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ABSTRACT

Memory is a crucial resource in relational databases (RDBMSs).
When there is insufficient memory, RDBMSs are forced to use
slower media such as SSDs or HDDs, which can significantly de-
grade workload performance. Cloud database services are deployed
in data centers where network adapters supporting remote direct
memory access (RDMA) at low latency and high bandwidth are be-
coming prevalent. We study the novel problem of how a Symmetric
Multi-Processing (SMP) RDBMS, whose memory demands exceed
locally-available memory, can leverage available remote memory
in the cluster accessed via RDMA to improve query performance.
We expose available memory on remote servers using a lightweight
file API that allows an SMP RDBMS to leverage the benefits of re-
mote memory with modest changes. We identify and implement
several novel scenarios to demonstrate these benefits, and address
design challenges that are crucial for efficient implementation. We
implemented the scenarios in Microsoft SQL Server engine and
present the first end-to-end study to demonstrate benefits of remote
memory for a variety of micro-benchmarks and industry-standard
benchmarks. Compared to using disks when memory is insuffi-
cient, we improve the throughput and latency of queries with short
reads and writes by 3× to 10×, while improving the latency of
multiple TPC-H and TPC-DS queries by 2× to 100×.
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1. INTRODUCTION
Cloud database platforms, such as Amazon Relational Database

Service, Microsoft Azure SQL Database, and Google Cloud SQL,
are deployed in data centers comprising clusters of commodity ser-
vers with large memories and fast networks. Each server in the
cluster runs an SMP relational database engine (RDBMS), such as
MySQL or Microsoft SQL Server, and the service exposes a SQL
API. Even parallel DBMSs, such as Actian Matrix MPP Analytics
Database (formerly ParAccel) [31] Microsoft Analytics Platform
System [26], and relational data warehouse services such as Ama-
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zon Redshift, run on similar clusters comprised of a collection of
single server RDBMS. Memory is a crucial resource for RDBMS
workloads. When memory is insufficient to meet the workload’s
demands, RDBMSs are forced to use disks (SSDs or HDDs) in-
stead, which can result in significant performance degradation. In
a database service, due to the variety and non-uniformity of work-
loads and resource demands, at any point in time, the memory us-
age of database servers can vary significantly from one server to
another. One database server may experience memory pressure,
i.e., demand exceeds available memory, while another server might
have large amounts of unutilized memory which is not committed
to any local process on the server.

An emerging infrastructure trend is the commoditization of net-
work adapters that support remote direct memory access (RDMA).
With the advent of technologies such as RDMA over Converged
Ethernet (RoCE) [19] or iWARP [20], today RDMA is supported
within data center environments at competitive prices. RDMA en-
ables efficient, low latency (∼10µsec), and high throughput (∼56
Gbps) reads and writes of remote memory bypassing the operating
system (OS) kernel at both the source and destination. Since the
CPU is not involved in a transfer, RDMA avoids context switches
and processor cache pollution, and incurs negligible performance
impact on both the local and the remote servers.

The above trends open up an interesting opportunity for data-
bases: can an SMP RDBMS with unmet memory demands effi-
ciently leverage unused remote memory using RDMA to signifi-
cantly improve performance of its workload? Databases have used
RDMA primarily as a fast data transfer mechanism from storage to
database servers or between database servers [17, 26, 29]. Rödiger
et al. [34] present an approach where a parallel database can benefit
from RDMA by redesigning the communication mechanism of the
exchange operator. We consider an orthogonal problem of lever-
aging available remote memory to enable an SMP RDBMS to ac-
celerate memory-intensive workloads without a major rewrite. We
focus on scenarios where a mature database engine can leverage the
benefits without a major rewrite.
Abstraction for remote memory in an RDBMS: The abstraction
of distributed shared memory [1,5] supported by the operating sys-
tem is not suitable for RDBMSs that require control on which data
is memory-resident. RDBMSs already explicitly manage the mem-
ory hierarchy and are adept in using disk-based file-oriented struc-
tures wherever memory is not adequate. Exposing remote memory
via a lightweight file API gives the RDBMS explicit control over
what data is placed in remote memory. This abstraction naturally
aligns with our goal of integrating remote memory with modest
changes to an existing RDBMS. We demonstrate the flexibility of
this abstraction through a variety of scenarios that significantly im-
prove the performance of memory-intensive workloads.



Scenarios for remote memory usage in RDBMS: We describe
four novel scenarios where an SMP RDBMS can leverage remote
memory to significantly improve performance of memory-intensive
workloads. These scenarios are: (i) extending the RDBMS caches
such as the buffer pool; (ii) spilling temporary data for memory
intensive operators such as Sort and Hash; and (iii) supporting a
semantic cache [10, 45]—which has traditionally been limited to
application or middleware tiers—integrated into an RDBMS and
pinned in available remote memory; and (iv) leveraging fast memory-
to-memory transfer to prime and warm-up the buffer pool of a
newly-elected primary in the event of a planned primary-secondary
swap in an RDBMS cluster or a cloud database service. The first
three scenarios leverage remote memory as a a new level in the

memory hierarchy of the RDBMS whose performance lies between
local memory and local SSDs or HDDs. While (i) and (ii) are
handled by storage engine and lower layers, (iii) introduces in-
teresting challenges of integrating this new form of cache within
the RDBMS, query optimizer costing, plan selection, and identi-
fying appropriate structures to cache. All four scenarios leverage
the lightweight file API to access remote memory and can dramat-
ically improve the performance of an SMP RDBMS, without af-
fecting correctness and availability of the database server even if
the remote server fails, rendering the memory unavailable.
Brokering of unutilized memory in the cluster: Unutilized mem-
ory on a subset of servers in a cluster of a cloud database service
needs to be brokered to allow sharing among the different servers
requesting additional memory. We use a design similar to many
standard designs of resource negotiators, such as YARN [49]. Each
server reports the unused memory to a memory broker. A server
with unmet memory demand can request the broker for a lease to a
remote memory region. This lease provides the database server ex-
clusive access to the region. The database server opportunistically

leverages this remote memory to improve the workload’s perfor-
mance without stealing memory committed to processes executing
on the remote server.
Efficient implementation: There are several design decisions to
consider to efficiently exploit remote memory. These include: (i)
the suitable protocol to access remote memory via RDMA; (ii)
whether to treat remote memory accesses as synchronous or asyn-
chronous operations; and (iii) efficiently managing registration of
memory regions to NICs which has non-trivial overheads [13]. We
present a detailed implementation in Microsoft SQL Server (Sec-
tion 4). While our implementation is specific to SQL Server, we
expect our design to generalize to other RDBMSs particularly due
to the choice of a lightweight file API to expose available remote
memory in the cluster.

We conduct extensive experiments using a commodity RDMA-
enabled cluster of ten servers, and using a variety of configurations,
targeted micro-benchmarks and industry-standard TPC benchmarks
(Section 5). We compare our implementation against several al-
ternatives: (a) a baseline where the RDBMS uses locally-attached
HDDs and SSDs when demand exceeds the memory available on
the server; (b) two alternatives that leverage remote memory us-
ing off-the-shelf technologies but use different protocols to access
remote memory; and (c) when the RDBMS server has sufficient lo-
cal memory to serve the workload. In all our experiments, we use a
high-performance enterprise-grade disk subsystem with a hardware
RAID-0 controller and up to 20 disks. For queries with short reads
and writes (similar to OLTP workloads), the throughput and la-
tency improvements are 3× to 10×. The latency of multiple TPC-
H queries can be improved by 2× to 10×, and the latency of many
TPC-DS queries can be improved by 10× to 100× (Section 6 and
Appendix B). For a variety of workloads, the throughput and la-

tency is within 10% of that when the entire workload fits in the
server’s local memory. Moreover, there is no noticeable impact on
the performance of workloads running on the server whose unused
memory is being accessed remotely via RDMA. Further, by varying
the number of remote memory servers a database server accesses,
we demonstrate how our solution can scale by pooling memory
available on multiple servers within the cluster. Ours is the first in-
depth study to quantify the end-to-end benefits of remote memory
and RDMA for complex RDBMS workloads. In Section 7, we also
identify several potential directions of future work.
Contributions:

• We study the novel problem of how an SMP RDBMS can lever-
age RDMA and available remote memory in a cluster.

• We abstract remote memory, accessed via RDMA, as a lightweight
file API. This abstraction enables easy integration of remote mem-
ory into existing RDBMSs and is flexible enough to support
four novel scenarios that significantly improve performance of
memory-intensive workloads.

• We articulate and address several crucial design challenges to
efficiently support this abstraction in a mature RDBMS.

• We implement this abstraction and scenarios in Microsoft SQL
Server and conduct extensive experiments to quantify the bene-
fits using targeted micro-benchmarks as well as industry-standard
benchmark workloads.

2. RELATED WORK
RDMA has been extensively used for fast data transfers in high

performance computing systems using MPI implementations over
Infiniband [24]. More closely related to our work are the applica-
tions of RDMA in storage and file systems, key-value stores, and
relational database systems. We organize related work into the fol-
lowing categories: (a) using RDMA as a faster interconnection pro-
tocol; and (b) when multiple servers are accessing and sharing the
same database, leveraging RDMA to efficiently exchange data be-
tween two servers. In contrast to existing approaches, our focus is
on exploring remote memory as a new level in the memory hierar-
chy for an SMP RDBMS when the workload’s memory demands
cannot be met by local memory.

A common use of RDMA is in fast transfer of data from compute
to storage servers in various application scenarios. For instance,
many database appliances, such as Teradata Aster Big Analytics
Appliance [43, 44] and Microsoft Analytics Platform System [26],
use RDMA to transfer data in the storage servers to the database
servers. Windows Server 2012 supports SMB Direct [37] which
is a network file sharing protocol over RDMA. Applications, such
as the Microsoft SQL Server database, can store data on a remote
file server and efficiently transfer data using SMB Direct [39]. In
addition, many projects have also explored leveraging RDMA to
improve the performance of distributed file systems [21, 50].

The ability to efficiently transfer in-memory pages between two
servers have been explored in various systems to improve perfor-
mance. For instance, scale-out relational databases with a data-
sharing architecture, such as IBM’s DB2 Purescale [17] and Or-
acle Real Application Cluster (RAC) [29], uses RDMA to trans-
fer database pages between the servers executing queries that ac-
cess the shared database pages. The database nodes access the
same database for both read and write operations through the global
cache of pages through a centralized lock manager. Along similar
lines, Barthels et al. [2] leverage RDMA as a fast data shuffling
mechanism for distributed in-memory join processing. Rödiger
et al. [34] present the architecture of a distributed query engine
that re-architects the exchange operator for improved parallelism
and proposes an RDMA-based communication multiplexer for fast



intra-node data transfers. These approaches are orthogonal to our
scenarios since we focus on scenarios where an SMP RDBMS can
leverage RDMA and remote memory without a major architectural
rewrite. The buffer pool priming scenario is similar to transferring
data pages between servers, though only one server can execute
transactions accessing the buffer pool.

Many distributed key-value stores have leveraged RDMA to im-
prove performance of their respective systems. Jose et al. [22]
extend Memcached, an in-memory caching infrastructure imple-
menting a key-value API, to leverage RDMA for efficient inter-
node communication. Along similar lines, Huang et al. [15] extend
HBase, a key-value store implemented on top of a distributed file
system, to leverage RDMA for efficient messaging. FaRM [12]
exposes the memory of the machines in a cluster as a partitioned
global address space and implements an efficient hashtable with
lock free reads over RDMA. FaRM uses RDMA to efficiently and
directly access data in a shared address space, and for fast mes-
saging between the nodes. HERD [23] is also a distributed key-
value store which uses RDMA for accessing the keys and values in
the system. RamCloud, a distributed in-memory key-value store,
uses Infiniband send/receive verbs to reduce the replication laten-
cies leveraging kernel bypass [33].

3. NOVEL SCENARIOS
We now discuss four scenarios which provide a good trade-off

between the potential performance benefits, complexity of imple-
menting the remote memory abstraction, and ease of integration
into an SMP RDBMS.

3.1 Extending the Caches
RDBMSs have several types of caches, such as procedure cache

and buffer pool cache, which are critical to improve performance.
When the size of a cache nears the available memory, an RDBMS
must evict entries from the cache to accommodate newly-accessed
entries. This eviction results in degraded performance if the evicted
entry is accessed again. Instead of discarding the evicted entry, it
can be cached in remote memory. When the evicted entry is ac-
cessed again, it can be fetched from remote memory, which is much
faster for both sequential and random accesses compared to read-
ing the entry from HDD or SSD. This extension of the cache can
result in significant performance improvements when an applica-
tion’s working set does not fit in local memory. Such extension of
the cache is similar to buffer pool extensions to SSDs supported in
many commercial RDBMSs [3, 4, 28]. Similar to buffer pool, the
procedure cache, which stores optimized query plans and partial
execution results, can also be extended to remote memory.

3.2 Spilling Temporary Data
An RDBMS can generate a lot of temporary data during the ex-

ecution of complex queries. Examples include user-generated tem-
porary objects such as tables, table variables, or cursors, as well
as system-generated temporary structures and data, such as inter-
mediate results from data-intensive operators such as sorting and
hashing. Depending on the workload, the size of such temporary
data needed during query execution can be significant. If queries
create a lot of temporary data and enough memory is not available,
the RDBMS might need to spill the data to a temporary file. For
instance, Microsoft SQL Server has a special database, called Tem-
pDB, for spilling such temporary data [42] and Oracle RDBMS
uses Temporary Tablespaces [30]. Therefore, the I/O performance
of the temporary file can significantly affect the performance of
queries, specifically data analysis queries, as sort and hash are com-
mon operators used in many analysis queries. Storing this tempo-

rary data in remote memory and accessing it via RDMA can signif-
icantly improve query performance when compared to storing this
temporary data in local HDDs or SSDs.

3.3 In-Memory Semantic Caching
Application-level semantic caches for RDBMSs, e.g., Oracle Ti-

mesTen Application Tier Database Cache [45], can speed up query
execution significantly [10]. Such caches store the result of a SQL
expression, support a standard SQL interface, and when possible,
answer application queries by using results from the cache. If the
query cannot be answered from the cache, the query is routed to
the database engine for execution. Traditionally, such caching and
opportunistic structures are used in the application-tier to avoid in-
terfering with the memory requirements of the RDBMS. However,
if remote memory is available, seamless semantic caching within
the RDBMS can become attractive. The basic idea is to create spe-
cialized redundant structures, keep them pinned in remote mem-
ory, and access them via RDMA when executing queries that ben-
efit from them. Examples include non-clustered indexes, partial
indexes [35, 40], and materialized views, which can significantly
speed up query execution and can be lazily built and maintained
since they are redundant. Such structures are built opportunisti-
cally when remote memory is available, and is separate from the
buffer pool memory local to the server. RDBMSs support a variety
of memory brokers, such as buffer pool and procedure caches, and
the semantic cache is yet another broker. In the presence of up-
dates, these redundant structures are updated based on application-
specified policies. They can be updated in-sync with transactions,
updated asynchronously, maintained as a snapshot, or invalidated
with an update. A key advantage of an integrated semantic cache
is that it can leverage existing mechanisms within the RDBMS
for view matching, and updating secondary indexes or material-
ized views [8, 14]. Since the semantic cache is entirely in remote
memory, a remote node failure can be dealt in various ways. One
approach is to invalidate the cache. Another alternative is to lever-
age the RDBMSs transaction log, which logs every update in the
RDBMS, and REDO logic to recover the structures by replaying
the log on another remote server with available memory.

Such in-memory semantic caching introduces many interesting
challenges. First, the query optimizer’s cost model, which is tradi-
tionally calibrated for on-disk structures, needs to be re-calibrated
since seeks into remote memory is significantly faster compared to
scanning HDDs or SSDs. Second, techniques to automate the se-
lection of suitable structures is an interesting physical design prob-
lem along with policies to invalidate or update them. While an
in-depth study of in-memory semantic caching in the RDBMS is
beyond the scope of this paper, we empirically demonstrate the per-
formance gains of integrating such a cache into the RDBMS.

3.4 Priming the Buffer Pool
Cloud database systems run multiple copies of a database for

high availability. Typically, the primary copy processes update
and read transactions and one or more secondary copies are kept
up-to-date via logical or physical replication. If physical replica-
tion is used, the databases are kept identical at the page level. A
primary-secondary swap, i.e., a secondary being promoted to a pri-
mary, is a common operation in such clusters due to failures and
load balancing. While some failures are unplanned (e.g., machine
crashes), there are a large number of swaps that are planned, for
instance during load balancing, planned software or hardware up-
grades etc. One major challenge with such swaps is that the appli-
cation workload resumes on the newly-elected primary with a cold

buffer pool, thus resulting in significant performance degradation



until the buffer pool is warmed up. For physically-identical data-
bases synchronized with physical replication, wire-speed RDMA
transfers can be used to warm up the buffer pool of the newly-
elected primary (S2) using contents of the buffer pool of the old
primary (S1). This priming (or warming-up) of the buffer pool at
S2 can be proactive, where S1 pushes the pages to S2 or reactive,
where S2 fetches the pages from S1 on-demand as the workload ac-
cesses them. The first scenario is similar to a push technique stud-
ied in the context of database and VM migration [9, 11]. The latter
scenario is similar to the cache extension scenario described above.
In either case, fast access to remote memory using RDMA can
significantly reduce the impact of such planned primary-secondary
swaps on application workloads.

4. DESIGN AND IMPLEMENTATION
Any RDBMS that aims to exploit remote memory must address

several important design challenges. In this section, we first dis-
cuss these challenges and rationalize our choices with the goal of
efficiency and ease of integration into a mature RDBMS. We then
describe an implementation in Microsoft SQL Server, referred to
as SQL Server for brevity, that embodies these choices.

4.1 Design Choices and Rationale

4.1.1 Abstraction for Remote Memory

The first design question is the abstraction to use for remote
memory, i.e., how is remote memory exposed in the memory hier-
archy on an RDBMS. We first discuss four alternatives and explain
the abstraction we choose in our implementation.
Byte-addressable memory. Local memory is often accessed us-
ing byte-addressing and it is natural to expose remote memory also
as byte-addressable memory, similar to that in distributed shared
memory (DSM) [1, 5]. This allows existing applications to seam-
lessly extend their memory from local to remote, similar to the vir-
tual memory abstraction exposed by the OS. However, it requires
OS support to intercept memory accesses for address translation,
which negates the kernel bypass benefits of RDMA. Moreover, it
limits the RDBMS’s ability to control which data is stored locally
and which ones are moved to remote memory.
In-memory blocks. Many applications that manage their own mem-
ory, such as database systems, acquire memory from the OS in
blocks. Therefore, remote memory can be exposed as blocks of
fixed but configurable sizes. An application requests a block of
remote memory which is identified uniquely. The application ac-
cesses a block using its unique identifier, an offset into the block,
and the size of the data to be read or written. This abstraction allows
the application to selectively read/write individual bytes within a
block without having to read/write the entire block.
In-memory files. Database systems are designed to operate effi-
ciently with files. Many in-memory structures in a database can be
mapped to in-file representations, which makes a file abstraction
suitable for databases. An in-memory file is a common abstraction
supported by many operating systems [32], e.g., ramfs in Linux
Ramdisk in Windows allow mounting a part of physical memory
as a file system. Exposing a familiar file API, remote memory can
be abstracted as in-memory files.
In-memory Key-value store. Caching variable-sized objects which
are stored and retrieved as whole objects is a common requirement
for many applications. A key-value store, where the keys and val-
ues are stored in remote memory, is another abstraction to expose
remote memory. The key-value store hides the details of memory
management and processing the remote reads and writes. The ap-

plication only interacts through a get/put API which is common
with key-value stores.

Our implementation builds on top of an in-memory block ab-
straction which provides flexible access to memory. To enable easy
integration of remote memory into SQL Server, our implementation
builds a lightweight file shim over fixed-size in-memory blocks,
that exposes a subset of the standard file APIs but are sufficient for
the scenarios we consider; the file API is specified in Table 2.

4.1.2 Protocols to Access Remote Memory

The protocol to access remote memory is also critical for perfor-
mance. One class of protocols can be based on the standard TCP/IP
stack in a client-server design using network sockets. TCP/IP uses
the remote CPU, involves the OS at both the source and destination
of the transfer, copies data from user space to the kernel, and incurs
additional protocol overheads. However, the benefit is the standard
implementations in both the Windows and the Linux platforms.
Due to the common use of TCP-based protocols, we consider one
such protocol as a baseline in our study. This baseline uses Server
Message Block (SMB) [36], a network file sharing protocol (over
TCP/IP or other network protocols), which has been supported in
Windows since Windows 95. Though SMB is not directly associ-
ated with accessing memory, if remote memory is exposed as an
in-memory file system, then SMB can be used to transfer data from
remote to local memory over TCP/IP.

RDMA protocols bypass the OS and avoid TCP/IP overheads.
However, the protocols for RDMA transfers are specific to the plat-
form. For instance, the Windows ecosystem supports the Network
Direct Service Provider Interface (NDSPI) where hardware vendors
can implement advanced capabilities of their networking devices,
such as RDMA over Infiniband. The Infiniband standard supports
a variety of send/receive verbs as interface definitions, which has
corresponding mappings to NDSPI. Another alternative is to use
SMB 3.0 that supports RDMA transfers using SMB Direct. If the
network adapter is RDMA-capable, SMB Direct uses RDMA. Our
implementation uses RDMA reads and writes implemented over
NDSPI which was the most efficient among the alternatives.

4.1.3 Synchronous vs. Asynchronous Operations

Database systems model I/O operations to the disk or over the
network as asynchronous operations. This allows the system to
hide I/O latencies by interleaving CPU activity on other threads.
If a thread does not have any CPU activity after issuing an I/O,
it yields the CPU, resulting in a context switch. The thread is
switched back in after the OS processes the I/O completion. A
remote memory access is an I/O and hence it is natural to treat such
accesses as asynchronous. While such asynchronous accesses are
efficient to hide disk I/O latencies, which is of the order of mil-
liseconds, remote memory access latencies are in the order of tens
of microseconds. A context switch itself consumes a few microsec-
onds. In addition, pollution of the processor’s cache lines and the
delay between when the I/O is completed to when the thread is
switched back in makes the overheads of a context switch compa-
rable to remote memory access latencies. Therefore, even though
remote memory access via RDMA is an I/O, we found treating it as
synchronous accesses, similar to accesses to local memory, is im-
portant to enable the RDBMS leverage remote memory more effec-
tively. This synchronous access model is efficient since it prevents
unnecessary context switches and allows the database to process
RDMA completions faster, thus resulting in significantly lower ac-
cess latencies and higher throughput for remote memory accesses.
While the synchronous model suits the small transfers in RDBMSs,
an adaptive approach that switches to asynchronous when transfer



Table 1: Summary of the design choices and alternatives.
Design Choice Alternative Chosen Rationale

Remote memory

abstraction

In-memory blocks
with a file API shim

Ease of integration into
existing DBMS engines

Protocol NDSPI Least overheads

Sync vs. async

remote accesses
Synchronous

Avoid context switches,
improve latency

Registering

memory regions

Pre-register memory
regions

Registration incurs
fixed initialization cost

Fault tolerance Best-effort
Correctness unaffected,
simpler implementation

latencies are higher than typical context switches will be more gen-
eral and is an interesting direction for future work.

4.1.4 Registering Memory Regions

RDMA transfers require that the source and the destination mem-
ory regions (MRs) be registered with the NIC. This registration of
MRs can be done on-demand before every transfer, or large blocks
of MRs can be pre-registered upfront at both the source and the
destination. Both approaches have trade-offs, and present an im-
portant design choice. Considering a typical page in an RDBMS is
8K, registering an 8K page has a latency of 50µsec on our hard-
ware, which is of the same order as the cost to transfer the page
itself. In addition, registering the page on-demand at the destina-
tion implies the destination server’s CPU also needs to be involved
to initiate the transfer, which partly defeats the benefits of RDMA
transfers. Hence, efficient management of MR registration is criti-
cal to leverage the benefits of RDMA [13,34]. Our implementation
preregisters in-memory blocks during initialization. Preregistration
is straightforward if the memory region used for transfers is a con-
tiguous block in physical memory. However, caches in an RDBMS,
such as the buffer pool, are often not contiguous in physical mem-
ory, which introduces an implementation challenge for preregistra-
tion; we describe our solution in Section 4.2.

4.1.5 Fault Tolerance and Availability

In a cluster of commodity servers, failures and server restarts
are common. When one server S1 accesses memory of another
server S2, a failure of S2 can impact S1, depending on the fault-
tolerance and availability guarantees provided by the remote mem-
ory abstraction. Exposing remote memory as best-effort, where
failure of a server can make the memory unavailable, is the sim-
plest abstraction to support, and is sufficient if an application uses
remote memory only as a performance optimization. That is, if re-
mote memory becomes unavailable, the RDBMS can continue to
operate correctly, though likely with degraded performance. While
it is possible to expose remote memory as a highly-available and
durable abstraction, it increases the complexity of the implementa-
tion and also results in less performance gains due to the need to
replicate data or write to non-volatile storage [27]. Since our sce-
narios can tolerate remote memory failures without affecting cor-
rectness, our implementation uses remote memory with best-effort
fault tolerance and availability guarantees.

4.2 Implementation in SQL Server
We now present a detailed description of our implementation of

the proposed remote memory abstraction in SQL Server deployed
in a cluster environment. Our implementation embodies the de-
sign choices we discussed earlier which are also summarized in Ta-
ble 1. Figure 1 presents a simplified illustration of the architecture
we implement. The figure shows two sets of servers: the servers
running the database process which are experiencing high memory
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Figure 1: Integrating remote memory into an RDBMS.

pressure (DB1, . . . , DBk), and the servers with available mem-
ory which can be accessed via RDMA (M1, . . . ,Mn). For sim-
plicity, the figure abstracts out the other processes running on the
servers (M1, . . . ,Mn). These servers can also run a database pro-
cess, which will typically be the case in a cloud database service.
The only difference between (M1, . . . ,Mn) and (DB1, . . . , DBk)
is there is available memory in the former set and unmet memory
demand in the latter set.
Brokering available memory. Each server in the cluster reports
the available and unused memory to a memory broker that tracks
memory availability throughout the cluster. A server Mj with avail-
able memory divides its memory into configurable fixed-sized mem-
ory regions (MRs) depicted as numbered blocks in Figure 1. A
memory brokering proxy process on Mj determines available mem-
ory not committed to any local process, pins the available MRs, reg-
isters them to the local NIC, marks them unavailable from the OS’s
perspective, and registers the MRs with the memory broker. Con-
ceptually, the broker now controls the privilege to read and write
to those MRs, which it can assign to any other server with unmet
memory demands. Note that we do not steal memory committed to
processes locally on a server, hence the memory on Mj registered
with the broker cannot be committed to any local process on Mj .
The memory brokering proxy at each Mj registers for OS memory
pressure notifications such that if a local process on Mj requests
additional memory from the OS, the proxy will detect such mem-
ory pressure. To prevent the OS from paging local applications, the
proxy on Mj requests deregistration of one or more MRs from the
memory broker. Once the memory broker frees the lease on the
MR, they are freed to the OS at Mj which can allocate the pages
to local processes. These memory notifications and adaptive mem-
ory brokering is a standard API supported by many OSs [25] and is
transparent to applications running on Mj .

A database server with unmet memory demand (DBi) can re-
quest the broker for a lease to a remote memory region. This
lease provides DBi exclusive access to the region. The mem-
ory broker’s design is similar to many standard leasing mecha-
nisms based on Zookeeper [16] which provides a fault-tolerant and
highly-available mechanism to obtain timed leases. Many systems,
such as the YARN scheduler [49] or the master in HBase which
manages the mapping of regions to servers similar to that of Big-
table [6], have a similar use of Zookeeper. When DBi requests a
lease on an MR, the broker determines which server Mj has an un-
leased and available MR, registers this mapping in a lookup table,
and creates the metadata for the lease. Zookeeper guarantees fault
tolerance and high availability of this metadata for memory broker-
ing. On obtaining the lease, DBi directly communicates with Mj



Table 2: Simplified file API and RDMA operations.
File Operation RDMA Implementation

Create (ServerEndpoint, Size) Obtain lease on MRs

Open Connect to server(s)
Read/Write (Offset, Size) RDMA read/write

Close Disconnect from server(s)

Delete Relinquish lease on MRs

using the RDMA read/write commands. Since the memory broker
is not in the data transfer path from Mj to DBi, such a design can
scale to thousands of servers [6,49]. In addition, since the broker’s
state is all stored in Zookeeper, a broker’s failure is easy to tolerate
by electing a new broker node orchestrated using Zookeeper. Be-
fore the lease for an MR expires, DBi has to renew the lease. If
the lease is successfully renewed, DBi continues to use the MR.
Otherwise, DBi is forced to release the remote MR. DBi can re-
quest a lease on another MR or continue with local disks. DBi

can also voluntarily release the lease on a remote MR if sufficient
memory is available locally. There are many more details, such as
how to deal with failures of both DBi or Mj and the policies for
lease management. These aspects are common of many distributed
resource and lease negotiating systems, such as YARN, HBase, and
Bigtable, and are omitted for brevity. Note that if a lease expiration
is forced due to a failure or other policies, the correct operation of
DBi is not compromised and the DBMS can continue query exe-
cution, albeit with degraded performance.
Scenarios. SQL Server already has support to extend the buffer
pool to an SSD to leverage the higher random I/Os available in
SSDs. SQL Server implements the extension as a file by serializing
the buffer pool contents. This logic to serialize buffer pool contents
to a file is also leveraged to prime the buffer pool on the secondary.
SQL Server spills temporary data into a file. Finally, structures in
the semantic cache can also be stored and serialized as in-memory
files. Therefore, exposing remote memory as a lightweight file API
shim significantly reduces the changes needed in SQL Server to
leverage benefits of remote memory. For all our scenarios, the
database engine uses higher-level locks and latches to synchronize
all I/Os. Hence, the in-memory files do not need many properties
of files in a classic file system. A lightweight file API supporting
reads/writes of a certain size from/to a specific offset is sufficient.
Implementing a lightweight file API. Table 2 summarizes the file
API and the corresponding operations, which are also illustrated in
Figure 1. To create a file of the specified size, a server DBi requests
a lease on MRs corresponding to the file’s size. The broker provides
the mapping of which MR is on which server Mj . On file open,
DBi initiates a connection and sets up an RDMA flow to all Mjs
that it will write to or read from. When a read or write operation is
issued, we first translate the file offset into an MR backing the file
and an offset within the MR. We then issue an RDMA read or write
operation to the MR. A file close action terminates the connections.
When a file is deleted, we free the lease on the corresponding MRs.

Our implementation of the RDMA read/write actions utilizes the
C++ NDSPI API which is natively supported by the Mellanox NICs
used in our implementation. The NDSPI library exposes RDMA
accesses as an asynchronous operation which the database server
can treat as asynchronous I/Os. However, as discussed in Sec-
tion 4.1.3, treating RDMA requests as asynchronous I/Os is not
efficient. Therefore, we use synchronous RDMA requests where
if a thread does not have any additional CPU activity after issu-
ing an RDMA request, it spins for a few microseconds until the
RDMA request completes. If the request does not complete within
a few tens of microseconds, we can switch to asynchronous mode

Table 3: System configurations
CPU Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20

GHz (20 cores and 40 logical processors.)

Memory 384 GB DDR3, 1866 MHz

HDD 1 TB 7.2K RPM Near-line SAS 6 Gbps

SSD 400 GB SAS SLC 6 Gbps

RAID Dell Perc H710P SCSI

Network Adapter Mellanox ConnectX-3 VPI IPoIB (56 Gbps)

Operating System Windows Server 2012 R2

Database System SQL Server

to avoid spinning for long durations if the RDMA transfer latency
increases. Such an adaptive strategy is left for future work.
Preregistration of MRs. As discussed in Section 4.1.4, another
important consideration is preregistering the MRs with the NIC.
Preregistration is straightforward when the memory region is a con-
tiguous block of memory, which is the case with server (Mj) that
has unused memory. We register large contiguous blocks of mem-
ory when the available MRs are registered with the broker. Prereg-
istering MRs on the RDBMS server (DBi) introduces a new chal-
lenge, especially for the buffer pool which in SQL Server is not a
contiguous block of memory. First, the buffer pool might grow (or
shrink) dynamically. Second, a single memory allocator services
memory requests from the buffer pool as well as other consumers
of memory within SQL Server. Hence, buffer pool pages can be
interspersed with memory consumed by other engine components.
Therefore, statically-registering the entire buffer pool could amount
to registering the entire address space of the DBMS process, which
comprises large chunks of memory which will never be used for
RDMA transfers.

To avoid the cost of dynamic registration for every RDMA trans-
fer, we use a preregistered staging buffer in database server’s ad-
dress space. The database server has multiple CPU schedulers and
to maximize data parallelism each scheduler issues I/Os in parallel.
We create a staging buffer for each scheduler, depicted as “Pinned
MR” in Figure 1. When a scheduler evicts a buffer page and trans-
fers the page to the extension on the remote server, it first copies the
page into its local staging buffer using a memcpy operation. Reg-
istering an 8K page has a latency of 50µsec while memcpy has a
latency of 2µsec. Therefore, introducing the additional memcpy ac-
tually results in a design that is far more efficient than dynamic
registration of the buffer pool pages. The page in the buffer pool
becomes available to hold another database page immediately af-
ter the memcpy. The scheduler initiates an RDMA write from the
staging buffer to the appropriate location on the remote server. The
staging area’s buffer can be reused after the RDMA write com-
pletes. The pinned MR’s size is a trade-off between memory over-
head of the staging area and the number of pending RDMA trans-
fers. We used 1MB for up to 128 pending RDMA transfers per
scheduler which was tuned for our setup allowing us to sustain suf-
ficient concurrent RDMA transfers to saturate the network. The
“Pinned MR” is also used to fetch buffer pool pages from remote
memory using RDMA reads.

5. EXPERIMENTAL SETTINGS
In this section, we present the system configurations, the bench-

mark workloads and the alternative designs evaluated in our exper-
iments. For brevity, we use buffer pool extension as BPExt, and
storage with spilled temporary data as TempDB.

5.1 System Specifications
We use a cluster of 10 servers each of whose hardware configu-

ration is shown in Table 3; the servers are connected using a top-



Table 4: Summary of workloads

Work-

loads

Data

Size

Local

Mem

BPExt

Size

Tem-
pDB

Size

Concur-

rency

RangeScan 110GB 32GB 128GB 8GB 80

Hash+Sort 227GB 256GB N/A 320GB 1

TPC-H 840GB 64GB 256GB 64GB 5

TPC-DS 900GB 64GB 256GB 64GB 5

TPC-C 168GB 16GB 32GB 8GB 2000

of-rack Mellanox FDR MSX6036F-1BRR Infiniband Switch. We
explore remote memory for scenarios where the DBMS is designed
to use disks. Therefore, the performance of the I/O subsystem will
have a significant impact on the benefits of using remote memory.
We therefore use a few different configurations to control the band-
width and access latencies of the I/O subsystem. We use a hardware
RAID controller and a RAID 0 setup where data is striped across
multiple drives. We vary the number of HDDs, or spindles, in a
RAID 0 partition as 4, 8 and 20, respectively, and show how the
performance of I/O subsystem affects the throughput/latency of the
workloads. Unless otherwise specified, the default HDD set up has
20 spindles. For brevity, we refer to the RAID 0 I/O subsystem
as HDD to differentiate from an SSD which is configured with its
stand alone partition and used in some configurations.

5.2 Workloads
We use various micro benchmarks to test the scenarios in iso-

lation, and then use standard benchmark workloads to quantify the
overall benefits of using both optimization for more complex work-
loads. Table 4 summarizes the workloads that are evaluated in this
paper. We measure native performance of the I/O subsystems and
remote memory accesses using a standard benchmark SQLIO [38].
We use a RangeScan workload to micro benchmark buffer pool
scenarios of extension and priming, and a Hash+Sort workload
which is designed to stress TempDB by generating temporary data
with Hash and Sort operators on large amounts of data. We also use
a number of standard benchmark workloads: two decision support
benchmarks (TPC-H [47] and TPC-DS [48]) and one on-line trans-
action processing benchmark (TPC-C [46]). Each benchmark has a
scale-factor that determines the data sizes. The scale for TPC-H is
200, and the scale for TPC-DS is 300. For TPC-C, the number of
warehouses is used to scale the database, which we set to 800. For
the decision support workloads, we used SQL Server’s Database
Engine Tuning Advisor (DTA) to tune the physical design to avoid
unnecessary I/Os and ensure we have a reasonably-tuned system.
We use the query generator tools provided with TPC-H and TPC-
DS benchmarks to generate the workload. DTA uses this workload
to recommend index structures which we subsequently built. For
TPC-C, we use the indexes as per the benchmark specification. The
final database sizes after building the indexes is shown in Table 4.
We now describe the two micro benchmarks in a bit more detail.

5.2.1 RangeScan

This benchmark is designed to stress the BPExt and priming
scenarios. This workload generates queries that scan a range in a
synthetically-generated Customer table that has the same schema
as the Customer table of TPC-H. This table contains 500 million
rows, and the average size of each row is 245 bytes. A clustered
index is built on the custkey. The range scan query is of the form:

SELECT sum(acctbal) FROM customer

WHERE custkey >= @start

AND custkey < @start + @range

We use two variants of this query: a read-only variant which
calculates the average account balance for a range of rows starting
from a start key, and an update variant which updates the account
balance for the range selected. Since the table has an index on
custkey, it results in seeks on that index. We fix @range to 100 to
simulate short read-only queries which access three database pages
on average. The @start parameter is randomly generated from
a uniform distribution. With up to 80 concurrent threads issuing
this query, the uniform access pattern creates a lot of churn in the
buffer pool by accessing almost the entire database which does not
fit in local memory. As a result, this query is suited to stress the
BPExt by frequently moving pages to and from the extension. If
the parameter is selected from a skewed or a hotspot distribution,
it results in a small working set, which if in memory results in low
tail latencies, but if not in memory, results in longer tail latencies.
This setting is suited to test the priming scenario.

5.2.2 Hash+Sort

This query is designed to stress TempDB. It joins the lineitem
and order tables from the TPC-H benchmark and returns the top
100, 000 rows sorted by extendedprice.

SELECT top 100000*

FROM lineitem l JOIN orders o

ON l.orderkey = o.orderkey

ORDER BY l.extendedprice

Hash 

Join

Top N 

Sort

Select

LineitemOrders

Figure 2: Execution Plan

for Hash+Sort Query

We built a clustered index
on the orderkey of each ta-
ble; Figure 2 shows the re-
sulting execution plan for the
query where the tables are
joined with a hash join, which
builds a hash table that will
spill to TempDB if enough
memory is not available, fol-
lowed by a sort on the joined
results, which will again use
an external sort algorithm us-
ing TempDB if enough mem-
ory is not available. We assign
256 GB local memory to the database server which is enough to
cache the data scanned by the query, thus making the reads and
writes to TempDB during the Hash and Sort the bottleneck.

5.3 Alternative Designs Evaluated
Table 5 summarizes the various design alternatives we consider

for our empirical evaluation. The HDD and HDD+SSD are two
baselines in which there is no remote memory available and the
DBMS server uses local HDD or SSD for unmet memory demand.
In the HDD setup, we disable BPExt since storing the BPExt on
HDD which also has the data files degrades performance due to
lower random read performance of HDD compared to SSD. For
the data analysis workloads (such as Hash+Sort, TPC-H and TPC-
DS), most of the I/Os are sequential. Considering that the HDD
setup uses data striped across multiple disks (varied as 4, 8, 20)
in a RAID 0 configuration, the sequential throughput of the HDD
setup can reach more than one GB/s, which is higher than the SSD’s
random access throughput. If the BPExt is enabled, sequential ac-
cesses are transformed to random accesses to the extension on the
SSD. Therefore, for data analytics workloads, we disable BPExt for
the HDD+SSD as well. For OLTP workloads (such as RangeScan

and TPC-C), as most of the I/Os are random, and the SSD’s ran-
dom I/O throughput is higher than the HDD, we enable the BPExt
for HDD+SSD and store it on SSD.



Table 5: Design alternatives evaluated.

Designs
Data
Files

TempDB BP Ext Protocol

HDD HDD HDD N/A N/A

HDD+SSD HDD SSD SSD N/A

SMB+
RamDrive

HDD
Remote
Memory

Remote
Memory

SMB

SMBDirect
+RamDrive

HDD
Remote
Memory

Remote
Memory

SMB
Direct

Custom HDD
Remote
Memory

Remote
Memory

NDSPI

Local Memory HDD SSD N/A N/A

Our abstraction of in-memory files can be implemented using
various protocols to access remote memory and off-the-shelf com-
ponents. We consider two such designs: SMB+RamDrive and
SMBDirect+RamDrive. We use a third party software that creates
a fully-functional RamDrive on the remote server. SMB accesses
RamDrive using TCP/IP (SMB+RamDrive). SMBDirect leverages
RDMA for data transfer (SMBDirect+RamDrive). Custom is our
implementation of the lightweight file API with data transfer using
NDSPI (see Section 4.2).

Finally, to determine the best possible performance, we also con-
sider a design where memory of equivalent size as remote memory
is available locally at the server. We call this design Local Mem-

ory. This alternative helps us to determine the overheads of using
remote memory compared to when it is available locally.

6. EXPERIMENTAL RESULTS
We now present a thorough empirical analysis of our implemen-

tation to evaluate the effectiveness of remote memory in a cluster
setting where a database service is deployed. Our experiments use
a modified un-optimized build of SQL Server and hence our perfor-
mance numbers should not be treated as official benchmark results.
We first use a micro benchmark to evaluate the I/O throughput and
latency for the different alternatives (Section 6.1), followed by mi-
cro benchmarks for BPExt (Section 6.2), TempDB (Section 6.3),
semantic caching (Section 6.4), and buffer pool priming (Section 6.5).
Appendix B presents additional experiments demonstrating the end-
to-end benefits using industry-standard TPC benchmarks, impact
of varying the amount of local memory, and varying the number of
database servers accessing a memory server. Since the benefits of
remote memory are significant only when local memory is insuffi-
cient to meet the workload’s demands, our evaluation also focuses
on configurations with memory pressure. Following are the key
takeaways:
Custom significantly outperforms HDD+SSD. In all experiments
when the workload’s memory demand exceeds the available lo-
cal memory, Custom significantly outperforms HDD+SSD in both
throughput and latency. For some TPC-DS queries, Custom achieves
up to 100× improvement in terms of latency.
Custom outperforms SMBDirect+RamDrive. Compared to SMB-

Direct+RamDrive, which requires no code changes, Custom’s re-
sults in around 3.4× improvement in random I/O throughput. For
end-to-end SQL workloads, the improvements are in the range of
10 − 40%. This is mainly because for complex SQL workloads,
CPU activity of query processing interleaves data accesses, which
does not generate enough demand for remote memory to bene-
fit from the lower overheads of Custom. That is, the workload
are CPU-bound even with SMBDirect+RamDrive. Note that us-
ing CPU-efficient technologies such as column store and vector-
ized processing will further improve the benefits of remote mem-
ory, which is an interesting direction of future work.

Custom and SMBDirect+RamDrive outperform SMB+RamDrive.
The experimental results also show that both Custom and SMBDi-

rect+RamDrive outperform SMB +RamDrive, which demonstrates
the benefits of accessing remote memory via RDMA compared to
TCP. This experiment highlights the importance of the choice of
protocol for RDMA transfers.
RDMA has negligible performance impact on remote server.
Accessing available memory via RDMA results in negligible im-
pact on performance of workloads executing on the remote server
providing the memory, compared to accessing memory over TCP
which results in ∼ 10% overhead on both throughput and latency
of workload on remote server.
Custom approaches performance of Local Memory. For most of
workloads, the performance of Custom is within 10 − 20% of Lo-

cal Memory. That is, even though accessing remote memory via
RDMA (10µsec) is slower than accessing local memory (0.1µsec),
for classic database systems, the difference of accessing data cached
in local memory compared to remote memory is surprisingly small.
The reason is that classic memory-optimized RDBMSs are not as
optimized as purely in-memory databases and hence cannot effec-
tively saturate the memory bandwidth. Analyzing RDMA’s impact
on in-memory technologies is beyond the scope of this paper.
Comparable improvements with multiple servers. In a cluster
where a database server uses memory pooled aggregated from mul-
tiple servers or when multiple remote servers access memory avail-
able at one server, the overheads are negligible compared to when
memory is obtained from one server.

6.1 I/O Micro benchmark Performance
We now present the read I/O throughput and latency using a mi-

cro benchmark. We first analyze the performance all alternatives
with two servers, one database server (DBi) and another memory
server (Mj). We subsequently evaluate the performance of Custom

with one DBi accessing multiple Mjs, and one Mj serving mul-
tiple DBis. In a cluster with multiple servers, a database server
might be accessing memory of multiple remote servers. Similarly,
multiple database servers can concurrently access memory avail-
able at one server. Our multi-server experiments characterize per-
formance for both scenarios.

For the two server setting, we evaluate the read performance for
HDD, SSD, SMB+RamDrive, SMBDirect+RamDrive and Custom.
For HDD, we evaluate the performance of our RAID 0 configura-
tion with 4, 8, and 20 spindles, respectively. We evaluate both the
random read and sequential read performance using SQLIO, a disk
subsystem benchmark tool [38]. For random read, 20 threads issue
the read requests of 8 KB pages concurrently. For sequential read,
5 threads issue read requests for blocks of size 512 KB.

Figure 3 plots the read throughput and Figure 4 plots the I/O la-
tency for the different alternatives. As can be seen in this figure,
the sequential read throughput of Custom is almost equal to that
SMBDirect+RamDrive, but is higher than SMB+RamDrive. The
sequential read throughput of both HDD and SSD is slower than the
sequential read of the three remote memory designs, which shows
the opportunity in exploiting remote memory for databases. In ad-
dition, since the HDDs on our server are configured as RAID 0, its
sequential read throughput is much higher than the SSD. For ran-
dom read, the throughput of our custom implementation is much
higher than that of SMBDirect+RamDrive, which may be due to
the overhead that is introduced by the RamDrive and the SMB-
Direct protocol. Access latencies for remote memory designs are
also considerably lower than that of designs using locally-attached
HDDs or SSDs. In addition, the low overheads of Custom is also
evident in the lower latencies, especially for random page accesses.
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Figure 5: I/O performance with multiple memory servers.
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Figure 6: I/O performance with multiple database servers.

Figure 5 plots the I/O throughput and latency when one data-
base server DBi accesses remote memory from multiple memory
servers Mj . The total amount of remote memory remains constant
as we vary the number of memory servers from 1 to 8 which is
plotted in the x-axis. The bars correspond to the throughput plotted
on the left vertical axis and the lines correspond to latency plotted
on the right vertical axis. As is evident from the figure, even when
the network bandwidth of DBi is saturated (which is the case even
with one Mj ), there is negligible impact on throughput and latency
for accessing remote memory as we vary the number of Mjs. In
fact, with the higher parallelism available with 8 Mjs, the latency
of random I/Os is lower. This demonstrates our implementation
can effectively leverage memory pooled across multiple servers.

Figure 6 plots the I/O throughput and latency when multiple
DBis access memory from on Mj . Each DBi is accessing a fixed
amount of memory and the number of accesses per second is tuned
such that the NIC’s bandwidth at Mj is saturated with four DBis;
we increase the number of DBis from 1 to 8 which is plotted on
the x-axis on Figure 6. The bars plot the aggregate throughput of
all DBis along the left vertical axis and the lines plot the average
latency of all DBis along the right vertical axis. There are two
important observations. Before Mj’s NIC was saturated, the ag-
gregate throughput scales almost linearly with negligible change in
latency as we increase number of DBis. Once the NIC is saturated,
increasing the number of DBis results in higher latency, which is
expected since contention for the resources increases. With four
DBis, the latency is comparable to that of Figure 4 where one DBi

was saturating the bandwidth of one Mj . When the link is saturated
with 8 servers, the peak throughput for random I/Os in Figure 6 is
comparable to that in Figure 3. Note that in this experiment, our
goal was to saturate the NIC with a few servers to help us demon-
strate linear scaling before saturation and the effect of contention
after saturation. However, in a real cluster setting, it is unlikely
that all remote database servers will continuously and concurrently
overload the memory server, thus potentially allowing even more
database servers to use memory available at an Mj .

6.2 Impact of Remote Memory on BPExt

6.2.1 Performance of RangeScan

We first measure the performance of RangeScan when 20% of
the requests are updates; Figure 7 plots the throughput and Figure 8

plots the latency. Performance of the different alternative designs
follow the trend observed with I/O performance discussed in Sec-
tion 6.1: all the three scenarios that utilize remote memory have
higher throughput compared to storing BPExt on local SSD. Fur-
thermore, the throughput of Custom is only 10% lower compared
to the ideal Local Memory scenario. It shows that with RDMA,
caching pages in remote memory is a significantly better alterna-
tive when local memory is unavailable and the DBMS uses disks.
Updates cause appends to the transaction log which is stored in the
HDD. Therefore, as the number of spindles increases, the through-
put increases and the latency decreases.

To eliminate this impact, we repeat the experiment without any
updates; Figures 9 and 10 plots the throughput and latency for the
corresponding experiment. Data is buffered into either SSD, remote
memory or local memory depending on the alternative considered,
and reading data from these structures is independent of the HDD
performance. As a result, the throughput of HDD increases as the
number of spindles increases, but the throughput of other methods
remains the same in different spindle settings.

To better explain the observed behavior, we present a drill down
on this experiment in terms of the I/O throughput, latency, and CPU
utilization for HDD+SSD, SMBDirect+RamDrive and Custom for
a 100 second period during the experiment (Figure 11). As seen
in Figure 11(a), the I/O throughput is about 900 MB/s for Custom,
which is much lower than the raw I/O throughput (∼5 GB/s). The
reason is that during the execution of this workload, as reading a
data page from remote memory is so fast, I/O is no longer the bot-
tleneck, instead it shifts to CPU. As shown in Figure 11(b), the CPU
is almost entirely utilized for both SMBDirect+RamDrive and Cus-

tom, while the CPU utilization is only about 20% for HDD+SSD.
Figure 11(c) shows the I/O latency of reading a page from BPExt
during the executing of the workloads. The benefits of the Custom

implementation is evident where the I/O latency of Custom is much
lower (13µsec) compared to SMBDirect+RamDrive (272µsec). The
higher latency can be attributed to how I/O is treated and overheads
of a fully functional file system and the SMB Direct protocol for
RDMA transfers. Without any code changes, SQL Server treats ac-
cesses to BPExt as an asynchronous I/O since BPExt is typically
stored in a disk. For asynchronous I/Os, even though the I/O can
be completed within 10µsec, the thread that issues this I/O must
wait to be scheduled. By contrast, Custom treats remote memory
accesses as synchronous operations.
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Figure 7: RangeScan throughput (20% updates).
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Figure 9: RangeScan throughput (no updates).
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Figure 10: RangeScan latency (no updates).
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Figure 11: Drill down of RangeScan.

0

4

8

12

16

20

24

0

10000

20000

30000

40000

50000

32 48 64 80 96 112 128 144

La
te

n
cy

 (
m

s)

T
h

ro
u

g
h

p
u

t 
(Q

u
e

ri
e

s/
S

e
c)

Buffer Pool Extension Size (GB)

Throughput
Latency

(a) One memory server.

0

4

8

12

16

20

24

0

10000

20000

30000

40000

50000

32 48 64 80 96 112 128 144

La
te

n
cy

 (
m

s)

T
h

ro
u

g
h

p
u

t 
(Q

u
e

ri
e

s/
S

e
c)

Buffer Pool Extension Size (GB)

Throughput
Latency

(b) Multiple memory servers.

Figure 12: Impact of varying BPExt size.

6.2.2 Impact of Memory Size

The benefits of remote memory is dependent on the available lo-
cal and remote memory. In this experiment, we keep the local mem-
ory at the server constant and vary the amount of remote memory
allocated to the BPExt. Appendix B reports the experiment where
we vary the amount of local memory available. When varying the
remote memory, we report the results for two settings: when all the
remote memory is on one server (Figure 12(a)) vs. the memory is
spread evenly on multiple servers (Figure 12(b)) such that larger
the size of the BPExt, higher is the number of Mjs accessed. We
vary the number of Mjs from 2 to 9 where each server contributes
16GB of remote memory. The throughput and latency numbers de-
pend on how much remote memory is available and independent
of the number of servers contributing the memory, which is not
surprising given the I/O performance reported in Figure 5. Each
figure plots the throughput on the left vertical axis and latency on
the right vertical axis, while the x-axis plots the increase in BPExt
size. Both figures look identical, which demonstrates that remote
memory continues to be equally beneficial even when it is pooled
from multiple servers. In SQL Server, the size of BPExt is not al-
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Figure 13: Impact on remote server.

lowed to be smaller than the local memory size. Thus, the size of
BPExt starts from 32 GB. Because the range scan query selects the
start of the range from a uniform distribution that spans the table, it
accesses all data with equal probability. Therefore, until the point
where the entire data is cached in (local or remote) memory, the
workload can always benefit from more remote memory. That is,
as we increase remote memory, the throughput increases and the la-
tency decreases. The rate of improvement is lower for BPExt sizes
below 96 GB when I/O is still the bottleneck. As the BPExt size
reaches close to the data size, most of the data pages are cached,
resulting in significant throughput and latency improvements.

6.2.3 Impact on Remote Server

One important benefit of RDMA, in contrast to TCP, is that mem-
ory accesses and transfers to do involve the CPU of the remote
server, thus potentially having minimal impact on any workload ex-
ecuting on the remote server. In this experiment, we quantify how
the performance of the server with available memory is affected
when another server accesses the memory. In this experiment, we
run workloads on two servers: SA and SB . SB’s unused mem-



ory is used to store SA’s BPExt, accessed through either RDMA
or TCP. Both servers are executing the RangeScan workload with-
out updates. We measure the performance of the workload on SB .
SA’s workload corresponds to the default configuration which gen-
erates high memory demand. Since we want to measure the impact
of RDMA’s ability to bypass the CPU, SB’s workload uses differ-
ent parameters: (1) SB uses 128 GB memory for the RangeScan
workload, which is large enough to hold the entire data set in mem-
ory; and (2) the range size for RangeScan is set to 10, 000. These
changes make SB’s workload to be CPU-intensive (with close to
100% CPU utilization). Figure 13(a) shows the throughput of the
workload on SB . Default corresponds to the scenario where SA

does not use SB’s available memory. As can be seen from the fig-
ure, the throughput is unaffected when remote memory is accessed
via RDMA. In contrast, when SB’s available memory is accessed
by TCP, its throughput degrades by about 10%. Figure 13(b) shows
the average and the 99th percentile latency. The average latency
with TCP is 10% higher than Default and RDMA and the impact is
as high as 20% when considering the 99th percentile latency. That
is, when SB’s memory is accessed using TCP, there is a notice-
able performance degradation due to the CPU consumed to process
the transfers, and secondary effects such as context switches and
polluting the processor cache line. On the other hand, there is no
noticeable impact when memory is accessed via RDMA.

6.3 Impact of Remote Memory on TempDB
The goal of this experiment is to quantify the benefits of remote

memory on TempDB by using the Hash+Sort micro benchmark
designed to stress TempDB. Since this is a long-running query, we
only report the execution times (Figure 14(a)). As evident from
the figure, the query running in the HDD+SSD configuration is
about 5× slower than Custom. Observe that HDD is faster than
HDD+SSD because, as noted earlier, the sequential throughput of
HDD is higher than that of the SSD and this workload results in
large sequential reads and writes to TempDB. However, HDD is
still significantly slower than leveraging remote memory with RDMA
to store the TempDB. For Hash+Sort, the execution time of SMB-

Direct+RamDrive is roughly the same as Custom since, as shown in
Figure 3, the sequential read throughput of SMBDirect+RamDrive

is roughly the same as that of Custom.
Figure 14(b) shows the I/O throughput of TempDB reads and

writes during query execution. The dashed line shows the through-
put of TempDB reads and writes for HDD+SSD and the solid line
plots that for Custom. The darker lines correspond to reads and
the lighter lines correspond to writes. Recall that the execution of
the Hash+Sort query consists of two phases (see Figure 2 for the
execution plan). The first phase scans the data and builds the hash
tables for the join. Since the hash table is too big to fit in memory,
this build phase also writes data to TempDB. In the second phase
where the join operator starts to generate the joined results, data is
read from TempDB to compute the join and the sorted results are
written to TempDB for the external sort.

In Figure 14(b), the first phase can be identified where only
reads are happening, while the second phase has both reads and
writes. As is evident, the phases are considerably shorter for when
TempDB is stored in remote memory; the query ends at around
400 sec with Custom compared to 1800 sec for HDD+SSD. In
phase 1, Custom achieves a throughput of around 400 MB/s mainly
because this phase is CPU-intensive as the query scans the data
pages cached in memory, builds the in-memory hashtable based on
orderkey, and serializes the hash table to TempDB. Phase 2 is
I/O-intensive dominated by TempDB reads and writes, where the
aggregate throughput of reads and writes is close to 5 GB/s. The
benefit of fast TempDB I/Os is evident from the CPU utilization
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Figure 15: Semantic caching.

during query execution which is shown in Figure 14(c). As the I/O
throughput of Custom is much higher, the CPU utilization is much
higher, especially in phase 2.

6.4 Remote Memory and Semantic Caching
The goal of this experiment is to evaluate the benefits of op-

portunistically building a semantic cache to improve query per-
formance (Section 3.3). We use the TPC-H workload for this ex-
periment. We consider materialized views (MV) which can often
significantly improve performance for certain queries. We used
SQL Server’s DTA to generate MV recommendations for TPC-
H queries; seven queries benefited from an MV. Since one of the
goals of semantic caching is to not contend for buffer pool or other
memory requirements of the RDBMS, these MVs are pinned in re-
mote memory and the RDBMS accesses them through a semantic
cache broker which is separate from the buffer pool. In the absence
of remote memory, these MVs could still be created and stored in
HDD+SSD to avoid contending for buffer pool memory, which is
our baseline. Figure 15(a) plots the multiplicative factor improve-
ment of the seven TPC-H queries compared to when they were ex-
ecuted without MVs using indexes tuned for the queries. As is
evident from the figure, using MVs can result in one to four orders
of magnitude improvement in query latency even when it is stored
on SSD+HDD. Pinning the semantic cache in remote memory can
result in another order of magnitude improvement. The relative
improvement of the semantic cache being stored in HDD+SSD vs.
remote memory depends on the size of the MV; pinning larger MVs
to remote memory results in higher benefits.

Next we use a non-clustered index to demonstrate the fact that
the query optimizers can benefit further with the knowledge that
structures in the semantic cache are pinned in memory. We use
an adapted version of TPC-H Q12 which joins lineitem with
orders. We build a non-clustered index on orders which can
either be seeked or scanned depending on whether an index nested-
loop join (INLJ) or a hash join (HJ) plan is used. We vary the se-
lectivity of the predicate on lineitem which determines the num-
ber of rows needed from orders for the join. Figure 15(b) plots
the query latency as the percentage of O_OrderKey rows selected
from orders changes. The dashed lines correspond to a HJ plan
and the solid lines correspond to the INLJ plan. As expected, for
high selectivity, the INLJ plan outperforms the HJ plan, and vice
versa. However, the crossover points depend on whether the index
is in remote memory or in SSD. Depending on whether the index is
in the semantic cache or is accessed through the buffer pool (where
it can be in memory or on disk), the optimal plan might vary. Thus,
the optimizer’s cost model must be tuned to select the optimal plan
in the presence of such remote semantic cache.

6.5 Buffer pool priming
This experiment evaluates the costs and demonstrates the bene-

fits of proactively priming the buffer pool of a newly-elected pri-
mary (S2) using the warm buffer pool of the old primary (S1) (Sec-
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(b) Impact of priming on tail latencies.

Figure 16: Drill down of priming time vs. time to warm-up the buffer

pool and its impact on tail latencies.

tion 3.4). We use the RangeScan workload with a database of about
100GB. The start key of the scan is selected from a hotspot distri-
bution where 99% of the operation access about 20% of the data.
Each query scans 5, 000 keys. Figure 16(a) plots the time in sec-
onds (in log scale) to warm up the buffer pool at S1 when executing
the workload, scan through the buffer pool at S1 and serialize the
contents in an in-memory file to prepare for the priming transfer,
and transfer the pages from the in-memory file into the buffer pool
at S2. We vary the size of the buffer pool from 10GB - 25GB. As is
evident from Figure 16(a), the time to prime the buffer pool is about
two orders of magnitude smaller than the time it takes to warm-up
the buffer pool during the normal course of workload execution.
Figure 16(b) plots the 95th percentile latency of the scan queries
starting with a cold buffer pool during warm-up phase at S2, and
the latency of the same workload when the buffer pool was primed
with pages from S1. Unsurprisingly, a primed buffer pool results
in 4 × −10× lower tail latencies, thus significantly reducing the
impact of such planned primary-secondary swaps.

7. CONCLUDING REMARKS
We considered the setting of a cluster of RDBMS servers con-

nected with RDMA-enabled NICs where some servers are experi-
encing memory pressure while other servers have available mem-
ory. We presented the abstraction of exposing unused memory on
remote servers using a lightweight file API that allows a mature an
SMP RDBMS to significantly improve performance of memory-
intensive workloads with modest changes to the DBMS engine.
We implemented this remote memory abstraction in Microsoft SQL
Server and demonstrated the potential performance benefits using a
variety of configurations and a combination of micro-benchmarks
as well as the industry-standard TPC benchmarks. Compared to
using disks when memory is insufficient, our abstraction improved
the throughput and latency of queries with short reads and writes
by 3× to 10×, while improving the latency of multiple TPC-H and
TPC-DS queries by 2× to 100×.

While our work presents the first in-depth study of the end-to-
end benefits of RDMA in an SMP RDBMS, we also highlight some
potential areas of future research to further extend our abstraction

and implementation. For instance, supporting flexible memory bro-
kering policies, ensuring fairness across multiple workloads, and
being more adaptive to the flux in memory requirements are impor-
tant aspects for deploying this abstraction in a production service.
The DBMS engine can also benefit from making remote memory
as a first-class concept, and consider it similar to other sources and
consumers of memory. For instance, remote memory can be ex-
posed as a new type of memory broker, and techniques to detect
a workload’s memory requirements, such as Storm et al. [41], can
be used to dynamically assign remote memory among the differ-
ent consumers. In addition to the four novel scenarios of leverag-
ing remote memory and fast RDMA transfers, in Appendix C, we
highlight other potential scenarios where an SMP RDBMSs can
leverage available resources on remote servers. Developing these
techniques are interesting directions of future work. Furthermore,
since today’s data centers employ some form of virtualization. If
the RDBMS is hosted within the guest OS, the performance im-
plications of virtualization on the proposed abstraction needs to
quantified. Finally, there are security implications since any re-
mote process can DMA into a memory address once it is registered
with the NIC. When processing an RDMA request, NICs have min-
imal support for authentication, checking privileges, or accounting
for resources. Therefore, it is important to explore approaches for
secure long-term memory registration or to efficiently encrypt data
stored in remote memory.
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APPENDIX

A. RDMA BACKGROUND
RDMA allows computers in a network to exchange data from

main memory of one server to the main memory of another server
without involving the CPU on the remote server. RDMA bypasses
the OS kernel, avoids the overhead of network protocol stacks, and
performs DMA using only the NIC without copying data from the
application’s buffer to the OS buffers. Since the CPU is not in-
volved in an RDMA transfer, it avoids context switches and cache
line pollution. Figure 17 illustrates RDMA read/write operations
between Server 2 (S2, provider of remote memory) and Server 1
(S1, accessor of remote memory).

The first step in initiating RDMA is setting up the network con-
nection between the client (S1) and the server (S2). This setup also
involves registering a part of the main memory, called a memory

region (MR), with the respective NICs on both S1 and S2. Dur-
ing registration with the NIC, the device driver pins the registered
memory pages to physical memory and stores the virtual to physi-
cal page mapping in a page table. Registering a memory region is a
expensive operation (relative to RDMA transfers) since it involves
the CPU and the OS kernel. There are also limits on the size of
each MR (2 GB for our Mellanox NIC) and the number of regis-
tered MRs (around 130K for our NIC). The NICs also have limited
memory for the page tables and uses the main memory to store this
information. The NIC’s memory is used as a cache and the NIC
issues a DMA if there is a cache miss accessing the page table.
Carefully managing registration of MRs and the available memory
is crucial to leverage the performance benefits of RDMA [13].

RDMA communication is based on a set of queues. The send
queue and receive queue, together called the queue pairs, process
the RDMA transfer, and a completion queue notifies the applica-
tion of the transfer’s completion. RDMA requests are sent over
a reliable channel and network failures are exposed as terminated
connections. The NIC implements in hardware all the logic of the
RDMA protocol, flow control, and reliability.

Figure 17(a) illustrates an RDMA read operation. When an ap-
plication running on S1 decides to read a memory location on S2,
S1’s CPU issues an RDMA request to the local NIC (Step 1 )
which in turn issues the request to the NIC on S2 (Step 2 ). The

request will specify the MR, the offset within the MR, the size of
data read, and a memory location at S1 where the remote memory
contents will be transferred. S2’s NIC issues a DMA to access the
pages in the memory (Steps 3 and 4 ) and transfers the contents to
S1’s NIC (Step 5 ) which in turn performs another DMA to write
the data to S1’s memory (Step 6 ). The steps for an RDMA write
are also similar and are illustrated in Figure 17(b).

RDMA has many implementations such as in InfiniBand [18],
RDMA over Converged Ethernet (RoCE) [19], and iWARP [20].
InfiniBand is a switched fabric link that provides RDMA capabili-
ties. RoCE allows RDMA over Ethernet with data center bridging
extensions where the connection state is managed in hardware pro-
viding a reliable communication channel without software proto-
cols like TCP. iWARP implements RDMA on top of TCP/IP. It has
fewer requirements on the network but the performance is worse
compared to that on InfiniBand. RDMA protocols bypass the OS
and avoid the overheads of TCP/IP. However, the protocols for
RDMA transfers are specific to the platform. Section 4 discussed
protocols in the Windows ecosystem. In the Linux ecosystem,
alternative approaches include User Direct Access Programming
Library (uDAPL) and the Sockets Direct Protocol (SDP). uDAPL
defines a set of user-level APIs for all RDMA-capable transports.
SDP is an Infiniband-specific upper-layer protocol that defines a
standard wire protocol to support stream sockets networking over
Infiniband allowing applications with minimal changes to leverage
the benefits of the Infiniband protocols.

B. ADDITIONAL EXPERIMENTS

B.1 TPC Benchmarks
TPC-H. We now quantify the benefits of remote memory for both
TempDB and BPExt using industry-standard benchmark workloads
to analyze the holistic benefits for complex database workloads.
Figure 18 shows the throughput of TPC-H with the different al-
ternative designs. The experiment is repeated for three different
configurations with 4, 8, and 20 HDD spindles. As can be seen
in this figure, Custom outperforms both HDD+SSD and SMBDi-

rect+ RamDrive. An interesting observation is that the throughput
of Custom is even higher than Local Memory which has the 256
GB memory locally. This behavior is an artifact of SQL Server’s
query execution engine’s admission control policy which does not
assign all available memory to one long-running query, thus leav-
ing memory available for subsequent queries and prevent runaway
long-running queries from hogging the server’s memory. Since
memory provided to the operators are not enough for the data sizes,
the execution resorts to using the TempDB to spill data. As a re-
sult, two of the TPC-H queries, Q10 and Q18, spill to TempDB.
Since Custom stores the TempDB in remote memory, it is much
faster than spilling to disk, thus resulting in Custom outperforming
Local Memory for Q10 and Q18. For the other queries, most of
the performance improvement comes from BPExt since their exe-
cution plans do not contain memory-intensive operators. Figure 19
plots a histogram of latency improvements of Custom compared to
HDD+SSD for 20 spindles. As can be seen in this figure, the im-
provements are massive for TPC-H: 2× for 8 queries, 2× to 5× for
10 queries, and 5× to 10× for 3 queries.
TPC-DS. Similar improvements can be observed for the TPC-DS
benchmark which has a more diverse set of queries. Figure 20
plots the throughput and Figure 21 plots the histogram of latency
improvements of Custom compared to HDD+SSD for 20 spindles.
The major difference from TPC-H results is that Custom has slightly
lower throughput compared to Local Memory since queries do not
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Figure 18: TPC-H throughput.
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Figure 19: TPC-H latency improvement.
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Figure 20: TPC-DS throughput.
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Figure 21: TPC-DS latency improvement.
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Figure 22: TPC-C throughput.
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Figure 23: TPC-C latency.
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Figure 24: Performance impact of varying available local memory.

spill to TempDB for the Local Memory setting. In addition, we can
see a much more significant improvement in terms of latency: 18
queries get 2× to 5× improvement, 21 queries get 5× to 10× im-
provement, and 11 queries get 10× to 50× improvement. Some
TPC-DS queries can even get more than 100× improvement in la-
tencies by leveraging remote memory.
TPC-C. OLTP workloads rarely have heavy demand for TempDB
since more requests are short reads and writes. The RangeScan
with update workload demonstrated some benefits of remote mem-
ory for OLTP workloads with short reads and writes. We now
present results with the TPC-C workload. We report the throughput
and latency of TPC-C workloads with two different parameter set-
tings: (i) the default TPC-C transaction mix (Default TPCC); and
(ii) where the read-only StockLevel transaction comprises 90%
of the workload mix (Read-Mostly TPCC). We use an HDD setup
with 20 spindles for both the experiments. As shown in Figure 22,
the default TPC-C transaction mix does not benefit from remote
memory even when the local memory does not cache the entire
data. This is because in TPC-C, the NewOrder transactions cre-
ate new orders which the Payment, Delivery and OrderStatus
transactions access, which comprises 96% of the queries in the
workload. Therefore, the working set for TPC-C workload is small
and keeps changing as new orders are added to the database. Even
with 32 GB local memory (the Local Memory setting), the through-
put cannot be improved compared to HDD+SSD with 16 GB local
memory. This experiment is an example where remote memory is

not beneficial since there is not enough demand for memory. By
contrast, with the read-mostly mix of TPC-C, most of the queries
are StockLevel queries that also access the old data, accessing
more database pages, resulting in a larger working set and more
demand for memory. Hence, the alternatives with more available
memory, whether local or remote, have higher throughput. Fig-
ure 23 shows the latency of different methods. For Read-Mostly
TPCC, the latency of HDD+SSD is lower than the latency of the
methods with remote memory. This is because with remote mem-
ory, the database is able to process more TPC-C queries (as seen
from the throughput graph), which results in higher contention for
resources, such as locks, resulting in higher latency. When the
throughput of the different alternative design is set to the same tar-
get, the latency of HDD+SSD is higher compared to Custom with
remote memory. Also, since this workload had lower demand for
remote memory, even SMB+RamDrive has performance compara-
ble to SMBDirect+RamDrive.

B.2 Varying available local memory
The benefits of remote memory is dependent on the available lo-

cal memory and the workload’s demand for additional memory. In
this experiment, we vary the amount of local memory on the data-
base server. We use the RangeScan workload used to stress the
BPExt and store the BPExt on a fixed amount of remote memory
sufficient to accommodate the working set. Figures 24(a) and 24(b)
plot the throughput and latency of Custom and HDD+SSD as we
vary the amount of local memory available from 16 GB to 128 GB.
As is evident from the figures, as the amount of memory available
locally increases, Custom’s benefits over HDD+SSD decreases. This
decrease continues until the local memory is sufficiently large to
cache the entire database. When the database is cached entirely in
local memory, the throughput and latency of both alternatives are
equal. In addition, as the amount of local memory increases, the
throughput of Custom also increases slightly, since local memory
is about two orders of magnitude faster than remote memory.

B.3 Multiple database servers
In the experiments presented in Section 6 we characterized the

end-to-end workload performance in one multi-server setup where
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Figure 27: Parallel loading.

0

1

2

3

4

5

0

40000

80000

120000

160000

200000

1 2 4 8
La

te
n

cy
 (

m
s)

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Number of Database Servers

Throughput Latency

Figure 25: Performance of RangeScan when multiple database

servers access remote memory at one server.
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Figure 26: Recovering an index after remote node failure.

one database server accesses memory of multiple remote servers.
In this section, we consider the complementary experiment where
multiple database servers are accessing the memory on one re-
mote server. We use the same RangeScan workload, though with a
smaller database size (125 million rows) so that there is sufficient
memory on one Mj to serve 8DBi servers. Each database server is
configured with about 7GB local memory and 30GB remote mem-
ory. Figure 25 plots the throughput and latency as we increase the
number of database servers which is plotted on the x-axis. The bars
plot the aggregate throughput (queries per second) of all the data-
base servers along the left vertical axis and the dashed line plots
the average latency (ms) along the right vertical axis. Similar to the
behavior we observed with the I/O micro benchmark, until the NIC
at Mj saturates, the aggregate throughput increases almost linearly
with the number of database servers, with negligible increase in la-
tency. Once the NIC is saturated, increasing the concurrent load
results in a noticeable increase in latency without much improve-
ment in aggregate throughput.

B.4 Recovering the Semantic Cache
Since semantic cache is stored in remote memory and our re-

mote memory abstraction is best effort, the remote server failure
will completely wipe out the cache. Based on a user-specified pol-
icy, the queries can continue using the base indexes and ignore the
cache. Alternatively, the cache can be rebuilt on another server.

Even if we periodically checkpoint the cache, there might still be
some trailing updates which might not be present in the checkpoint
and need to be recovered from the transaction log. As a benefit of
the cache being part of the RDBMS, we can use the REDO recov-
ery logic to rebuild the index. Figure 26 plots the recovery time as
a function of the amount of dirty pages in the non-clustered index
since the last checkpoint. As is evident from the figure, the recov-
ery time increases almost linearly with the size of dirty data. Less
than a GB of dirty pages can be recovered in tens of seconds and
about 16 GB of data can be recovered within four minutes. That is,
if the data in the semantic cache is not being updated frequently, the
cache can be recovered very fast. Therefore, even though we use
remote memory with best-effort fault-tolerance guarantees, remote
node failures only result in a small period of performance degrada-
tion since the cache can be reconstructed within minutes. Note that
storing the semantic cache in HDD or SSD will not require recov-
ery. Hence this experiment reports time to recover the cache into
remote memory from the transaction log.

C. ACCELERATING DATA LOADING
In addition to the four scenarios discussed in Section 3, our light-

weight file abstraction is also beneficial for other scenarios. For
instance, efficiently loading new partitions of data into a data ware-
house is crucial to enable querying newly-arriving data in a timely
manner [7]. Parallel data loading into an RDBMS server is a CPU
and I/O-intensive process which can be bottlenecked by the single

server into which data is being loaded. Data often arrives as flat file
which needs to be parsed, compressed, and converted into native
database format. Each of these steps are CPU-intensive operations.
If some remote database servers on the cluster have idle CPU along
with unused memory, an additional scenario is to offload and par-
allelize the data load on multiple remote servers. Our key idea is
to enable the remote database servers to load data for a set of parti-
tions into local in-memory files. The CPU and memory-parallelism
of multiple idle servers in the cluster can greatly speed up the data
loading. Once the remote servers finish loading the partitions, the
destination server pulls these loaded data partitions from the remote
in-memory files using the API we support. Since the step of pulling
data using RDMA is very fast relative to the actual data loading
step, the overall data loading time can be dramatically reduced.

Figure 27 reports results from an experiment to demonstrate the
benefits of such parallel loading. We consider the case where 160GB
of raw data is being loaded into an existing TPC-H database. The
data files are arriving from various sources and have 80 splits of
approximately 2GB average size. The figure plots the time to load
all the input files as we vary the number of servers loading the files.
The bar with 1 server corresponds to data being loaded into the des-
tination server using standard parallel loading tools. Since there is
no copy needed, all the time is spent in loading. As we increase the
number of servers, the data load is followed by a copy of the in-
memory file to the destination server. As is evident from Figure 27,
the data loading time reduces almost linearly, while the copy time
continues to be negligible compared to the load time, thus allow-
ing almost linear speedup in data loading. For instance, one server
takes 6, 919 seconds to load the data while eight servers take 894
seconds, resulting in ∼ 7.7× speedup. In addition to memory bro-
kering which is implemented in our system, this scenario requires
brokering of idle remote CPUs on database servers. A detailed de-
sign and implementation of such CPU brokering is an interesting
area of future work, which can enable other interesting scenarios
for CPU and memory offloading in a cluster of RDBMS servers.


