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ABSTRACT
With modern computer architecture evolving, two problems con-
spire against the state-of-the-art approaches in parallel query exe-
cution: (i) to take advantage of many-cores, all query work must
be distributed evenly among (soon) hundreds of threads in order to
achieve good speedup, yet (ii) dividing the work evenly is difficult
even with accurate data statistics due to the complexity of modern
out-of-order cores. As a result, the existing approaches for “plan-
driven” parallelism run into load balancing and context-switching
bottlenecks, and therefore no longer scale. A third problem faced
by many-core architectures is the decentralization of memory con-
trollers, which leads to Non-Uniform Memory Access (NUMA).

In response, we present the “morsel-driven” query execution
framework, where scheduling becomes a fine-grained run-time task
that is NUMA-aware. Morsel-driven query processing takes small
fragments of input data (“morsels”) and schedules these to worker
threads that run entire operator pipelines until the next pipeline
breaker. The degree of parallelism is not baked into the plan but can
elastically change during query execution, so the dispatcher can re-
act to execution speed of different morsels but also adjust resources
dynamically in response to newly arriving queries in the workload.
Further, the dispatcher is aware of data locality of the NUMA-local
morsels and operator state, such that the great majority of execu-
tions takes place on NUMA-local memory. Our evaluation on the
TPC-H and SSB benchmarks shows extremely high absolute per-
formance and an average speedup of over 30 with 32 cores.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

Keywords
Morsel-driven parallelism; NUMA-awareness

1. INTRODUCTION
The main impetus of hardware performance improvement nowa-

days comes from increasing multi-core parallelism rather than from
speeding up single-threaded performance [2]. By SIGMOD 2014
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Figure 1: Idea of morsel-driven parallelism: R 1A S 1B T

Intel’s forthcoming mainstream server Ivy Bridge EX, which can
run 120 concurrent threads, will be available. We use the term
many-core for such architectures with tens or hundreds of cores.

At the same time, increasing main memory capacities of up to
several TB per server have led to the development of main-memory
database systems. In these systems query processing is no longer
I/O bound, and the huge parallel compute resources of many-cores
can be truly exploited. Unfortunately, the trend to move memory
controllers into the chip and hence the decentralization of mem-
ory access, which was needed to scale throughput to huge mem-
ories, leads to non-uniform memory access (NUMA). In essence,
the computer has become a network in itself as the access costs of
data items varies depending on which chip the data and the access-
ing thread are located. Therefore, many-core parallelization needs
to take RAM and cache hierarchies into account. In particular, the
NUMA division of the RAM has to be considered carefully to en-
sure that threads work (mostly) on NUMA-local data.

Abundant research in the 1990s into parallel processing led the
majority of database systems to adopt a form of parallelism in-
spired by the Volcano [12] model, where operators are kept largely
unaware of parallelism. Parallelism is encapsulated by so-called
“exchange” operators that route tuple streams between multiple
threads each executing identical pipelined segments of the query
plan. Such implementations of the Volcano model can be called
plan-driven: the optimizer statically determines at query compile-
time how many threads should run, instantiates one query operator
plan for each thread, and connects these with exchange operators.

In this paper we present the adaptive morsel-driven query execu-
tion framework, which we designed for our main-memory database
system HyPer [16]. Our approach is sketched in Figure 1 for the
three-way-join query R 1A S 1B T . Parallelism is achieved
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by processing each pipeline on different cores in parallel, as indi-
cated by the two (upper/red and lower/blue) pipelines in the fig-
ure. The core idea is a scheduling mechanism (the “dispatcher”)
that allows flexible parallel execution of an operator pipeline, that
can change the parallelism degree even during query execution. A
query is divided into segments, and each executing segment takes
a morsel (e.g, 100,000) of input tuples and executes these, mate-
rializing results in the next pipeline breaker. The morsel frame-
work enables NUMA local processing as indicated by the color
coding in the figure: A thread operates on NUMA-local input and
writes its result into a NUMA-local storage area. Our dispatcher
runs a fixed, machine-dependent number of threads, such that even
if new queries arrive there is no resource over-subscription, and
these threads are pinned to the cores, such that no unexpected loss
of NUMA locality can occur due to the OS moving a thread to a
different core.

The crucial feature of morsel-driven scheduling is that task dis-
tribution is done at run-time and is thus fully elastic. This allows
to achieve perfect load balancing, even in the face of uncertain size
distributions of intermediate results, as well as the hard-to-predict
performance of modern CPU cores that varies even if the amount
of work they get is the same. It is elastic in the sense that it can
handle workloads that change at run-time (by reducing or increas-
ing the parallelism of already executing queries in-flight) and can
easily integrate a mechanism to run queries at different priorities.

The morsel-driven idea extends from just scheduling into a com-
plete query execution framework in that all physical query opera-
tors must be able to execute morsel-wise in parallel in all their ex-
ecution stages (e.g., both hash-build and probe), a crucial need for
achieving many-core scalability in the light of Amdahl’s law. An
important part of the morsel-wise framework is awareness of data
locality. This starts from the locality of the input morsels and ma-
terialized output buffers, but extends to the state (data structures,
such as hash tables) possibly created and accessed by the opera-
tors. This state is shared data that can potentially be accessed by
any core, but does have a high degree of NUMA locality. Thus
morsel-wise scheduling is flexible, but strongly favors scheduling
choices that maximize NUMA-local execution. This means that re-
mote NUMA access only happens when processing a few morsels
per query, in order to achieve load balance. By accessing local
RAM mainly, memory latency is optimized and cross-socket mem-
ory traffic, which can slow other threads down, is minimized.

In a pure Volcano-based parallel framework, parallelism is hid-
den from operators and shared state is avoided, which leads to plans
doing on-the-fly data partitioning in the exchange operators. We
argue that this does not always lead to the optimal plan (as parti-
tioning effort does not always pay off), while the locality achieved
by on-the-fly partitioning can be achieved by our locality-aware
dispatcher. Other systems have advocated per-operator paralleliza-
tion [21] to achieve flexibility in execution, but this leads to need-
less synchronization between operators in one pipeline segment.
Nevertheless, we are convinced that the morsel-wise framework
can be integrated in many existing systems, e.g., by changing the
implementation of exchange operators to encapsulate morsel-wise
scheduling, and introduce e.g., hash-table sharing. Our framework
also fits systems using Just-In-Time (JIT) code compilation [19, 25]
as the generated code for each pipeline occurring in the plan, can
subsequently be scheduled morsel-wise. In fact, our HyPer system
uses this JIT approach [25].

In this paper we present a number of related ideas that enable
efficient, scalable, and elastic parallel processing. The main contri-
bution is an architectural blueprint for a query engine incorporating
the following:

• Morsel-driven query execution is a new parallel query eval-
uation framework that fundamentally differs from the tra-
ditional Volcano model in that it distributes work between
threads dynamically using work-stealing. This prevents un-
used CPU resources due to load imbalances, and allows for
elasticity, i.e., CPU resources can be reassigned between dif-
ferent queries at any time.
• A set of fast parallel algorithms for the most important re-

lational operators.
• A systematic approach to integrating NUMA-awareness into

database systems.

The remainder of this paper is organized as follows. Section 2 is
devoted to a detailed discussion of pipeline parallelization and the
fragmentation of the data into morsels. In Section 3 we discuss the
dispatcher, which assigns tasks (pipeline jobs) and morsels (data
fragments) to the worker threads. The dispatcher enables the full
elasticity which allows to vary the number of parallel threads work-
ing on a particular query at any time. Section 4 discusses algorith-
mic and synchronization details of the parallel join, aggregation,
and sort operators. The virtues of the query engine are evaluated in
Section 5 by way of the entire TPC-H query suite. After discussing
related work in order to point out the novelty of our parallel query
engine architecture in Section 6, we conclude the paper.

2. MORSEL-DRIVEN EXECUTION
Adapted from the motivating query of the introduction, we will

demonstrate our parallel pipeline query execution on the following
example query plan:

σ...(R) 1A σ...(S) 1B σ...(T )

Assuming thatR is the largest table (after filtering) the optimizer
would choose R as probe input and build (team) hash tables of the
other two, S and T . The resulting algebraic query plan (as obtained
by a cost-based optimizer) consists of the three pipelines illustrated
on the left-hand side of Figure 2:

1. Scanning, filtering and building the hash table HT (T ) of
base relation T ,

2. Scanning, filtering and building the hash table HT (S) of ar-
gument S,

3. Scanning, filtering R and probing the hash table HT (S) of
S and probing the hash table HT (T ) of T and storing the
result tuples.

HyPer uses Just-In-Time (JIT) compilation to generate highly
efficient machine code. Each pipeline segment, including all oper-
ators, is compiled into one code fragment. This achieves very high
raw performance, since interpretation overhead as experienced by
traditional query evaluators, is eliminated. Further, the operators
in the pipelines do not even materialize their intermediate results,
which is still done by the already much more efficient vector-at-a-
time evaluation engine of Vectorwise [34].

The morsel-driven execution of the algebraic plan is controlled
by a so called QEPobject which transfers executable pipelines to a
dispatcher – cf. Section 3. It is the QEPobject’s responsibility to
observe data dependencies. In our example query, the third (probe)
pipeline can only be executed after the two hash tables have been
built, i.e., after the first two pipelines have been fully executed.
For each pipeline the QEPobject allocates the temporary storage
areas into which the parallel threads executing the pipeline write
their results. After completion of the entire pipeline the tempo-
rary storage areas are logically re-fragmented into equally sized
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Figure 2: Parallellizing the three pipelines of the sample query plan: (left) algebraic evaluation plan; (right) three- respectively
four-way parallel processing of each pipeline
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Figure 3: NUMA-aware processing of the build-phase

morsels; this way the succeeding pipelines start with new homoge-
neously sized morsels instead of retaining morsel boundaries across
pipelines which could easily result in skewed morsel sizes. The
number of parallel threads working on any pipeline at any time is
bounded by the number of hardware threads of the processor. In
order to write NUMA-locally and to avoid synchronization while
writing intermediate results the QEPobject allocates a storage area
for each such thread/core for each executable pipeline.

The parallel processing of the pipeline for filtering T and build-
ing the hash table HT (T ) is shown in Figure 3. Let us concentrate
on the processing of the first phase of the pipeline that filters in-
put T and stores the “surviving” tuples in temporary storage areas.

In our figure three parallel threads are shown, each of which op-
erates on one morsel at a time. As our base relation T is stored
“morsel-wise” across a NUMA-organized memory, the scheduler
assigns, whenever possible, a morsel located on the same socket
where the thread is executed. This is indicated by the coloring in
the figure: The red thread that runs on a core of the red socket is
assigned the task to process a red-colored morsel, i.e., a small frag-
ment of the base relation T that is located on the red socket. Once,
the thread has finished processing the assigned morsel it can either
be delegated (dispatched) to a different task or it obtains another
morsel (of the same color) as its next task. As the threads pro-
cess one morsel at a time the system is fully elastic. The degree of
parallelism (MPL) can be reduced or increased at any point (more
precisely, at morsel boundaries) while processing a query.

The logical algebraic pipeline of (1) scanning/filtering the input
T and (2) building the hash table is actually broken up into two
physical processing pipelines marked as phases on the left-hand
side of the figure. In the first phase the filtered tuples are inserted
into NUMA-local storage areas, i.e., for each core there is a sep-
arate storage area in order to avoid synchronization. To preserve
NUMA-locality in further processing stages, the storage area of a
particular core is locally allocated on the same socket.

After all base table morsels have been scanned and filtered, in the
second phase these storage areas are scanned – again by threads lo-
cated on the corresponding cores – and pointers are inserted into
the hash table. Segmenting the logical hash table building pipeline
into two phases enables perfect sizing of the global hash table be-
cause after the first phase is complete, the exact number of “surviv-
ing” objects is known. This (perfectly sized) global hash table will
be probed by threads located on various sockets of a NUMA sys-
tem; thus, to avoid contention, it should not reside in a particular
NUMA-area and is therefore is interleaved (spread) across all sock-
ets. As many parallel threads compete to insert data into this hash
table, a lock-free implementation is essential. The implementation
details of the hash table are described in Section 4.2.

After both hash tables have been constructed, the probing pipeline
can be scheduled. The detailed processing of the probe pipeline is
shown in Figure 4. Again, a thread requests work from the dis-
patcher which assigns a morsel in the corresponding NUMA parti-
tion. That is, a thread located on a core in the red NUMA partition
is assigned a morsel of the base relationR that is located on the cor-
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Figure 4: Morsel-wise processing of the probe phase

responding “red” NUMA socket. The result of the probe pipeline
is again stored in NUMA local storage areas in order to preserve
NUMA locality for further processing (not present in our sample
query plan).

In all, morsel-driven parallelism executes multiple pipelines in
parallel, which is similar to typical implementations of the Vol-
cano model. Different from Volcano, however, is the fact that
the pipelines are not independent. That is, they share data struc-
tures and the operators are aware of parallel execution and must
perform synchronization (through efficient lock-free mechanisms
– see later). A further difference is that the number of threads exe-
cuting the plan is fully elastic. That is, the number may differ not
only between different pipeline segments, as shown in Figure 2, but
also inside the same pipeline segment during query execution – as
described in the following.

3. DISPATCHER: SCHEDULING PARALLEL
PIPELINE TASKS

The dispatcher is controlling and assigning the compute re-
sources to the parallel pipelines. This is done by assigning tasks to
worker threads. We (pre-)create one worker thread for each hard-
ware thread that the machine provides and permanently bind each
worker to it. Thus, the level of parallelism of a particular query is
not controlled by creating or terminating threads, but rather by as-
signing them particular tasks of possibly different queries. A task
that is assigned to such a worker thread consists of a pipeline job
and a particular morsel on which the pipeline has to be executed.
Preemption of a task occurs at morsel boundaries – thereby elimi-
nating potentially costly interrupt mechanisms. We experimentally
determined that a morsel size of about 100,000 tuples yields good
tradeoff between instant elasticity adjustment, load balancing and
low maintenance overhead.

There are three main goals for assigning tasks to threads that run
on particular cores:

1. Preserving (NUMA-)locality by assigning data morsels to
cores on which the morsels are allocated

2. Full elasticity concerning the level of parallelism of a partic-
ular query

Dispatcher
Code

 d
is

p
at

ch
(0

)

(J
1,

 M
r1
)

P
ip

el
in

e-
Jo

b
 J

1
 o

n
 m

o
rs

el
 M

r1

 o
n

 (
re

d
) 

so
ck

et
 o

f 
C

o
re

0

Pipeline-
Job
J1

Pipeline-
Job
J2

Mr1

Mr2

Mr3

Mg1

Mg2

Mg3

Mb1

Mb2

Mb3

(virtual) lists of morsels to be processed
(colors indicates on what socket/core

the morsel is located)

Lock-free Data Structures of Dispatcher
List of pending pipeline-jobs 

(possibly belonging to different queries)

Core0 Core Core Core

Core Core Core Core

D
R

A
M

Core8 Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Socket Socket

inter     connect

SocketSocket

Example NUMA Multi-Core Server with 4 Sockets and 32 Cores

Figure 5: Dispatcher assigns pipeline-jobs on morsels to
threads depending on the core

3. Load balancing requires that all cores participating in a query
pipeline finish their work at the same time in order to prevent
(fast) cores from waiting for other (slow) cores1.

In Figure 5 the architecture of the dispatcher is sketched. It
maintains a list of pending pipeline jobs. This list only contains
pipeline jobs whose prerequisites have already been processed. E.g.,
for our running example query the build input pipelines are first
inserted into the list of pending jobs. The probe pipeline is only
inserted after these two build pipelines have been finished. As de-
scribed before, each of the active queries is controlled by a QEPob-
ject which is responsible for transferring executable pipelines to
the dispatcher. Thus, the dispatcher maintains only lists of pipeline
jobs for which all dependent pipelines were already processed. In
general, the dispatcher queue will contain pending pipeline jobs
of different queries that are executed in parallel to accommodate
inter-query parallelism.

3.1 Elasticity
The fully elastic parallelism, which is achieved by dispatching

jobs “a morsel at a time”, allows for intelligent scheduling of these
inter-query parallel pipeline jobs depending on a quality of service
model. It enables to gracefully decrease the degree of parallelism
of, say a long-running query Ql at any stage of processing in order
to prioritize a possibly more important interactive query Q+. Once
the higher prioritized query Q+ is finished, the pendulum swings
back to the long running query by dispatching all or most cores to
tasks of the long running query Ql. In Section 5.4 we demonstrate
this dynamic elasticity experimentally. In our current implemen-
tation all queries have the same priority, so threads are distributed
1This assumes that the goal is to minimize the response time of a
particular query. Of course, an idle thread could start working on
another query otherwise.
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equally over all active queries. A priority-based scheduling com-
ponent is under development but beyond the scope of this paper.

For each pipeline job the dispatcher maintains lists of pending
morsels on which the pipeline job has still to be executed. For each
core a separate list exists to ensure that a work request of, say, Core
0 returns a morsel that is allocated on the same socket as Core 0.
This is indicated by different colors in our architectural sketch. As
soon as Core 0 finishes processing the assigned morsel, it requests
a new task, which may or may not stem from the same pipeline job.
This depends on the prioritization of the different pipeline jobs that
originate from different queries being executed. If a high-priority
query enters the system it may lead to a decreased parallelism de-
gree for the current query. Morsel-wise processing allows to re-
assign cores to different pipeline jobs without any drastic interrupt
mechanism.

3.2 Implementation Overview
For illustration purposes we showed a (long) linked list of morsels

for each core in Figure 5. In reality (i.e., in our implementation) we
maintain storage area boundaries for each core/socket and segment
these large storage areas into morsels on demand; that is, when
a core requests a task from the dispatcher the next morsel of the
pipeline argument’s storage area on the particular socket is “cut
out”. Furthermore, in Figure 5 the Dispatcher appears like a sep-
arate thread. This, however, would incur two disadvantages: (1)
the dispatcher itself would need a core to run on or might pre-
empt query evaluation threads and (2) it could become a source
of contention, in particular if the morsel size was configured quite
small. Therefore, the dispatcher is implemented as a lock-free data
structure only. The dispatcher’s code is then executed by the work-
requesting query evaluation thread itself. Thus, the dispatcher is au-
tomatically executed on the (otherwise unused) core of this worker
thread. Relying on lock-free data structures (i.e., the pipeline job
queue as well as the associated morsel queues) reduces contention
even if multiple query evaluation threads request new tasks at the
same time. Analogously, the QEPobject that triggers the progress
of a particular query by observing data dependencies (e.g., build-
ing hash tables before executing the probe pipeline) is implemented
as a passive state machine. The code is invoked by the dispatcher
whenever a pipeline job is fully executed as observed by not being
able to find a new morsel upon a work request. Again, this state
machine is executed on the otherwise unused core of the worker
thread that originally requested a new task from the dispatcher.

Besides the ability to assign a core to a different query at any
time – called elasticity – the morsel-wise processing also guaran-
tees load balancing and skew resistance. All threads working on the
same pipeline job run to completion in a “photo finish”: they are
guaranteed to reach the finish line within the time period it takes
to process a single morsel. If, for some reason, a core finishes
processing all morsels on its particular socket, the dispatcher will
“steal work” from another core, i.e., it will assign morsels on a dif-
ferent socket. On some NUMA systems, not all sockets are directly
connected with each other; here it pays off to steal from closer sock-
ets first. Under normal circumstances, work-stealing from remote
sockets happens very infrequently; nevertheless it is necessary to
avoid idle threads. And the writing into temporary storage will be
done into NUMA local storage areas anyway (that is, a red morsel
turns blue if it was processed by a blue core in the process of steal-
ing work from the core(s) on the red socket).

So far, we have discussed intra-pipeline parallelism. Our par-
allelization scheme can also support bushy parallelism, e.g., the
pipelines “filtering and building the hash table of T ” and “filtering
and building the hash table of S” of our example are independent
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Figure 6: Effect of morsel size on query execution

and could therefore be executed in parallel. However, the useful-
ness of this form of parallelism is limited. The number of indepen-
dent pipelines is usually much smaller than the number of cores,
and the amount of work in each pipeline generally differs. Fur-
thermore, bushy parallelism can decrease performance by reducing
cache locality. Therefore, we currently avoid to execute multiple
pipelines from one query in parallel; in our example, we first exe-
cute pipeline T , and only after T is finished, the job for pipeline S
is added to the list of pipeline jobs.

Besides elasticity, morsel-driven processing also allows for a
simple and elegant implementation of query canceling. A user may
have aborted her query request, an exception happened in a query
(e.g., a numeric overflow), or the system is running out of RAM.
If any of these events happen, the involved query is marked in the
dispatcher. The marker is checked whenever a morsel of that query
is finished, therefore, very soon all worker threads will stop work-
ing on this query. In contrast to forcing the operating system to
kill threads, this approach allows each thread to clean up (e.g., free
allocated memory).

3.3 Morsel Size
In contrast to systems like Vectorwise [9] and IBM’s BLU [31],

which use vectors/strides to pass data between operators, there is no
performance penalty if a morsel does not fit into cache. Morsels are
used to break a large task into small, constant-sized work units to
facilitate work-stealing and preemption. Consequently, the morsel
size is not very critical for performance, it only needs to be large
enough to amortize scheduling overhead while providing good re-
sponse times. To show the effect of morsel size on query per-
formance we measured the performance for the query select
min(a) from R using 64 threads on a Nehalem EX system,
which is described in Section 5. This query is very simple, so it
stresses the work-stealing data structure as much as possible. Fig-
ure 6 shows that the morsel size should be set to the smallest pos-
sible value where the overhead is negligible, in this case to a value
above 10,000. The optimal setting depends on the hardware, but
can easily be determined experimentally.

On many-core systems, any shared data structure, even if lock-
free, can eventually become a bottleneck. In the case of our work-
stealing data structure, however, there are a number of aspects that
prevent it from becoming a scalability problem. First, in our imple-
mentation the total work is initially split between all threads, such
that each thread temporarily owns a local range. Because we cache
line align each range, conflicts at the cache line level are unlikely.
Only when this local range is exhausted, a thread tries to steal work
from another range. Second, if more than one query is executed
concurrently, the pressure on the data structure is further reduced.
Finally, it is always possible to increase the morsel size. This re-
sults in fewer accesses to the work-stealing data structure. In the
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worst case a too large morsel size results in underutilized threads
but does not affect throughput of the system if enough concurrent
queries are being executed.

4. PARALLEL OPERATOR DETAILS
In order to be able to completely parallelize each pipeline, each

operator must be capable to accept tuples in parallel (e.g., by syn-
chronizing shared data structures) and, for operators that start a new
pipeline, to produce tuples in parallel. In this section we discuss the
implementation of the most important parallel operators.

4.1 Hash Join
As discussed in Section 2 and shown in Figure 3, the hash table

construction of our hash join consists of two phases. In the first
phase, the build input tuples are materialized into a thread-local
storage area2; this requires no synchronization. Once all input tu-
ples have been consumed that way, an empty hash table is created
with the perfect size, because the input size is now known pre-
cisely. This is much more efficient than dynamically growing hash
tables, which incur a high overhead in a parallel setting. In the sec-
ond phase of the parallel build phase each thread scans its storage
area and inserts pointers to its tuples using the atomic compare-
and-swap instruction. The details are explained in Section 4.2.

Outer join is a minor variation of the described algorithm. In
each tuple a marker is additionally allocated that indicates if this
tuple had a match. In the probe phase the marker is set indicating
that a match occurred. Before setting the marker it is advantageous
to first check that the marker is not yet set, to avoid unnecessary
contention. Semi and anti joins are implemented similarly.

Using a number of single-operation benchmarks, Balkesen et al.
showed that a highly-optimized radix join can achieve higher per-
formance than a single-table join [5]. However, in comparison with
radix join our single-table hash join

• is fully pipelined for the larger input relation, thus uses less
space as the probe input can be processed in place,
• is a “good team player” meaning that multiple small (dimen-

sion) tables can be joined as a team by a probe pipeline of
the large (fact) table through all these dimension hash tables,
• is very efficient if the two input cardinalities differ strongly,

as is very often the case in practice,
• can benefit from skewed key distributions3 [7],
• is insensitive to tuple size, and
• has no hardware-specific parameters.

Because of these practical advantages, a single-table hash join is
often preferable to radix join in complex query processing. For ex-
ample, in the TPC-H benchmark, 97.4% of all joined tuples arrive
at the probe side, and therefore the hash table often fits into cache.
This effect is even more pronounced with the Star Schema Bench-
mark where 99.5% of the joined tuples arrive at the probe side.
Therefore, we concentrated on a single-table hash join which has
the advantage of having no hardware-specific parameters and not
relying on query optimizer estimates while providing very good (if
the table fits into cache) or at least decent (if the table is larger than
cache) performance. We left the radix join implementation, which
is beneficial in some scenarios due to higher locality, for future en-
hancement of our query engine.
2We also reserve space for a next pointer within each tuple for han-
dling hash collisions.
3One example that occurs in TPC-H is positional skew, i.e., in a
1:n join all join partners occur in close proximity which improves
cache locality.
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1 insert(entry) {
2 // determine slot in hash table
3 slot = entry->hash >> hashTableShift
4 do {
5 old = hashTable[slot]
6 // set next to old entry without tag
7 entry->next = removeTag(old)
8 // add old and new tag
9 new = entry | (old&tagMask) | tag(entry->hash)

10 // try to set new value, repeat on failure
11 } while (!CAS(hashTable[slot], old, new))
12 }

Figure 7: Lock-free insertion into tagged hash table

4.2 Lock-Free Tagged Hash Table
The hash table that we use for the hash join operator has an

early-filtering optimization, which improves performance of selec-
tive joins, which are quite common. The key idea is to tag a hash
bucket list with a small filter into which all elements of that partic-
ular list are “hashed” to set their 1-bit. For selective probes, i.e.,
probes that would not find a match by traversing the list, the filter
usually reduces the number of cache misses to 1 by skipping the
list traversal after checking the tag. As shown in Figure 7 (top), we
encode a tag directly into 16 bits of each pointer in the hash table.
This saves space and, more importantly, allows to update both the
pointer and the tag using a single atomic compare-and-swap oper-
ation.

For low-cost synchronization we exploit the fact that in a join the
hash table is insert-only and lookups occur only after all inserts are
completed. Figure 7 (bottom) shows the pseudo code for inserting a
new entry into the hash table. In line 11, the pointer to the new ele-
ment (e.g, “f” in the picture) is set using compare-and-swap (CAS).
This pointer is augmented by the new tag, which is computed from
the old and the new tag (line 9). If the CAS failed (because another
insert occurred simultaneously), the process is repeated.

Our tagging technique has a number of advantages in compari-
son to Bloom filters, which can be used similarly and are, for ex-
ample, used in Vectorwise [8], SQL Server [21], and BLU [31].
First, a Bloom filter is an additional data structure that incurs mul-
tiple reads. And for large tables, the Bloom filter may not fit into
cache (or only relatively slow last-level cache), as the Bloom fil-
ter size must be proportional to the hash table size to be effective.
Therefore, the overhead can be quite high, although Bloom filters
can certainly be a very good optimization due to their small size.
In our approach no unnecessary memory accesses are performed,
only a small number of cheap bitwise operations. Therefore, hash
tagging has very low overhead and can always be used, without re-
lying on the query optimizer to estimate selectivities. Besides join,
tagging is also very beneficial during aggregation when most keys
are unique.

The hash table array only stores pointers, and not the tuples
themselves, i.e., we do not use open addressing. There are a num-
ber of reasons for this: Since the tuples are usually much larger than
pointers, the hash table can be sized quite generously to at least
twice the size of the input. This reduces the number of collisions
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without wasting too much space. Furthermore, chaining allows for
tuples of variable size, which is not possible with open address-
ing. Finally, due to our filter, probe misses are in fact faster with
chaining than with open addressing.

We use large virtual memory pages (2MB) both for the hash ta-
ble and the tuple storage areas. This has several positive effects:
The number of TLB misses is reduced, the page table is guaranteed
to fit into L1 cache, and scalability problems from too many kernel
page faults during the build phase are avoided. We allocate the hash
table using the Unix mmap system call, if available. Modern oper-
ating systems do not eagerly allocate the memory immediately, but
only when a particular page is first written to. This has two posi-
tive effects. First, there is no need to manually initialize the hash
table to zero in an additional phase. Second, the table is adaptively
distributed over the NUMA nodes, because the pages will be lo-
cated on the same NUMA node as the thread that has first written
to that page. If many threads build the hash table, it will be pseudo-
randomly interleaved over all nodes. In case only threads from
a single NUMA node construct the hash table, it will be located
on that node – which is exactly as desired. Thus, relying on the
operating system automatically takes into consideration that often
multiple independent queries are being executed concurrently.

4.3 NUMA-Aware Table Partitioning
In order to implement NUMA-local table scans, relations have

to be distributed over the memory nodes. The most obvious way
to do this is round-robin assignment. A better alternative is to par-
tition relations using the hash value of some “important” attribute.
The benefit is that in a join between two tables that are both par-
titioned on the join key (e.g., by the primary key of one and by
the foreign key of the other relation), matching tuples usually re-
side on the same socket. A typical example (from TPC-H) would
be to partition orders and lineitem on the orderkey attribute. Note
that this is more a performance hint than a hard partitioning: Work
stealing or data imbalance can still lead to joins between tuples
from different sockets, but most join pairs will come from the same
socket. The result is that there is less cross-socket communication,
because the relations are co-located for this frequent join. This also
affects the hash table array, because the same hash function used
for determining the hash partition is also used for the highest bits
of the hash buckets in a hash join. Except for the choice of the
partitioning key, this scheme is completely transparent, and each
partition contains approximately the same number of tuples due
to the use of hash-based fragmentation. It should be stressed that
this co-location scheme is beneficial but not decisive for the high
performance of morsel-driven execution, as NUMA-locality is, in
either case, guaranteed for table scans, and after the first pipeline
that materializes results NUMA locally.

4.4 Grouping/Aggregation
The performance characteristics of the aggregation operator dif-

fers very much depending on the number of groups (distinct keys).
If there are few groups, aggregation is very fast because all groups
fit into cache. If, however, there are many groups, many cache
misses happen. Contention from parallel accesses can be a prob-
lem in both cases (if the key distribution is skewed). To achieve
good performance and scalability in all these cases, without rely-
ing on query optimizer estimates, we use an approach similar to
IBM BLU’s aggregation [31].

As indicated by Figure 8, our algorithm has two phases. In
the first phase, thread-local pre-aggregation efficiently aggregates
heavy hitters using a thread-local, fixed-sized hash table. When this
small pre-aggregation table becomes full, it is flushed to overflow
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partitions. After all input data has been partitioned, the partitions
are exchanged between the threads.

The second phase consists of each thread scanning a partition
and aggregating it into a thread-local hash table. As there are more
partitions than worker threads, this process is repeated until all par-
titions are finished. Whenever a partition has been fully aggregated,
its tuples are immediately pushed into the following operator before
processing any other partitions. As a result, the aggregated tuples
are likely still in cache and can be processed more efficiently.

Note that the aggregation operator is fundamentally different
from join in that the results are only produced after all the input
has been read. Since pipelining is not possible anyway, we use
partitioning – not a single hash table as in our join operator.

4.5 Sorting
In main memory, hash-based algorithms are usually faster than

sorting [4]. Therefore, we currently do not use sort-based join
or aggregation, and only sort to implement the order by or top-k
clause. In our parallel sort operator each thread first materializes
and sorts its input locally and in place. In the case of top-k queries,
each thread directly maintains a heap of k tuples.

After local sort, the parallel merge phase begins, as shown in Fig-
ure 9. The difficulty lies in computing separators, so that merges are
independent and can be executed in parallel without synchroniza-
tion. To do this, each thread first computes local separators by pick-
ing equidistant keys from its sorted run. Then, to handle skewed
distribution and similar to the median-of-medians algorithm, the lo-
cal separators of all threads are combined, sorted, and the eventual,
global separator keys are computed. After determining the global
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separator keys, binary (or interpolation) search finds the indexes of
them in the data arrays. Using these indexes, the exact layout of the
output array can be computed. Finally, the runs can be merged into
the output array without any synchronization.

5. EVALUATION
We integrated our parallel query evaluation framework into HyPer,

a main-memory column database system that supports SQL-92 and
has very good single-threaded performance, but, so far, did not use
intra-query parallelism. In this evaluation we focus on ad hoc de-
cision support queries, and, except for declaring primary keys, do
not enable any additional index structures. Therefore, our results
mainly measure the performance and scalability of the table scan,
aggregation, and join (including outer, semi, anti join) operators.
HyPer supports both row and column-wise storage; we used the
column format in all experiments.

5.1 Experimental Setup
We used two different hardware platforms – both running Linux.

Unless indicated otherwise we use a 4-socket Nehalem EX (Intel
Xeon X7560 at 2.3GHz). Additionally, some experiments are per-
formed on a 4-socket Sandy Bridge EP (Intel Xeon E5-4650L at
2.6GHz-3.1GHz). Such systems are particularly suitable for main-
memory database systems, as they support terabytes of RAM at
reasonable cost. Although both systems have 32 cores, 64 hard-
ware threads, and almost the same amount of cache, their NUMA
topology is quite different. As Figure 10 shows, each of the Sandy
Bridge CPUs has twice the theoretical per-node memory bandwidth
but is only connected to two other sockets. Consequently, some
memory accesses (e.g., from socket 0 to socket 2) require two hops
instead of one; this increases latency and reduces memory band-
width because of cross traffic [23]. Note that the upcoming 4-
socket Ivy Bridge platform will come in two versions, Ivy Bridge
EX which is fully connected like Nehalem EX, and Ivy Bridge EP
with only a single interconnect per node like Sandy Bridge EP.

As our main competitor we chose the official single-server
TPC-H leader Vectorwise. We also measured the performance of
the open source row store PostgreSQL and a column store that is
integrated into one of the major commercial database systems. On
TPC-H, in comparison with HyPer, PostgreSQL was slower by a
factor of 30 on average, the commercial column store by a factor of
10. We therefore concentrate on Vectorwise (version 2.5) in further
experiments, as it was much faster than the other systems.

In this evaluation we used a classical ad-hoc TPC-H situation.
This means that no hand-tuning of physical storage was used, as
this way the plans used are similar (hash joins everywhere). The
Vectorwise results from the TPC web site include this additional
tuning, mainly clustered indexes, which allows to execute some
of the larger joins with merge-join algorithms. Additionally, these
indexes allow the query optimizer to propagate range restrictions
from one join side to the other [8], which greatly improves perfor-
mance for a small number of queries, but does not affect the query
processing itself very much. This tuning also does not improve
the scalability of query execution; on average the speedup is below
10× both with and without tuning. For completeness, we also pro-
vide results for Vectorwise on Nehalem EX with the settings from
the TPC-H full disclosure report:

system geo. mean sum scal.
HyPer 0.45s 15.3s 28.1×
Vectorwise 2.84s 93.4s 9.3×
Vectorwise, full-disclosure settings 1.19s 41.2s 8.4×

In HyPer the data can be updated cheaply in-place. The two
TPC-H refresh streams on scale factor 100 execute in less than 1
second. This is in contrast to heavily read-optimized systems (e.g.,
[10]), where updates are expensive due to heavy indexing and re-
ordering. Our system transparently distributes the input relations
over all available NUMA sockets by partitioning each relation us-
ing the first attribute of the primary key into 64 partitions. The
execution times include memory allocation and deallocation (from
the operating system) for intermediate results, hash tables, etc.

5.2 TPC-H
Figure 11 compares the scalability of HyPer with Vectorwise on

the Nehalem system; both DBMSs are normalized by the single-
threaded execution time of HyPer. Note that up to 32 threads,
“real” cores are used, the rest are “HyperThreads” (simultaneous
multithreading). For most queries, HyPer reaches a speedup close
to 30. In some cases a speedup close to or above 40 is reached due
to simultaneous multithreading. Although Vectorwise has similar
single-threaded performance as HyPer, its overall performance is
severely limited by its low speedup, which is often less than 10.
One problem is load balancing: in the – trivially parallelizable –
scan-only query 6 the slowest thread often finishes work 50% be-
fore the last. While in real-world scenarios it is usually data skew
that challenges load balancing, this is not the case in the fully uni-
form TPC-H. These issues are related to the use of the Volcano
model for parallelizing queries in Vectorwise [3]. This approach,
which is commonly followed (e.g., in Oracle and SQL Server), as
it allows to implement parallelism without affecting existing query
operators, bakes the parallelism into the plan at planning time by
instantiating a set of query plans on separate plans and connecting
then using “exchange” operators [12]. We point out that fixed work
division combined with lack of NUMA-awareness can lead to sig-
nificant performance differences between threads (Vectorwise up to
version 3 is not NUMA-aware, as confirmed by our experiments in
Section 5.3).

Figure 11 also shows scalability results where we disabled some
important features of our query engine. Performance is signifi-
cantly lower when we disable explicit NUMA-awareness and rely
on the operating system instead (cf. “HyPer (not NUMA aware)”).
A further performance penalty can be observed, if we additionally
disable adaptive morsel-wise processing and the performance en-
hancements introduced in this paper like hash tagging. This gives
an impression of the effects of the individual techniques. But note
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HyPer [%] Vectorwise [%]
TPC-H time scal. rd. wr. remote time scal. rd. wr. remote

# [s] [×] [GB/s] QPI [s] [×] [GB/s] QPI
1 0.28 32.4 82.6 0.2 1 40 1.13 30.2 12.5 0.5 74 7
2 0.08 22.3 25.1 0.5 15 17 0.63 4.6 8.7 3.6 55 6
3 0.66 24.7 48.1 4.4 25 34 3.83 7.3 13.5 4.6 76 9
4 0.38 21.6 45.8 2.5 15 32 2.73 9.1 17.5 6.5 68 11
5 0.97 21.3 36.8 5.0 29 30 4.52 7.0 27.8 13.1 80 24
6 0.17 27.5 80.0 0.1 4 43 0.48 17.8 21.5 0.5 75 10
7 0.53 32.4 43.2 4.2 39 38 3.75 8.1 19.5 7.9 70 14
8 0.35 31.2 34.9 2.4 15 24 4.46 7.7 10.9 6.7 39 7
9 2.14 32.0 34.3 5.5 48 32 11.42 7.9 18.4 7.7 63 10

10 0.60 20.0 26.7 5.2 37 24 6.46 5.7 12.1 5.7 55 10
11 0.09 37.1 21.8 2.5 25 16 0.67 3.9 6.0 2.1 57 3
12 0.22 42.0 64.5 1.7 5 34 6.65 6.9 12.3 4.7 61 9
13 1.95 40.0 21.8 10.3 54 25 6.23 11.4 46.6 13.3 74 37
14 0.19 24.8 43.0 6.6 29 34 2.42 7.3 13.7 4.7 60 8
15 0.44 19.8 23.5 3.5 34 21 1.63 7.2 16.8 6.0 62 10
16 0.78 17.3 14.3 2.7 62 16 1.64 8.8 24.9 8.4 53 12
17 0.44 30.5 19.1 0.5 13 13 0.84 15.0 16.2 2.9 69 7
18 2.78 24.0 24.5 12.5 40 25 14.94 6.5 26.3 8.7 66 13
19 0.88 29.5 42.5 3.9 17 27 2.87 8.8 7.4 1.4 79 5
20 0.18 33.4 45.1 0.9 5 23 1.94 9.2 12.6 1.2 74 6
21 0.91 28.0 40.7 4.1 16 29 12.00 9.1 18.2 6.1 67 9
22 0.30 25.7 35.5 1.3 75 38 3.14 4.3 7.0 2.4 66 4

Table 1: TPC-H (scale factor 100) statistics on Nehalem EX

that we still use highly tuned operator implementations that try to
maximize locality.

Table 1 and Table 2 allow to compare the TPC-H performance of
the Nehalem and Sandy Bridge systems. The overall performance
is similar on both systems, because the missing interconnect links
on Sandy Bridge EP, which result in slightly lower scalability, are
compensated by its higher clock rate. Notice that all queries com-
plete within 3 seconds – on a 100GB data set using ad hoc hash
joins and without using any index structures.

5.3 NUMA Awareness
Table 1 shows memory bandwidth and QPI statistics4 for each

of the 22 TPC-H queries. Query 1, which aggregates the largest
relation, for example, reads 82.6GB/s getting close to the theoreti-
cal bandwidth maximum of 100GB/s. The “remote” column in the
table shows the percentage of data being accessed though the in-
terconnects (remotely), and therefore measures the locality of each
query. Because of NUMA-aware processing, most data is accessed
locally, which results in lower latency and higher bandwidth. From
the “QPI” column5, which shows the saturation of the most heavily
used QPI link, one can conclude that the bandwidth of the QPI links
is sufficient on this system. The table also shows that Vectorwise is
not NUMA optimized: most queries have high percentages of re-
motely accessed memory. For instance, the 75% remote accesses in
query 1 shows that its buffer manager is not NUMA-aware. How-
ever, the QPI links are utilized fairly evenly, as the database rela-
tions seem to be spread over all 4 NUMA nodes. This prevents a
single memory controller and the QPI links to it from becoming the
bottleneck.

Most experiments so far used our NUMA-aware storage lay-
out, NUMA-local scans, the NUMA-aware partitioning, which re-
duces remote accesses in joins, and the fact that all operators try
to keep data NUMA-local whenever possible. To show the overall

4These statistics were obtained using the Open Source tool
“Intel Performance Counter Monitor” (www.intel.com/
software/pcm). The “rd.” (read), “wr.” (write), and “remote”
values are aggregated over all sockets. The “QPI” column shows
the utilization of the most-utilized QPI link (though with NUMA-
awareness the utilization of the links is very similar). Unfortu-
nately, these statistics are not exposed on Sandy Bridge EP.
5The QPI links are used both for sending the actual data, as well
as for broadcasting cache coherency requests, which is unavoid-
able and happens even for local accesses. Query 1, for example,
reads 82.6GB/s, 99% of it locally, but still uses 40% of the QPI
link bandwidth.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
time [s] 0.21 0.10 0.63 0.30 0.84 0.14 0.56 0.29 2.44 0.61 0.10 0.33 2.32 0.33 0.33 0.81 0.40 1.66 0.68 0.18 0.74 0.47
scal. [×] 39.4 17.8 18.6 26.9 28.0 42.8 25.3 33.3 21.5 21.0 27.4 41.8 16.5 15.6 20.5 11.0 34.0 29.1 29.6 33.7 26.4 8.4

Table 2: TPC-H (scale factor 100) performance on Sandy Bridge EP
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Figure 12: Intra- vs. inter-query parallelism with 64 threads

performance benefit of NUMA-awareness we also experimented
with plausible alternatives: “OS default”, where the placement is
performed by the operating system6, and “interleaved”, where all
memory is allocated round robin over all nodes. We report the geo-
metric mean and maximum speedup of our NUMA-aware approach
on TPC-H:

Nehalem EX Sandy Bridge EP
geo. mean max geo. mean max

OS default 1.57× 4.95× 2.40× 5.81×
interleaved 1.07× 1.24× 1.58× 5.01×

Clearly, the default placement of the operating system is sub-
optimal, as the memory controller of one NUMA node and the
QPI links to it become the bottleneck. These results also show that
on Nehalem EX, simply interleaving the memory is a reasonable,
though not optimal strategy, whereas on Sandy Bridge EP NUMA-
awareness is much more important for good performance. The rea-
son is that these two systems are quite different in their NUMA
behavior, as can be seen from a micro benchmark that compares
NUMA-local accesses with a random mix of 25% local and 75%
remote (including 25% two-hop accesses on Sandy Bridge EP) ac-
cesses:

bandwidth [GB/s] latency [ns]
local mix local mix

Nehalem EX 93 60 161 186
Sandy Bridge EP 121 41 101 257

On Sandy Bridge EP only a small fraction of the theoretical
memory bandwidth can be reached unless most accesses are local,
and the latency it 2.5× higher than for local accesses. On Nehalem
EX, in contrast, these effects are much smaller, which explains why
the positive effect of NUMA-awareness is smaller on this system.
The importance of NUMA-awareness clearly depends on the speed
and number of the cross-socket interconnects.

5.4 Elasticity
To demonstrate the elasticity of our approach, we performed an

experiment where we varied the number parallel query streams.
The 64 available hardware threads are distributed uniformly over
the streams, and each stream executes random permutations of the
TPC-H queries. Figure 12 shows that the throughput stays high

6In practice, the database itself is located on a single NUMA node,
because the data is read from disk by a single thread. Other alloca-
tions are local to the thread that first wrote to that memory. Thus,
hash tables are distributed randomly over the nodes.

worker 0

worker 1

worker 2

worker 3

�meq14 startq13 start q14 finish

Figure 13: Illustration of morsel-wise processing and elasticity

SSB time scal. read write remote QPI
# [s] [×] [GB/s] [GB/s] [%] [%]

1.1 0.10 33.0 35.8 0.4 18 29
1.2 0.04 41.7 85.6 0.1 1 44
1.3 0.04 42.6 85.6 0.1 1 44
2.1 0.11 44.2 25.6 0.7 13 17
2.2 0.15 45.1 37.2 0.1 2 19
2.3 0.06 36.3 43.8 0.1 3 25
3.1 0.29 30.7 24.8 1.0 37 21
3.2 0.09 38.3 37.3 0.4 7 22
3.3 0.06 40.7 51.0 0.1 2 27
3.4 0.06 40.5 51.9 0.1 2 28
4.1 0.26 36.5 43.4 0.3 34 34
4.2 0.23 35.1 43.3 0.3 28 33
4.3 0.12 44.2 39.1 0.3 5 22

Table 3: Star Schema Benchmark (scale 50) on Nehalem EX

even if few streams (but many cores per stream) are used. This al-
lows to minimize response time for high priority queries without
sacrificing too much throughput.

Figure 13 illustrates morsel-wise processing by showing an an-
notated execution trace from our parallel profiler. Each color repre-
sents one pipeline stage and each block is one morsel. For graphical
reasons we used only 4 threads in this experiment. We started by
executing TPC-H query 13, which received 4 threads; after some
time, TPC-H query 14 was started. As the trace shows, once the
current morsels of worker thread 2 and 3 are finished, these threads
switch to query 14 until it is finished, and finally continue working
on query 13. This experiment shows that it is possible to dynam-
ically reassign worker threads to other queries, i.e., that our paral-
lelization scheme is fully elastic.

As mentioned in the introduction, the Volcano approach typically
assigns work to threads statically. To compare with this approach,
we emulated it in our morsel-driven scheme by splitting the work
into as many chunks as there are threads, i.e., we set the morsel size
to n/t, where n is the input size and t is the number of threads. As
long as we only execute a single TPC-H query at a time, this change
alone does not significantly decrease performance, because the in-
put data is uniformly distributed on this workload. However, if we
add some interference from other processes, this picture changes.
For example, when we ran the TPC-H queries while another, un-
related single-threaded process occupied one core, query perfor-
mance dropped by 36.8% with static approach, but only 4.7% with
dynamic morsel assignment.

5.5 Star Schema Benchmark
Besides TPC-H, we also measured the performance and scalabil-

ity of our system on the Star Schema Benchmark (SSB) [26], which
mimics data warehousing scenarios. Table 3 shows that our paral-
lelization framework works very well on this workload, achieving
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a speedup of over 40 for most queries. The scalability is higher
than on TPC-H, because TPC-H is a much more complex and chal-
lenging workload. TPC-H contains a very diverse set of queries:
queries that only scan a single table, queries with complex joins,
queries with simple and with complex aggregations, etc. It is quite
challenging to obtain good performance and scalability on such a
workload, as all operators must be scalable and capable of effi-
ciently handling very diverse input distributions. All SSB queries,
in contrast, join a large fact table with multiple smaller dimension
tables where the pipelining capabilities of our hash join algorithm
are very beneficial. Most of the data comes from the large fact
table, which can be read NUMA-locally (cf. column “remote” in
Figure 3), the hash tables of the dimensions are much smaller than
the fact table, and the aggregation is quite cheap in comparison with
the rest of the query.

6. RELATED WORK
This paper is related to three distinct lines of work: papers that

focus on multi-core join or aggregation processing in isolation, full
systems descriptions, and parallel execution frameworks, most no-
tably Volcano.

The radix hash join was originally designed to increase local-
ity [24]. Kim et al. postulated it for parallel processing based on re-
peatedly partitioning the input relations [18]. Blanas et al. [7] were
the first to compare the radix join with a simple, single global hash
table join. Balkesen et al. [5, 4] comprehensively investigated hash-
and sort-based join algorithms. Ye et al. evaluated parallel aggrega-
tion algorithms on multi-core CPUs [33]. Polychroniou and Ross
designed an aggregation algorithm to efficiently aggregate heavy
hitters (frequent items) [27].

A number of papers specifically focus on NUMA. In one of the
first paper that pinpoints the relevance of NUMA-locality, Teubner
and Müller [32] presented a NUMA-aware window-based stream
join. In another early NUMA paper, Albutiu et al. designed a
NUMA-aware parallel sort merge join [1]. Li et al. refined this al-
gorithm by explicitly scheduling the shuffling of the sorted runs in
order to avoid cross traffic in the NUMA interconnection network
[23]. However, despite its locality-preserving nature this algorithm
turned out to be less efficient than hash joins due to the high cost of
sorting [4, 20]. Lang et al. [20] devised a low synchronization over-
head NUMA-aware hash join, which is similar to our algorithm. It
relies on a single latch-free hash table interleaved across all NUMA
nodes into which all threads insert the build input.

Unfortunately, the conclusiveness of these single-operator stud-
ies for full-fledged query engines is limited because the micro-
benchmarks used for testing usually have single simple keys (some-
times even containing hash values), and typically use very small
payloads (one column only). Furthermore, each operator was ana-
lyzed in isolation, which ignores how data is passed between opera-
tors and therefore, for example, ignores the different pipelining ca-
pabilities of the algorithms. In our morsel-driven database system,
we have concentrated on (non-materializing) pipelined hash joins,
since in practice, often one of the join sides is much larger than the
others. Therefore, teams of pipelined joins are often possible and
effective. Further, for certain often-traversed large joins (such as
orders-lineitem in TPC-H), pre-partitioned data storage can achieve
NUMA locality on large joins without need for materialization.

The new IBM BLU query engine [31] and Microsoft’s Apollo
project [22] are two prominent commercial projects to exploit mod-
ern multi-core servers for parallel query processing. IBM BLU pro-
cesses data in “Vectorwise” fashion, a so-called stride at a time. In
this respect there is some resemblance to our morsel-wise process-
ing technique. However, there was no indication that the strides

are maintained NUMA-locally across processing steps/pipelines.
In addition, the full elasticity w.r.t. the degree of parallelism that
we propose was not covered. Very similar to Volcano-style paral-
lelization, in Oracle the individual operators are largely unaware of
parallelism. [6] addresses some problems of this model, in partic-
ular reliance on query optimizer estimates, by adaptively changing
data distribution decisions during query execution. In an experi-
mental study Kiefer et al. [17] showed that NUMA-awareness can
improve database performance considerably. Porobic et al. inves-
tigated [29] and improved NUMA-placement in OLTP systems by
partitioning the data and internal data structures in a NUMA-aware
way [28]. Heimel et al. presented a hardware-oblivious approach
to parallelization that allows operators to be compiled to different
hardware platforms like CPUs or GPUs [15]. In this paper we fo-
cus on classical, query-centric parallelization, i.e., parallelizing in-
dividual queries in isolation. Another fruitful approach is to ex-
ploit common work from multiple queries. This operator-centric
approach is used by QPipe [14] and SharedDB [11].

The seminal Volcano model [12] forms the basis of most cur-
rent query evaluation engines enabling multi-core as well as dis-
tributed [13] parallelism. Note that Volcano in a non-parallel
context is also associated with an interpreted iterator execution
paradigm where results are pulled upwards through an operator
tree, by calling the next() method on each operator, which deliv-
ers the next tuple. Such a tuple-at-a-time execution model, while
elegant in its implementation, has been shown to introduce sig-
nificant interpretation overhead [25]. With the advent of high-
performance analytical query engines, systems have been moving
from this model towards vector or batch-oriented execution, where
each next() method works on hundreds or thousands of tuples. This
vector-wise execution model appears in Vectorwise [3], but also in
the batch-mode execution offered by ColumnStore Index tables in
SQL Server [22] (the Apollo project), as well as in stride-at-a-time
execution in IBM’s BLU engine for DB2 [31]. In HyPer we rely on
a compiled query evaluation approach as first postulated by Krikel-
las et al. [19] and later refined by Neumann [25] to obtain the same,
or even higher raw execution performance.

As far as parallelism is concerned, Volcano differentiates be-
tween vertical parallelism, where essentially the pipeline between
two operators is transformed into an asynchronous producer/con-
sumer model, and horizontal parallelism, where one operator is
parallelized by partitioning the input data and have each parallel
thread work on one of the partitions. Most systems have imple-
mented horizontal parallelism, since vertical and bushy parallelism
are less useful due to their unbalanced nature, as we observed ear-
lier. Examples of such horizontal Volcano parallelism are found in
e.g., Microsoft SQL Server and Vectorwise [3].

While there may be (undisclosed) implementation differences
between these systems, morsel-driven execution differentiates it-
self by making parallel query scheduling fine-grained, adaptive at
run-time and NUMA-aware. The parallel query engine described
here relies on chunking of the input data into fine-grained morsels.
A morsel resides completely in a single NUMA partition. The dis-
patcher assigns the processing of a morsel to a thread running on a
core of the same socket in order to preserve NUMA locality. The
morsel-wise processing also facilitates the full elasticity, meaning
that the degree of parallelism can be adjusted at any time, e.g., at
mid-query processing. As soon as a morsel is finished, the thread
can be assigned a morsel belonging to the same query pipeline or
be assigned a different task of, e.g., another more important query.
This way the dispatcher controls parallelism explicitly as opposed
to the recently proposed approach by Psaroudakis et al. [30] where
the number of threads is changed based on the core utilization.
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7. CONCLUSIONS AND FUTURE WORK
We presented the morsel-driven query evaluation framework for

parallel query processing. It is targeted at solving the major bot-
tlenecks for analytical query performance in the many-core age,
which are load-balancing, thread synchronization, memory access
locality, and resource elasticity. We demonstrated the good scala-
bility of this framework in HyPer on the full TPC-H and SSB query
workloads. It is important to highlight, that at the time of this writ-
ing, the presented results are by far the fastest achieved (barring
the hand-written queries on a fully indexed and customized stor-
age scheme [10]7) on a single-server architecture. This is not be-
ing noted to claim a performance record – these are academic and
non-audited results – but rather to underline the effectiveness of the
morsel-driven framework in achieving scalability. In particular, one
needs to keep in mind that it is much easier to provide linear scal-
ability on computationally slow systems than it is on fast systems
such as HyPer. The comparison with the state-of-the-art Vectorwise
system, which uses a classical implementation of Volcano-style
parallelism [3], shows that beyond 8 cores, in many-core territory,
the morsel-driven framework speeds ahead; and we believe that its
principles in fine-grained scheduling, full operator parallelization,
low-overhead synchronization and NUMA-aware scheduling can
be used to improve the many-core scaling in other systems as well.

Besides scalability, the fully elastic morsel-driven parallelism
allows for intelligent priority-based scheduling of dynamic query
workloads. The design and evaluation of such a scheduler, which
takes quality-of-service constraints into account, was beyond the
scope of this paper and will be addressed in forthcoming work.

Our system performs well on a number of very different hard-
ware platforms despite having no hardware-specific parameters (we
tested with single-socket systems and NUMA systems with differ-
ent topologies). Nevertheless, it would be interesting to investigate
algorithms that take knowledge of the underlying hardware into ac-
count. There is certainly room for further optimizations, specifi-
cally those that further reduce remote NUMA access, as shown by
the slower results on the Sandy Bridge EP platform with its par-
tially connected NUMA topology when compared with the fully-
connected Nehalem EX.
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