing an h and 
partitioning the set of hash values for h into |M| sets, corresponding 
to a partition of R and S into |M| sets each, such that R is parti
tioned into sets of approximately equal size. No assumptions are 
made about set sizes in the partition of S. The algorithm uses one 
page of main memory as an output buffer for each of the (M| sets in 
the partition of R and S. During the second phase of the algorithm, 
the join is performed using a hardware sorter to execute a sort-merge 
algorithm on each pair of sets in the partition. To provide a fair com
parison between the different algorithms, we have used hashing to 
perform the join during the second phase. The algorithm proceeds as 
follows:

/* probe for a match */

+ ||S || » (hash +  comp*F)

3.7. Hybrid-Hash Join Algorithm
In our hybrid-hash algorithm, we use the large main memory 

to minimize disk traffic. On the first pass, instead of using all of 
memory as a buffer as is done in the GRACE algorithm, only as 
many pages (B, defined below) as are necessary to partition R into 
sets that can fit in memory are used. The rest of memory is used for 
a hash table that is processed a t the same time that R and S are 
being partitioned.

Let B  =  maz(0, IF j *F. I —I ). There will be B+ 1 steps i

, Firsl
-1

the hybrid-hash algorithm. First, choose a hash function h and parti
tion R into R o, - - ■ ,Rb , such that a hash table for Ro has \ U \ - B  
pages, and R lt...,Rg are of equal size.

Before describing the algorithm we first show that a  hash table 
for R, will fit into memory. Assuming that all sets R, are of equal 
size, we denote |f?,| by p. We must show that: 

p*F<  | A/1 (a)
Since R 0 is chosen so that a hash table for it fits into | A /|-B  pages 
of memory, we have:

| f i 0|* F = |M |- B  (b)
Since the sum of all the R ,-sets is R, we have

| R  | —B*p + | f?0| (c)



If a hash table for all of R fits into memory, we can choose B =  0 
and be done with it. So henceforth we assume | M  | <  | R  \ *F.

Thus, B =  j 1 ^ 1 -, If we solve (c) for p and substitute (b) in
1*1

the result we get:
R I l«o |R| [ M j-B

'  B  B  B  F*B
Now we multiply id) by F  and simplify to get:

l ; „ = l * K - | * l + 1  (e)

(d )

Finally, we substitute for B in (e) to get (a), which was our goal. 
Thus we have demonstrated that a hash table for R, fits into 
memory.

Now we continue with the algorithm. Allocate B pages of 
memory to output buffer space, and assign the other | At | -B  pages 
of memory to a  hash table for R 0. We pause again to check that 
there are enough pages in memory to hold the output buffers, i.e. 
that B <  | M  | . If we substitute for B in the inequality B <  | M  | and 
simplify, we get >/ |  R  j  *F <  | M | , which is true since we have 
assumed that that v'l S  \*F  <  | M  | .

The steps of the hybrid-hash algorithm are:

(1) Assign the ith output buffer page to R, for i —t,...,B . Scan R. 
Hash each tuple with h. If it belongs to R 0, place it in memory 
in the hash table for R 0. Otherwise it belongs to R, for some 
t> 0 , so move it to the ith output buffer page. When this step 
has finished, we have a hash table for R 0 in memory, and 
R ly...,RB are on disk. The partition of R corresponds to a  par
tition of S compatible with h, into sets So.....SB.

(2) Assign the ith output buffer page to  S, for i= l,...,B . Scan S, 
hashing each tuple with h. If the tuple is in 50l probe the hash 
table in memory for a match. If there is a match, output the 
the result tuple. If there is no match, toss the tuple. Other
wise, the hashed tuple belongs to S, for some t> 0 ,  so move it 
to the ith output buffer page. Now R l,...,RB and S 1,...,SB are 
on disk.

+  ||S||*Fvcomp

/»  move tuples to hash tables for R * / 

+  ||R||*move

/*  read sets into memory */

+ (|R |+ |S|)»(l-q)*/Os£Q

3.8. Comparison of the 4 Join Algorithms
In Figure 1 we have displayed the relative performance of the 

four join algorithms. The vertical axis is execution time in seconds.
IM I

The horizontal axis is the ratio of - -. Note that above a ratio
| R | *F '

of 1.0 all algorithms have the same execution time as at 1.0, except 
that sort-merge will improve to approximately 900 seconds, since 
fewer IO operations are needed. The parameter settings used are 
shown in Table 2. We have assumed that there are a t least 
\ f  | 5  | *F pages in memory. For the values specified in Table 2, this

corresponds to .■ I ■ =  0.009.
IB  I *'

Table 2 — Parameter Settings Used

comp
hash
move
swap
IOSEQ
IOrand
F
S|
R|
|R||/|R|
|S ||/|S |

time to compare keys 
time to hash a key 
time to move a tuple 
time to swap two tuples 
sequential IO operation time 
random IO operation time 
universal "fudge” factor 
size of S relation 
size of R relation 
number of R tuples/page 
number of S tuples/page

3 microseconds
9 microseconds 
20 microseconds 
60 microseconds
10 milliseconds 
25 milliseconds 
1.2
10.000 pages
10.000 pages 
40
40

Repeat steps (3) and (4) for i =  1,...,B.

(3) Read R, and build a hash table for it in memory. We have 
already shown that a hash table for it will St in memory.

(4) Scan S,, hashing each tuple, and probing the hash table for R„ 
which is in memory. If there is a  match, output the result 
tuple, otherwise toss the S tuple.

I R0|
For the cost computation, denote by q the quotient namely

the fraction of R represented by R 0. To calculate the cost of this 
join we need to know the size of So, and we estimate it to be q*|S|. 
Then the fraction of R and S sets remaining on the disk is 1-q. The 
cost of the hybrid-hash join is:

/*  Partition R and S */

(l|R|| +  ||S||)*hash

/*  move tuples to output buffers */

+ (l|R||+ l|S||)*(l-q)*move

/*  write from output buffers »/

+  (|R |+  |S|)*(l-q)*/0/fxra>

/*  build hash tables for R and find where to probe for S * / 

+  (l|R|l+l|S||)*(l-<0*hash 

/*  move tuples to hash tables for R */

In generating these graphs we have used the cost formulas 
given above with one exception. The 10Band term used in the cost 
formula for hybrid hash should be replaced by IOSeq in the case that 
there is only one output buffer. There is only one output buffer

whenever | M  | >  I--J — (0.5 on the horizontal axis of Figure 1).

The abrupt discontinuity in the performance of the hybrid hash algo
rithm at 0.5 occurs because when memory space decreases slightly, 
changing the number of output buffers from one to two, the IO time 
is suddenly calculated as a multiple of IOrand instead of IOseq- 
Even when there are only two or three buffers, IOBAnd is probably 
too large a figure to use to measure IO cost, but we have not made 
that change. This is what causes our graphs to indicate that simple 
hash will outperform hybrid hash in a small region; in practice 
hybrid hash will probably always outperform simple hash.

We have generated similar graphs for the range of parameter 
values shown in Table 3. For each of these values we observed the 
same qualitative shape and relative positioning of the different algo
rithms as shown in Figure 1. Thus our conclusions do not appear to 
depend on the particular parameter values that we have chosen.

Table 3 — Other Parameter Settings Tested

comp 1 to 10 microseconds
hash 2 to 50 microseconds
move 10 to 50 microseconds
swap 20 to 250 microseconds
IOseq 5 to 10 milliseconds
¡Orand 15 to 35 milliseconds
F 1.0 to 1.4

N 10,000 to 200,000 pages
P H 100,000 to 1,000,000 tuples
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3.0. Algorithms for Other Relational Operations
While we have not analyzed algorithms for the remaining rela

tional operations such as aggregate function and projection with 
duplication elimination, we can offer the following observations. For 
aggregate functions in which related tuples must be grouped together 
(compute average employee salary by manager), the result relation 
will contain one tuple per group. If there is enough memory to hold 
the result relation, then the fastest algorithm will be a one pass hash
ing algorithm in which each incoming tuple is hashed on the group
ing attribute. If there is not enough memory to hold the result rela
tion (probably a very unlikely event as who would ever want to read 
even a 4 million byte report), then a variant of the hybrid-hash algo
rithm described for the join operator appears fastest. This same 
hybrid-hash algorithm appears to be the algorithm of choice for the 
projection operator as projection with duplicate elimination is very 
similar in nature to the aggregate function operation (in projection 
we are grouping identical tuples while in an aggregate function 
operation we are grouping tuples with an identical partitioning attri
bute).

4. Access Planning and Query Optimization
In the classic paper on access path selection by Selinger 

(SELI79|, techniques are developed by choosing the "best” processing 
strategy for a  query. ’’Best” is defined to be the plan that minimizes 
the function W*|CPU| +  |I /0 | where |CPU| is the amount of CPU 
time consumed by a plan, |I /0 | is the number of I/O  operations 
required for a plan, and W is a  weighting factor between CPU and 
I/O  resources. Choosing a "best” plan involves enumerating all pos
sible "interesting” orderings of the operators in query, all alternative 
algorithms for each operator, and all alternative access paths. The 
process is complicated by the fact the order in which tuples are pro
duced by an operator can have a significant effect on the execution 
time of the subsequent operator in the query tree.

The analysis presented in Section 3 indicates that algorithms

based on hashing (the hybrid-hash algorithm in the case of the join 
operator and the simple-hash algorithm to process projection and 
aggregate function operators) are the fastest algorithms when a large 
amount of primary memory is available. Since the performance of 
these algorithms is not affected by the input order of the tuples and 
since there is only one algorithm to choose from, query optimization 
is reduced to simply ordering the operators so that the most selective 
operations are pushed towards the bottom of the query tree.

5. Recovery In Large Memory Databases

5.1. Introduction and Assumptions
High transaction processing rates can be obtained on a  proces

sor with a large amount of main memory, since input/output delays 
can be significantly reduced by keeping the database resident in 
memory. For example, if the entire database is resident in memory, 
a transaction would never need to access data pages on disk.

However, keeping a large portion of the database in volatile 
memory presents some unique challenges to the recovery subsystem. 
The in-memory version of the database may differ significantly from 
its latest snapshot on disk. A simple recovery scheme would proceed 
by first reloading the snapshot on disk, and then applying the tran
saction log to bring it up to date. Unless the recovery system does 
more than simple logging during normal transaction processing, 
recovery times would become intolerably long using this approach.

Throughout this section, we will assume that the entire data
base fits in main memory. In such an environment, we need only be 
concerned with log writes. A "typical” transaction writes 400 bytes 
of log data (40 bytes for transaction begin/end, 360 bytes for old 
vaiues/new values),2 which takes 10 ms (time to write one 4096 byte 
page without a disk seek). We also assume that a  small portion of 
memory can be made stable by providing it with a  back-up battery 
power supply.



5.2. Limita to Transaction Throughput
In conventional logging schemes, a transaction cannot commit 

until its log commit record has been written to stable storage. Most 
transactions have very simple application logic, and perform three to 
four page reads and writes. While transactions no longer need to 
read or write data pages if the database is memory resident, they still 
need to perform at least one log I/O. Assuming a single log device, 
the system could commit a t m œ t 100 transactions per second (1 
second /  10 ms per commit =  100 committed transactions per 
second). The time to write the log becomes the major bottleneck.

A scheme that amortizes this log I/O  across several transac
tions is based on the notion of a  pre-committei transaction. When a 
transaction is ready to complete, the transaction management system 
places its commit record in the log buffer. The transaction releases 
all locks without waiting for the commit record to be written to disk. 
The transaction is delayed from committing until its commit record 
actually appears on disk. The "user” is not notified that the transac
tion has committed until this event has occurred.* 3

By releasing its locks before it commits, other transactions can 
read the pre-committed transaction’s dirty data. Call these depen
dent transactions. Reading uncommitted data in this way does not 
lead to an inconsistent state as long as the pre-committed transaction 
actually commits before its dependent transactions. A pre-committed 
transaction does not commit only if the system crashes, never 
because of a user or system induced abort. As long as records are 
sequentially added to the log, and the pages of the log buffer are 
written to disk in sequence, a pre-committed transaction will have its 
commit record on disk before its dependent transactions.

The transactions with commit records on the same log page are 
committed as a group, and are called the commit group. A single log 
I/O  is incurred to  commit all transactions within the group. The size 
of a  commit group depends on how many transactions can fit their 
logs within a unit of log write (i.e., a log buffer page). Assuming the 
”typ icar transaction, we could have up to ten transactions per com
mit group. The transaction throughput can be increased by another 
order of magnitude, to 1000 transactions per second (1 second /  10 
ms to commit 10 transactions =  1000 transactions committed per 
second).

The throughput can be further increased by writing more than 
one log page at a time, by partitioning the log across several devices. 
Since more than one log I/O  can be active simultaneously, the 
recovery system must maintain a topological ordering among the log 
pages, so the commit record of a dependent transaction is not written 
to disk before the commit record of its associated pre-committed 
transaction. The roots of the topological lattice can be written to 
disk simultaneously.

To maintain the ordering, and thus the serialization of the 
transactions, the lock table of the concurrency control component 
must be extended. Associated with each lock are three sets of tran
sactions: active transactions that currently hold the lock, transactions 
that are waiting to be granted the lock, and pre-committed transac
tions that have released the lock but have not yet committed. When 
a  transaction is granted a lock, it becomes dependent on the pre
committed transactions that formerly held the lock. The dependency 
list is maintained in the transaction’s descriptor in the active transac
tion table. When a  transaction becomes pre-committed, it moves 
from the holding list to the pre-committed list for all of its locks (we 
assume all locks are held until pre-commit), and the committed tran
sactions in its dependency list are removed. In becoming pre
committed, the transaction joins a commit group. The commit 
groups of the remaining transactions in its dependency list are added 
to those on which its commit group depends. A commit group can
not be written to disk, and thus commit, until all the groups it 
depends on have previously been committed.

For recovery processing, a  single log is recreated by merging 
the log fragments, as in a sort-merge. For example, to roll back

3 These are ballpark estimates, based on the example bnnking database aad 
transactions in Jim Gray, "Notes on Database Operating Systems," IBM 
RJ2188(30001), (February 23,1278).

3 The notion of gronp commits appears to be past of the unwritten database 
folklore. The System-R implementors claim to have implemented it. To onr

wards through the log, the most recent log page in each fragment is 
examined. The page with the most recent timestamp is processed 
first, it is replaced by the next page in that fragment, and the most 
recent log page of the group is again determined. By a  careful 
buffering strategy, the reading of log pages from different fragments 
can be overlapped, thus reducing recovery time.

5.3. Checkpointing the Database
An approach for reducing recovery time is to periodically 

checkpoint the database to stable storage |GRAY81). Checkpointing 
limits recovery activities to those transactions that are active a t the 
checkpoint or who have begun since the last checkpoint. System-R, 
for example, takes an action consistent checkpoint, during which no 
storage system operations may be in progress (a transaction consists 
of several such actions, which correspond roughly to logical reads and 
writes of the database). Dirty buffer pool pages are forced to  disk. 
Since the database is assumed to be large, a large number of dirty 
pages will need to be written to disk, making the database 
unavailable for an intolerably long amount of time. Consider the 
case of 1000 transactions per second, two dirty pages per transaction, 
and 30 seconds between checkpoints. In the worst case, 60,000 pages 
would need to be written at the checkpoint!

We would like to overlap checkpoint with transaction activity. 
Let A m(m be the set of pages that have been updated since the last 
checkpoint. Once a  checkpoint begins, transaction activity can con
tinue if updates to pages of A nnl cause new in-memory versions to 
be created, leaving the old versions available to be written to disk. 
A checkpointed, action consistent state of the database is always 
maintained on disk. At a checkpoint, a portion of the state is 
replaced by A „m . To guarantee that the state is updated ’’care
fully,’’ we use a batch update approach by first writing these pages to 
stable storage. We denote the batch update file by A If the sys
tem crashes while the disk state is being overwritten from memory, it 
can be reconstructed from the pages in A ^,t .

The algorithm proceeds in two phases. In phase 1, A „m is 
written to A ilit. During phase 2, the pages in A*,» are copied to 
their original locations on disk. For the algorithm to work, we must 
assume:

(1) Extra disk space is available to hold A j„t.

(2) Extra memory space is available to  hold A nem.

(3) No dirty page is ever written to disk except during a check
point.

Time stamps are used to  determine membership in A „m . The 
timestamp T #  indicates when the current checkpoint began, or is 
zero if no checkpoint is in progress. When a transaction attempts to 
update a page, the page’s timestamp Tm , is compared to  Tcr. If 
Tpa„  <  Tcp and the page is dirty, a new version of the page is 
created and the in-core page table points to the new page. The 
update is applied to the new page. The page’s timestamp is updated 
to reflect the latest modification.

To obtain an action consistent state for the checkpoint, the sys
tem is initially quiesced. Tcp is set to the current time clock to indi
cate that a  checkpoint has begun. The active transaction list is con
structed for later inclusion in the log. Transaction activity can now 
resume, since the old versions in A „en can no longer be updated. 
Memory pages who are dirty and for which Ttll , <  are written 
to A as*. After A Jlst has been created, a begin checkpoint record is 
written to the log with T ^  and the list of active transactions, indi
cating that phase 1 of checkpoint is complete. The pages of A mtm 
are then written to their original locations on disk, making the disk 
state identical to the in-memory state as of T ^ .  An end checkpoint 
record is written to the log to indicate the completion of phase 2, 
A Act b  removed, and Tcf is reset.

The advantage of the algorithm is that checkpointing can be 
done in parallel with transaction activity while maintaining an action 
consistent state on disk. This is particularly needed in a  high update 
transaction environment, which can generate a large number of 
updated pages between checkpoints. Further, as soon as a  check
point completes, another can commence with only a  negligible interr
uption of service. Checkpointing proceeds a t the maximum rate

knowledge, neither the ¡den nor the implementation detnile hns yet nppenred in print.



possible, i.e., as fast as pages can be written to disk, thus keeping the 
log processing time to a  minimum during recovery.

6.4. Reducing Log Sine

While checkpointing will reduce the time to process the log, by 
reducing the necessary redo activity, it does not help reduce the log 
size. The large amount of real memory available to us can be used 
to reduce the log size, if we assume that a portion of memory can be 
made stable against system power failures. For example, batteries 
can be used as a back-up power supply for low power CMOS memory 
chips. We further assume that such memory is too expensive to be 
used for all of real memory.

Partition real memory into a stable portion and a conventional, 
non-stable portion. The stable portion will be used to hold an in
memory log, which can be viewed as a reliable disk output queue for 
log data. Transactions commit as soon as they write their commit 
records into the in-memory log. Log data is written to disk as soon 
as a log buffer page fills up. Given the buffering of the log in 
memory, it may be more efficient to write the log a track at a time. 
In addition, multiple log writes can be directed to different log dev
ices without the need for the bookkeeping described above. However, 
in the steady state, the number of transactions processed per second 
is still limited by how fast we can empty buffer pages by writing 
them to disk-based stable storage.

Stable memory does not seem to gain much over the group 
commit mechanism. However, the log can be significantly 
compressed while it is buffered in stable memory. The log entries for 
a particular transaction are of the form

Begin Transaction 
COld Value, New Value>

<O ld Value, New Va!ue>
End Transaction

A transaction’s space in the log can be significantly reduced if only 
new values are written to the disk based log (approximately half of 
the size of the log stores the old values of modified data — this is 
only needed if the transaction must be undone). This is advanta
geous for space management, and also reduces the recovery time by 
shortening the log.

In the conventional approach, log entries for all transactions are 
intermixed in the log. The log manager maintains a list of commit
ted transactions, and removes their old value entries from log pages 
before writing them to disk. A transaction is removed from the list 
as soon as its commit record has been written to disk. A more space 
efficient alternative is to maintain the log on a per transaction basis 
in the stable memory. If enough space can be set aside to accommo
date the logs of all active transactions, then only new values of com
mitted transactions are ever written to disk.

Stable memory also assists in reducing the recovery time. To 
recover committed updates to pages since the last checkpoint, the 
recovery system needs to find the log entry of the oldest update that 
refers to an uncheckpointed page. A table can be placed in stable 
memory to record which pages have been updated since their last 
checkpoint, and the log record id of the first operation that updated 
the page. When a page is checkpointed to disk, its update status is 
reset. The log record id of the next update on the page is entered 
into the table. The oldest entry in the table determines the point in 
the log from which recovery should commence.

6. Conclusions and  F u tu re  Research

In this paper we have examined changes to the organization of 
relational database management systems to permit effective utiliza
tion of very large main memories. We have shown that the B+ -tree 
access method will remain the preferred access method for keyed 
access to tuples in a  relation unless more than 80% - 90% of the 
database can be kept in main memory. We have also evaluated 
alternative algorithms for complex relational operators. We have 
shown that once the size of main memory exceeds the square root of 
the Bize of the relations being processed, that the fastest algorithms 
for the join, projection, and aggregate operators are based on a hash

ing. It is interesting to note that this result also holds for ” small’ 
main memories and ’ small” databases. Finally, we have discussed 
recovery techniques for memory-resident databases.

There appear to be a number of promising areas for future 
research- These include buffer management strategies (how to 
efficiently manage very large buffer pools), the effect of virtual 
memory on query processing algorithms, and concurrency control. 
While locking is generally accepted to the algorithm of choice for 
disk resident databases, a versioning mechanism |REED83| may pro
vide superior performance for memory resident systems.
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