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Abstract

In this paper we describe the design and implementation of OPT++, a tool for Extensible Database

Query Optimization that uses an object-oriented design to simplify the task of implementing, extending,

and modifying an optimizer. Building an optimizer using OPT++ makes it easy to extend the query

algebra (to add new query algebra operators and physical implementation algorithms to the system),

easy to change the search space, and also to change the search strategy. Furthermore, OPT++ comes

equipped with a number of search strategies that are available for use by an OI. OPT++ considerably

simpli�es both, the task of implementing an optimizer for a new database system, and the task of

evaluating alternative optimization techniques and strategies to decide what techniques are best suited

for that database system. We present the results of a series of performance studies. These results validate

our design and show that, in spite of its exibility, OPT++ can be used to build e�cient optimizers.

1 Introduction

Although constructing a high-performance database engine has become almost straightforward, building

query optimizers remains a \black art". Writing an optimizer, debugging it, and evaluating di�erent

optimization strategies remains a di�cult and time-consuming task. Consequently, the state of com-

mercial optimizers is frequently not very good, in spite of the fact that query optimization has been a

subject of research for more than 15 years. Furthermore, existing commercial optimizers are often so

brittle from years of patching that further improvement ranges from di�cult to impossible. While quite

a bit has been published about extensible query optimizers in the research literature, the actual success

of this work is limited. Thus, good tools are still needed to streamline the process of implementing and

evolving query optimizers.

Extensible query optimization frameworks that have been proposed in the research literature have

a number of drawbacks. Optimizers that make it easy to add new query algebra operators/algorithms

often have a �xed search strategy that cannot be changed. On the other hand, optimizers that o�er ex-

tensibility of the search strategy are not very extensible with respect to the query algebra. Furthermore,

there are often no studies of the e�ciency of the resulting optimizers.
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The remainder of this paper describes our attempt to develop an alternative framework for construct-

ing query optimizers. First, it should be easy to add new operators as well as new execution algorithms

for existing operators. Second, the framework should allow the Optimizer{Implementor (OI) to evaluate

various heuristics that can limit the search space explored by the optimizer. The OI should also be able

to explore di�erent search strategies, and, if necessary, to mix multiple strategies in a single optimizer.

Finally, this exibility should be achieved without sacri�cing performance { i.e., an optimizer built in

this extensible framework should not be much worse in its space or time requirements than an equivalent

\custom-made" optimizer.

In order to address the issues of extensibility and maintainability, OPT++ exploits the object-

oriented features of C++. It de�nes a few key abstract classes with virtual methods. These class

de�nitions do not assume any knowledge about the query algebra or the database execution engine. The

search strategy is implemented entirely in terms of these abstract classes. The search strategy invokes

the virtual methods of these abstract classes to perform the search and the cost-based pruning of the

search space.

An optimizer for a speci�c database system can be written by deriving new classes from these abstract

classes. Information about the speci�c query algebra and execution engine for which the optimizer is

built, and the search space of execution plans to be explored, are encoded in the virtual methods of these

derived classes. The C++ inheritance mechanism ensures that the search strategy of the optimizer does

not have to be changed when this is done.

Furthermore, the search strategy itself is a class with virtual methods that can be over-ridden. Thus,

new classes can be derived from this class to implement di�erent search strategies. OPT++ comes

equipped with a number of search strategies that can be directly used by the OI. In addition, the OI

can implement new search strategies by deriving new classes from the provided search strategy classes.

An optimizer built using OPT++ consists of three components: the \Search Strategy" component

determines what strategy is used to explore the search space (e.g., dynamic-programming, randomized,

etc.), the \Search Space" component determines what that search space is (e.g., space of left-deep join

trees, space of bushy join trees, etc.), and the \Algebra" component determines the actual logical and

physical algebra for which the optimizer is written. OPT++ strives for separation of these components

and, to a large extent, provides an architecture in which each of these components can be changed with

minimum impact on the other components.

OPT++ is an easy-to-use, exible and extensible toolkit for building database query optimizers.

OPT++ comes equipped with many of the most common optimization techniques and search strategies,

and can thus relieve theOI of the job of implementing them. Using OPT++, theOI can thus concentrate

on tailoring it to the needs of the speci�c database system. Alternatively, the OPT++ architecture

can be viewed as guidance to optimizer builders on how to structure their optimizer for extensibility.

The modularity and clean program decomposition of the OPT++ architecture not only makes the

whole optimizer easy to implement and understand, but also promotes sharing of code among di�erent

optimization schemes and implementations; leading, in turn, to improved maintainability.

OPT++ can also provide a smooth transition path for systems that already have a System-R style

or rule-based optimizer, but which need to be upgraded. Initially, OPT++ could be used to implement

exactly the same optimization scheme as the existing optimizer, using code from the old optimizer to
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implement the derived classes in the OPT++ based optimizer. Once this OPT++ based optimizer is

working and stable, the OI can slowly start taking advantage of the other features of OPT++. This

could be a more acceptable solution for an OI afraid of replacing a working optimizer with a completely

new optimizer.

Although a number of the ideas incorporated in OPT++ are not new (see Section 4), OPT++ puts

them all together into a clean architecture. It is easy to come up with a design for extensibility, but the

di�culty lies in the details. Deciding upon how much abstraction is good is a di�cult problem. There

is a trade-o� between making the abstract classes very general or very speci�c. Making the abstractions

very general is great for extensibility. Since the abstract classes are very general, they can be extended to

handle almost any kind of optimization algorithm. On the other, the abstractions have to be restrictive

to allow for e�ciency, and code re-use. Speci�cally, if the abstract classes are restrictive, the search

strategy (which has to be written entirely in terms of these abstract classes) has more information

available to it. Hence, it can use this information to implement algorithms and data structures that are

more e�cient than would have been possible without that information. Further, if an abstract class is

too general, most of the code has to be written in the derived classes. Hence, the OI ends up doing a lot

of unnecessary work to implement an optimizer. On the other hand, having restrictive abstract classes

makes the system less extensible and might end up defeating the whole purpose of the \extensible"

architecture. This paper makes a contribution by describing a detailed architecture that is extensible

enough to be able to incorporate most of the major optimization techniques, and at the same time not

sacri�cing e�ciency.

As described in the previous paragraph, the OPT++ architecture represents a compromise between

extensibility and e�ciency. The abstractions in OPT++ were made restrictive for the purposes of e�-

ciency. Consequently, there are some special-purpose non-standard optimization algorithms that cannot

be modelled using the OPT++ abstractions. Thus, the join order enumeration algorithms described

in [GLPK94], [VM96] and [KBZ86] the cannot be easily incorporated into OPT++. While some of the

ideas and data-structures of these algorithms can be incorporated into search strategies implemented

in OPT++, the algorithms in their entirety cannot be incorporated in a reasonably extensible way.

Hence, the use of OPT++ would preclude the use of such special-purpose algorithms. While it might

be possible to build fast and e�cient query optimizers for very speci�c database systems using some

of these algorithms, it is unclear whether these algorithms can be extended to apply to domains other

than the one they were originally intended for. Hence, even though the optimizers built using OPT++

might not be as e�cient as these algorithms, from the point of view of extensibility, we do not see this

as a shortcoming of the OPT++ architecture.

The remainder of this paper is organized as follows. Section 2 describes the design of our optimizer.

Section 3 discusses our experiences using our optimizer framework, illustrating the ease of use as well as

the e�ciency of OPT++. We also compare the performance of various optimization search strategies and

various optimization heuristics in terms of optimization time taken and the improvement in estimated

cost of the optimal plan. These results are also presented in Section 3. Related work is presented in

Section 4. In section 5 we present our conclusions.
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2 OPT++ System Design

Select * from Emp, Dept
where   Emp.dno = Dept.dno
and       Emp.name = "Lee"

Emp

Select
Emp.name = "Lee"

Join
Emp.dno = Dept.dno

Dept
Emp

Emp.name = "Lee"

Emp.dno = Dept.dno

Dept

LoopsJoin

SelectScan

(a) SQL Query (b) Operator Tree (c) Access Plan

Figure 1: Query Representations

2.1 Basic Concepts

We assume that a query can be logically represented as an operator tree. An operator tree is a tree in

which each node represents a logical query algebra operator being applied to its inputs. For example,

Figure 1(a) shows an SQL query and Figure 1(b) shows that query represented as a tree of relational

operators. A given query can be represented by one or more operator trees that are equivalent.

One or more physical execution algorithms can be used in a database for implementing a given query

algebra operator. For instance, the join operator can be implemented using nested-loops or sort-merge

algorithms. Replacing the operators in an operator tree by the algorithms used to implement them gives

rise to a \tree of algorithms" known as an access plan or an execution plan [SAC

+

79]. Figure 1(c) shows

one possible access plan corresponding to the operator tree in Figure 1(b). Each operator tree will, in

general, have a number of corresponding access plans.

QUERY OPTIMIZER 

Search Strategy

Abstract
Classes

Derived Classes

Optimizer
Implementor
writes this
code

OPT++ provides
this code

Runtime Binding
(virtual methods)

Figure 2: Basic System Design

During the course of query optimization, a query optimizer must generate various operator trees that

represent the input query (or parts of it), generate various access plans corresponding to each operator

tree, and compute/estimate various properties of the operator trees and access plans (for example,

cardinality of the output relation, estimated execution cost, etc.). In the rest of this section, we describe

how this is implemented in OPT++ in a query-algebra-independent manner.

As mentioned earlier, a key feature of OPT++ is that a few abstract classes and their virtual methods
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are de�ned a priori and the search strategy is written entirely in terms of these classes. Figure 2 gives

an overview of the OPT++ architecture.

We �rst describe the abstract classes that OPT++ uses to represent operator trees and access

plans and compute their properties. We then describe the abstract classes that it uses to generate and

manipulate di�erent operator trees and their corresponding access plans.

2.2 Representing Operator Trees and Access Plans

In this section, we describe the OPERATOR and ALGORITHM abstract classes. These classes are used to

represent operator trees and access plans, and for computing their properties.

For each abstract class, we describe what the abstract class represents, and the virtual methods

on it. We describe how the search strategy uses that abstract class. To illustrate, we give examples

of actual classes that an OI might derive from these abstract classes to implement a simple relational

query optimizer.

2.2.1 The OPERATOR Class

DB−RELATION

OPERATOR

SELECT JOIN

Figure 3: Operator Class Hierarchy for a Relational Optimizer

The abstract OPERATOR class represents operators in the query algebra. From the OPERATOR class the

OI is expected to derive one class for each operator in the actual query algebra. An instance of one of

these derived operator classes represents the application of the corresponding query language operator.

As an example, the classes that an OI might derive from the OPERATOR class to implement a simple SQL

optimizer are shown in Figure 3

1

. The SELECT and JOIN classes represent the relational select and the

relational join operators respectively. The DB-RELATION operator is explained in the next paragraph. In

this SQL optimizer, an instance of the SELECT operator will represent an application of the relational

select operator to one input relation, and an instance of the JOIN operator will represent an application

of the relational join operator to two input relations.

The inputs of an operator can either be database entities (for example, relations for a relational

database) that already exist in the database, or they can be the result of the application of other

operators. An operator tree can thus be represented as a tree of instances of the operator class (more

accurately, an instance of a class derived from the abstract OPERATOR class).

Dummy operators serve as leaf nodes of the operator tree, representing database entities that already

exist in the database. For example, the relations in the from clause of an SQL query are represented by

1

In all our �gures, classes are represented by ovals and an arrow between classes indicates inheritance.
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the dummy DB-RELATION operator in all our examples.

DB−RELATION DB−RELATION

SELECT

JOIN

Emp.dno = Dept.dno

DeptEmp

Emp.name = "Lee"

Figure 4: An Example Operator Tree

Figure 4 shows an example of an operator tree

2

corresponding to the query shown in Figure 1. The

two instances of the DB-RELATION class represent the two relations in the from clause of the query { Emp

and Dept. The instance of the SELECT class represents a selection on the Emp relation, and the instance

of the JOIN class represents the Dept relation being joined to the result of the selection.

DB−RELATION

RELS: Emp, Dept

Emp.dno = Dept.dno

RELS: Emp

RELS: Emp

PREDS: 

RELS: Dept

PREDS:

−−

−−

DB−RELATION

SELECT

JOIN

Emp.dno = Dept.dno

Dept

Emp

Emp.name = "Lee"

PREDS: Emp.name = "Lee"

PREDS: Emp.name = "Lee"

Operator Instance

TreeDescriptor Instance

Figure 5: An Example Operator Tree with its Tree Descriptors

During the course of optimization, the optimizer needs to compute and keep track of the properties

of the resultant output of an operator tree. For example, a simple relational optimizer needs to estimate

properties such as the cardinality, or the size of the relation resulting from the execution of an operator

tree. Since such information depends upon the query algebra, OPT++ has to rely on the OI to provide

these properties. To do this, the OI is expected to de�ne a TREEDESCRIPTOR class that stores information

about an operator tree. The information stored could be logical algebraic properties (e.g., set of relations

already joined in, predicates applied), estimated properties (e.g., number of tuples in output) or any

other information of interest to the OI.

2

To distinguish classes from class instances, we have used ovals to represent classes and boxes to represent instances in our

�gures. Thus class hierarchies will be drawn using ovals, while operator trees and access plans will be drawn using boxes.
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Every operator instance contains a pointer to an instance of the TREEDESCRIPTOR class, that stores

information about the operator tree rooted at that operator instance. Figure 5 reproduces the operator

tree of Figure 4 showing the TREEDESCRIPTOR instances associated with each operator instance. In this

example, each TREEDESCRIPTOR instance lists the names of the relations that have been joined in and

the predicates applied.

With the TREEDESCRIPTOR class the OI must provide an IsEquivalent method that determines

whether two TREEDESCRIPTOR instances are equivalent. Two TREEDESCRIPTOR instances should be equiv-

alent if the corresponding operator trees are algebraically equivalent. The TREEDESCRIPTOR must also

have an IsCompleteQuery method that determines whether the corresponding operator tree represents

the whole query or just a sub-computation.

The OPERATOR class includes a virtual method called DERIVETREEDESCRIPTOR. This method is invoked

on an operator instance to construct the TREEDESCRIPTOR object for the operator tree rooted at that

operator instance, given the TREEDESCRIPTOR instances of its input operators.

The OPERATOR class has another virtual method called CANBEAPPLIED that determines whether that

operator can be legally applied to given inputs according to the rules of the query algebra.

Given an operator tree, the search strategy can compute the TREEDESCRIPTOR for it by invoking the

DERIVETREEDESCRIPTOR method on each of the operator instances in the tree. Note that the search

strategy just invokes the methods on the abstract OPERATOR class and does not require any information

about the actual class of each instance. Through runtime binding, the proper DERIVETREEDESCRIP-

TOR method is invoked and the correct TREEDESCRIPTOR computed. Thus the search strategy (which is

implemented in terms of the abstract OPERATOR class) can compute the correct TREEDESCRIPTORs for

an operator tree even though it has no knowledge of the actual operators in the query algebra. The

IsCompleteQuery, IsEquivalent and the CANBEAPPLIEDmethods can be used to analyze the generated

operator trees.

2.2.2 The ALGORITHM Class

Representation of access plans is very similar to that of operator trees. The ALGORITHM abstract class is

used to represent physical execution algorithms used to implement operators in the database system. The

OI is expected to derive one class from the ALGORITHM class to represent each of the actual algorithms

in the system.

ALGORITHM

HEAP−FILE INDEX SELECTSCAN INDEXSELECT MERGEJOIN SORT
NESTED−
LOOPSJOIN

Figure 6: Algorithm Class Hierarchy for a Relational Optimizer

An access plan can thus be represented as a tree of instances of algorithm classes. As a special

case, we note that leaf nodes of access plans are represented by dummy \algorithms" representing access
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Emp.dno = Dept.dno

Emp.name = "Lee"

INDEX

on Emp.name

HEAP−FILE

Dept

INDEXSELECT

NESTED−LOOPS−JOIN

Figure 7: An Example Access Plan

paths that exist on the database entities. For example, a relation may be accessed either as a sequential

(heap) �le or via an index. We use the HEAPFILE and INDEX dummy algorithm classes to represent these

cases in our examples. Note that these algorithm classes are associated with the dummy DB-RELATION

operator class de�ned in the previous section.

Figure 6 shows the algorithm classes that were derived from the abstract ALGORITHM class for our

simple SQL optimizer. The HEAPFILE and INDEX algorithms are dummy algorithms for the DB-RELA-

TION operator as explained earlier. The SELECTSCAN algorithm used to implement the SELECT operator

represents a sequential scan of a HEAPFILE that outputs tuples satisfying a select-predicate. The IND-

EXSELECT uses a B-Tree INDEX to implement the same operation. NESTEDLOOPSJOIN and MERGEJOIN are

algorithms to implement the JOIN operator. The SORT algorithm is not associated with any operator,

but is used to enforce a sort-order among the tuples of a relation.

Figure 7 shows an example access plan. (This is an access plan corresponding to the operator tree

in Figure 4.) An INDEX on Emp.name is used by the INDEXSELECT algorithm to perform the selection on

`Emp.name = "Lee"'. The NESTEDLOOPSJOIN algorithm takes the result of the INDEXSELECT and joins

it with the Dept relation using the HEAPFILE access method (implying a sequential scan).

Emp.dno = Dept.dno

COST: 0 COST: 0

Emp.name = "Lee"

HEAP−FILE

SORT−ORDER: −−

INDEX

on Emp.name

SORT−ORDER: Emp.name

SORT−ORDER: Emp.name

COST: 10

COST: 60

SORT−ORDER: −−INDEXSELECT

Dept

NESTED−LOOPS−JOIN

Algorithm Instance

PlanDescriptor Instance

Figure 8: An Example Access Plan with its Plan Descriptors
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Similar to the TREEDESCRIPTOR class in the case of operator trees, OPT++ employs a PLANDESCRI-

PTOR class to store the physical properties associated with an access plan. For example, for a relational

optimizer the PLANDESCRIPTOR class might store the sort-order of the result. Figure 8 reproduces the

access plan of Figure 7 showing the PLANDESCRIPTOR instances associated with each algorithm instance.

TheOI should provide an IsEquivalentmethod for the PLANDESCRIPTOR class to determine whether

the physical properties of two access plans are the same. This class should also provide an IsInterest-

ingmethod that speci�es whether the result of the corresponding access plan has any interesting physical

properties

3

.

The abstract ALGORITHM class has a DERIVEPLANDESCRIPTOR virtual method. This method is invoked

on an algorithm instance to construct the PLANDESCRIPTOR instance for the access plan rooted at the

algorithm instance, given the PLANDESCRIPTOR instances of its inputs.

The ALGORITHM class also has a virtual method called Cost that computes the estimated cost of

executing the algorithm with the given inputs. This cost is used by the search strategy for pruning

sub-optimal plans.

In addition, the ALGORITHM class has an INPUTCONSTRAINT virtual method. This method indicates

what physical properties an input should have for it to be usable by that algorithm. For example,

the merge-join operator requires that its inputs be sorted on the join attributes. As described in a

later section, the search strategy will try to use this information to automatically enforce those physical

properties.

A database system might have special execution algorithms that do not correspond to any operator

in the logical algebra, for example sorting and decompression. The purpose of these algorithms is not

to perform any logical data manipulation but to enforce physical properties in their outputs that are

required for subsequent query processing algorithms. These are referred to as enforcers by the Volcano

Optimizer Generator [GM93], and are comparable to the glue operators in Starburst [LFL88]. Classes

corresponding to such enforcers should also be derived from the ALGORITHM class. For example, in a

relational query optimizer, the SORT algorithm is an enforcer that can be used to ensure that the inputs

of the MERGEJOIN algorithm are sorted on the join attribute.

Given an access plan, the search strategy can use the virtual methods of the abstract ALGORITHM

class to determine properties of the access plan, estimate its cost, and determine equivalence of di�erent

access plans. All of this is achieved by invoking these methods on the abstract ALGORITHM class without

any knowledge of the actual algorithms in the database system.

2.3 Generating Operator Trees and Access Plans

In the previous section we saw how operator trees and access plans are represented in OPT++. If the

search strategy is given an operator tree or an access plan, we saw how it can compute its properties

and compare it with other trees or plans by using the virtual methods of the OPERATOR and ALGORI-

THM abstract classes. In this section, we describe how the various operator trees and access plans are

generated by the search strategy during the course of optimization.

3

A physical property (such as sort-order) is interesting if it might help some later operation to be carried out cheaply. For

example, a sort-order is interesting if it will be useful in a sort-merge join later on [SAC

+

79].
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2.3.1 The TREETOTREEGENERATOR Class

Classes derived from the TREETOTREEGENERATOR abstract class are used to generate various operator

trees. These classes have a virtual method called APPLY that takes an existing operator tree and creates

one or more new operator trees.

Let us consider the System-R style [SAC

+

79] search strategy to illustrate the concept behind the

TREETOTREEGENERATOR class. Such an optimizer starts with single relations and then builds bigger and

bigger operator trees from them by �rst applying selections and then applying joins to them. At each

step, the search strategy picks an existing operator tree and then expands it to produce a larger operator

tree by applying a new select operation or a join operation at the top of the tree.

The process of expanding an existing operator tree by applying an operator to it and generating a

new tree is accomplished by using one of the TREETOTREEGENERATOR classes.

TREETOTREE
GENERATOR

SELECT
EXPAND

INITIALTREE
GENERATOR

JOIN
EXPAND

Figure 9: Example TREETOTREEGENERATOR Class Hierarchy

Speci�cally, to implement a relational System-R style optimizer, the OI can derive from the TREE-

TOTREEGENERATOR abstract class a SELECTEXPAND class to generate applications of the SELECT operator

and a JOINEXPAND class to generate applications of the JOIN operator as shown in Figure 9. The SEL-

ECTEXPAND::APPLYmethod is expected to take an operator instance (representing an operator tree) and

create one or more new instances of the SELECT operator representing application of some selection to

the input operator tree. Similarly the JOINEXPAND::APPLYmethod should create various JOIN instances

representing di�erent ways of applying a join to the given input.

SELECT

DB−RELATION
DB−RELATION

JOIN

JobDept

Emp.dno = Dept.dno

Emp.name = "Lee"

DB−RELATION
Emp

Select * from Emp, Dept, Job
where Emp.name = "lee" 
and Emp.dno = Dept.dno
and Emp.jno = Job.jno

JOIN

(a)

(b)

Emp.jno = Job.jno

Operator Instances already existing

Operator Instances created by JoinExpand

Figure 10: Application of JOINEXPAND::APPLY

Figure 10(b) illustrates the JOINEXPAND::APPLY method being invoked during the optimization of

the query in Figure 10(a). The �gure shows an instance of the SELECT operator that represents the
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predicate `Emp.name = "Lee"' being applied to the Emp relation. The JOINEXPAND::APPLY method is

invoked in order to expand the operator tree rooted at that SELECT operator instance. Since the result

of the select can be joined with either the Dept relation or the Job relation, two instances of the JOIN

operator are created as shown in the �gure.

The TREETOTREEGENERATOR class also has a virtual method called CANBEAPPLIED that determines

whether that TREETOTREEGENERATOR can be applied to a given operator instance.

There is also a method called APPLYMULTIPLETIMES that can be used to determine whether a partic-

ular TREETOTREEGENERATOR (such as SELECTEXPAND) can be applied a second time to an operator tree

that resulted from the application of the same TREETOTREEGENERATOR class. This is useful for avoiding

redundant work. For example, consider an optimizer in which all the select predicates are pushed down

as far as possible and they are all applied by a single select operator. In this case, when the SELECTEX-

PAND generator is invoked for a given relation, it produces a single select operator to apply all the select

predicates that apply to that relation. There is no need to apply the SELECTEXPAND generator again to

this new select operator as there will not be any new select predicates to apply (until at least another

relation is joined in). Thus, the SELECTEXPAND will return FALSE when APPLYMULTIPLETIMES is invoked.

By contrast, the JOINEXPAND will return TRUE, because you can keep applying joins until there are no

more relations left.

One class derived from the TREETOTREEGENERATOR class is designated by the OI as the INITIAL-

TREEGENERATOR. The APPLY method of this class is used by the search strategy to start the optimization

process. For the relational optimizer the INITIALTREEGENERATOR creates one DB-RELATION instance

for each relation in the from clause. After that, the search strategy picks some operator instance

(representing an operator tree) and generates new operator trees from it by invoking the APPLY method

of various TREETOTREEGENERATOR classes on it. The CANBEAPPLIEDmethod is used to determine whether

the TREETOTREEGENERATOR should be applied to that operator instance. This process can be repeated

to generate various operator trees corresponding to the input query.

Note that the search strategy does not need to know any details about the TREETOTREEGENERATOR

classes in the system. All it needs is a list containing a pointer to one instance of each of the TREETO-

TREEGENERATOR classes. By invoking the virtual methods of the TREETOTREEGENERATOR abstract class

on these instances, the search strategy can generate all operator trees required for optimization.

2.3.2 The TREETOPLANGENERATOR Class

An access plan can be generated from an operator tree by replacing each operator instance in the operator

tree by an instance of an algorithm class that can be used to implement that operator. Classes derived

from the TREETOPLANGENERATOR abstract class are used to generate algorithm instances corresponding

to an operator instance.

The TREETOPLANGENERATOR abstract class has a virtual method called APPLY that takes an operator

instance as an input parameter and creates one or more new algorithm instances representing di�erent

ways of using physical execution algorithms to execute the operation represented by that operator

instance.

For example, consider a relational optimizer. From the TREETOPLANGENERATOR class the OI might

derive one class corresponding to each algorithm in the system. Each of these classes takes an operator

11



TREETOPLAN
GENERATOR

HEAP−FILE
GENERATOR

INDEX
GENERATOR

SELECTSCAN
GENERATOR

INDEXSELECT
GENERATOR

MERGEJOIN
GENERATOR

NESTED−
LOOPSJOIN
GENERATOR

Figure 11: Example TREETOPLANGENERATOR Class Hierarchy

instance and creates one or more algorithm instances indicating how the corresponding algorithm can be

used to implement that operation. Figure 11 shows the classes derived from the TREETOPLANGENERATOR

class.

Emp.dno = Dept.dno

Emp.dno = Dept.dno

LOOPSJOIN

Emp.dno = Dept.dno

MERGEJOIN

JOIN

Operator Instance Algorithm Instances

LoopsJoinGenerator::Apply

MergeJoinGenerator::Apply

Figure 12: Examples of TREETOPLANGENERATOR::APPLY

Figure 12 shows some examples of TREETOPLANGENERATOR::APPLY being applied to a join operator

instance. As can be seen, the NESTEDLOOPSJOINGENERATOR::APPLY results in an instance of the NEST-

EDLOOPSJOIN class being created while the MERGEJOINGENERATOR::APPLY results in an instance of the

MERGEJOIN class being created.

Given an operator tree, the search strategy can invoke the APPLYmethod of various TREETOPLANGENE-

RATOR classes on each of the operator instances in the tree to generate various access plans corresponding

to the operator tree.

The TREETOPLANGENERATOR class has a CANBEAPPLIED virtual method that determines whether that

TREETOPLANGENERATOR can be applied to the given operator instance.

Note that the search strategy does not need to know any details about the actual TREETOPLANGEN-

ERATOR classes in the system. All it needs is a list containing a pointer to one instance of each of the

actual TREETOPLANGENERATOR classes. By using this list and invoking virtual methods on the instances

in this list, the search strategy is able to enumerate all the access plans for any operator tree.

2.3.3 The PLANTOPLANGENERATOR Class

The PLANTOPLANGENERATOR class is used to further modify an access plan after it has been generated.

The PLANTOPLANGENERATOR::APPLY virtual method takes an algorithm instance (representing an access

plan) and creates one or more new algorithm instances each representing some other access plan.
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PLANTOPLAN
GENERATOR

SORT
ENFORCER

Figure 13: PLANTOPLANGENERATOR Class Hierarchy

An important use of this class is to automatically insert instances of enforcers that can change the

physical properties of the output of some access plan. This might be required in order to satisfy input

constraints of some algorithm. For instance, in a relational optimizer, the SORTENFORCER class can be

derived from the PLANTOPLANGENERATOR class to enforce various sort-orders on results of access plans.

SORT
Emp.dno

Emp.name = "Lee"

INDEXSELECT

INDEX
Emp::name

Algorithm Instances already existing

Algorithm Instance created by SortEnforcer

Figure 14: Use of SORTENFORCER::APPLY to enforce a sort-order

Figure 14 illustrates the use of the SORTENFORCER::APPLY virtual method. This method is invoked

with the INDEXSELECT instance as an input parameter; it creates a new instance of the SORT algorithm

(enforcer) as shown in the �gure.

The PLANTOPLANGENERATOR class also has a CANBEAPPLIED virtual method that determines whether

the PLANTOPLANGENERATOR can be applied to the given input.

During the course of optimization, when the search strategy is building various access plans using

the TREETOPLANGENERATOR classes, it invokes the INPUTCONSTRAINT method whenever a new algorithm

instance is created. If it turns out that the inputs of that algorithm instance do not satisfy its input

constraints, it attempts to rectify the situation by applying an appropriate PLANTOPLANGENERATOR. The

search strategy uses the CANBEAPPLIED virtual method of the PLANTOPLANGENERATOR classes to determine

which generators can be used to enforce the given properties, and invokes the APPLY method to create

new access plans that satisfy the corresponding input constraints. Thus the enforcers automatically get

applied without the OI having to worry about them.

2.4 The Search Strategies

Thus far, we have seen the OPERATOR, ALGORITHM, and various tree and plan GENERATOR classes. As

described in the previous sections, any search strategy that is implemented entirely in terms of these
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abstract classes and their virtual methods becomes independent of the query algebra in the sense that

the actual operators, algorithms and generators in the system can be modi�ed without modifying the

search strategy code.

A number of search strategies have been implemented in OPT++ in this query-algebra-independent

manner. The implementation of the various search strategies is loosely modeled on the object-oriented

scheme described in [LV91]. OPT++ de�nes a SEARCHSTRATEGY abstract class with virtual methods,

and each of the search strategies in OPT++ is actually implemented as a class derived from the SE-

ARCHSTRATEGY abstract class. Any of these search strategies can be used for optimization by the OI

by declaring an object of the corresponding class and invoking the OPTIMIZE virtual method on that

object. Another consequence of this design is that OI can modify the behavior of any search strategy

by deriving a new class from it and rede�ning some of the virtual methods. See [LV91] to see how

this is accomplished. In this section we concentrate on describing how the various search strategies are

implemented in terms of the OPERATOR, ALGORITHM, and GENERATOR abstract classes, and in the next

section we describe how the OI can easily switch from one search strategy to another.

In the section below we describe the various search strategies that have been implemented in OPT++

so far. The \Bottom-up" search strategy is similar to the one used by the System-R optimizer [SAC

+

79].

The \Transformative" search strategy is based upon the search engine of the Volcano Optimizer Gen-

erator [GM93]. Finally, three randomized search strategies, Iterated Improvement [SG88], Simulated

Annealing [IW87], and Two Phase Optimization [IK90], have been implemented.

2.4.1 The Bottom-up Search Strategy

This search strategy can be used to implement optimizers that use bottom-up dynamic-programming

similar to the System-R optimizer [SAC

+

79].

The INITIALTREEGENERATOR is invoked to initialize the collection of operator trees. To generate

bigger trees, the search strategy picks an existing operator tree and expands it. To expand an operator

tree, it determines what TREETOTREEGENERATORs can be applied to the operator instance at its root by

exhaustively invoking the CANBEAPPLIED method of all the TREETOTREEGENERATORs. Then the APPLY

method of each of the applicable TREETOTREEGENERATORs is invoked to get new operator trees.

For each new operator tree, all the corresponding access plans are generated. This is done by applying

various TREETOPLANGENERATORs to the operator instances in the tree to get the corresponding algorithm

instances.

Cost-based pruning of access plans is done in a manner similar to the techniques used by the System-R

optimizer. Whenever a new access plan is created, The virtual methods of the ALGORITHM class are used

to determine the cost of that access plan, to determine whether it has any interesting physical properties,

and to locate all other access plans that are equivalent to it. From this set of equivalent access plans,

only the cheapest plan and those plans that have interesting physical properties are retained. All others

are deleted

4

.

Optimization is complete when none of the operator trees can be further expanded. At this point

the cheapest access plan that represents the complete input query is returned as the optimal plan. The

4

To \delete" an access plan, only the algorithm instance at the root of that access plan is actually deleted. The other

algorithm instances in the access plans are not deleted because they maybe shared by other access plans.
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IsCompleteQuery method is used to determine whether or not an access plan represents the complete

input query.

2.4.2 The Transformative Search Strategy

In Section 2.3.1 we have only given examples of TREETOTREEGENERATORs that expand a given tree by

applying a new operator to it. However, an optimizer constructed using OPT++ can also include

TREETOTREEGENERATOR classes that transform one operator tree into another, algebraically-equivalent

operator tree. In other words, a class derived from the TREETOTREEGENERATOR class can represent an

algebraic transformation rule (such as those used by the Volcano Optimizer generator). The CANBEAPP-

LIED method determines whether the transformation rule is applicable to a given operator tree, and the

APPLY method creates the new tree that results from the transformation.

JOIN

Emp.dno = Dept.dno

SELECT

Emp Dept

DB−RELATION DB−RELATION

Emp.name = "Lee"

JOIN

Emp.dno = Dept.dno

Emp Dept

DB−RELATION DB−RELATION

Emp.name = "Lee"

SELECT

Tree (a) Tree (b)

Figure 15: A Rule-based Transformation

Figure 15 shows an example of a transformative TREETOTREEGENERATOR being applied. Assume that

a class called SELECTPUSHDOWN is derived from the the TREETOTREEGENERATOR class. This class represents

the following transformation rule: \If a join is immediately followed by a select, and if the select predicate

only references attributes from the left input of the join, then the select can be pushed below the join

into its left input tree." Figure 15 shows the result of SELECTPUSHDOWN::APPLY being invoked on an

operator tree. It is applied to Tree (a) and the new operator tree resulting from the transformation is

shown in Tree (b). This new tree is generated by creating the two new operator instances shown in the

oval in Tree (b). The new SELECT operator instance represents the selection predicate being applied to

Emp relation. The new JOIN operator instance represents the result of that select being joined with the

Dept relation. When these two new operator instances are created, we have a new operator tree that is

equivalent to the old one.

The search strategy invokes the INITIALTREEGENERATOR to get one operator tree corresponding to the

input query. It then repeatedly applies TREETOTREEGENERATORs (transformation rules) to the existing

operator trees to generate equivalent operator trees. As before, the CANBEAPPLIED method is used to

determine whether a TREETOTREEGENERATOR can be applied to an operator tree, and the APPLY method

is used to generate the new tree.

The search strategy keeps track of which TREETOTREEGENERATORswere used to generate each operator

instance. This is useful in reducing the amount of redundant work done by the algorithm. First, if the
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APPLYMULTIPLETIMES method for a TREETOTREEGENERATOR returns FALSE, then this generator is not

applied to a given operator instance if that operator instance was generated using the same generator.

For example, two applications of the JOINCOMMUTATIVITY generator would result in the same tree as

the original, and hence the APPLYMULTIPLETIMES method of this generator should return FALSE. Also,

whenever a new operator instance is generated by a TREETOTREEGENERATOR, the search strategy �nds out

whether another operator instance which is exactly equivalent to it exists. If it does the new instance is

pruned. This ensures that applications of TREETOTREEGENERATORs do not lead to cycles.

Unfortunately, due to the generality of the OPT++ design, it cannot do as good a job of identifying

equivalence classes as the Volcano Optimizer Generator. For this it has to rely upon the IsEquivalent

method provided by the OI. This is a shortcoming of OPT++ compared to the Volcano Approach.

Implementing the IsEquivalent method can be di�cult for a general algebra, but in practice this is

not. a problem, because this is implemented In one way or another in all database systems that have a

System-R style optimizer are faced with the problem of implementing such an operation.

The procedure for generation of access plans corresponding to an operator tree, and for their pruning

is similar to that used in the bottom-up search strategy. Note that our TREETOPLANGENERATOR classes

are analogous to the implementation rules of the Volcano Optimizer Generator [GM93].

Optimization is complete when none of the existing operator trees can be further transformed.

2.4.3 Randomized Search Strategies

In this section, we briey describe the implementation of the randomized search strategies in OPT++. As

with the Transformative strategy, these algorithms assume that the classes derived from the TREETOTREE-

GENERATOR class represent algebraic transformation rules. Here we briey describe the implementation

of the Simulated Annealing Algorithm. The implementation of the other algorithms is very similar, and

is omitted for brevity.

The Simulated Annealing algorithm has a variable called temperature that is initialized before op-

timization is begun. The INITIALTREEGENERATOR is then used to generate one complete operator tree.

The TREETOPLANGENERATOR classes are used to create an access plan corresponding to that operator tree.

After this, at each step a random operator instance in the operator tree is picked for processing. Then

a random TREETOTREEGENERATOR or a random TREETOPLANGENERATOR is chosen and applied to that op-

erator instance. This gives rise to a new access plan. The cost of the new plan is estimated. The search

strategy accepts or rejects the new plan with a probability that depends upon the di�erence between the

costs of the old plan and the new plan, and upon the temperature. If the new plan is rejected, the new

plan is deleted and the old plan remains the current plan. If the new plan is accepted, the old plan is

deleted, and the new plan becomes the current plan.

The temperature is decreased after each step, and the process is repeated. Optimization continues

until the temperature becomes zero and there is no improvement in the cost for some number of steps.

At this point, the current plan is output as the optimal plan.

2.5 Extensibility in OPT++

This section summarizes what is involved in implementing a new optimizer, or extending or modifying

an existing optimizer built using OPT++. Section 3 has some examples of such extensions as applied
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to a real optimizer.

2.5.1 Implementing a new Optimizer

TreeToTree
Generator

SearchStrategy

InitialTreeGen JoinExpand

DBRelation

Select

Join

Operator Algorithm

LoopsJoin

SeqScan

LoopsJoin
Gen

IndexGen

TreeToPlan
Generator

PlanToPlan
Generator

Sort
Enforcer

Code written by 
Optimizer Implementor

Code provided
with OPT++

BottomUp

Transformative SA
II

ALGEBRA COMPONENT

SEARCH
STRATEGY
COMPONENT

2PO

SEARCH SPACE COMPONENT

Figure 16: Implementing an Optimizer in OPT++

Figure 16 shows the overall system architecture of an optimizer implemented using OPT++.

The Search Strategy Component : This represents the code that is provided with OPT++, and

includes the implementations of the various search strategies. This part of the code is completely

independent of the actual query algebra and the database system, and therefore does not have to be

modi�ed to implement a particular optimizer. Thus a large fraction of the code required for an optimizer

is already provided with OPT++.

The Algebra Component : This contains the classes derived by the OI from the OPERATOR and the

ALGORITHM classes, and also the implementation of the TREEDESCRIPTOR and PLANDESCRIPTOR classes.

This part of the code depends only upon the query algebra and the physical implementation algorithms

available in the database system. Speci�cally, this code does not have to be changed when the optimizer

is modi�ed to use a di�erent search strategy (e.g., switching from a transformative strategy to simu-

lated annealing) or when the search space explored is changed (e.g., switching from left-deep join tree

enumeration, to bushy join tree enumeration).
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The Search Space Component : This contains the classes derived by the OI from the TREETOTREE-

GENERATOR, TREETOPLANGENERATOR, and the PLANTOPLANGENERATOR classes. These classes are used to

decide what operator trees and access plans are generated, and hence play a large part in controlling

the search space that is explored by the search strategy. For example, implementing a JOINEXPAND class

that only generates joins in which the inner relation is a base relation restricts the search space to the

space of left-deep join trees. On the other hand, implementing a BUSHYJOINEXPAND class that considers

composite inners will generate all bushy trees.

We note that the implementation of some of the TREETOTREEGENERATOR classes can be made more

e�cient if they make speci�c assumptions about the semantics of a particular search strategy. When

any such assumptions are made that TREETOTREEGENERATOR becomes speci�c to that particular search

strategy, and cannot be re-used with any other search strategy. Hence, for example, we have two

implementations of the BUSHYJOINEXPAND generator: one that does not assume anything about the

search strategy, and one that uses the data structures of the bottom-up search strategy to e�ciently

organize and retrieve operator trees with a speci�c number of join operators. Thus, although some

e�ciency is lost due to the abstractions of OPT++, a speci�c implementation may still over-ride the

abstractions and achieve e�ciency (at the cost of extensibility). In fact, the various join enumeration

algorithms described in [OL90] can each be implemented in OPT++ as a class derived from the TREE-

TOTREEGENERATOR class.

2.5.2 Modifying the Optimizer

Changing the logical or physical Algebra : To modify the optimizer to incorporate a new physical

implementation algorithm, a new class corresponding to that algorithm must be derived from the AL-

GORITHM class. A new class also must be derived from the TREETOPLANGENERATOR class to indicate how

this new algorithm can be used to implement the corresponding operator. Thus, adding an algorithm

only involves adding some new classes to the optimizer. The existing code usually does not need to be

changed. For instance, a hash-join algorithm can be incorporated into our simple relational optimizer

by deriving a HASHJOIN class from the ALGORITHM class, and a HASHJOINGENERATOR class from the TREE-

TOPLANGENERATOR class.

Similarly, adding an operator requires deriving a new class from the OPERATOR class and deriving

one or more new classes from the TREETOTREEGENERATOR class. Algorithms used to implement the new

operator also must be added as described above.

Sometimes, it is possible that adding a new operator or algorithm might require that the TREEDES-

CRIPTORs or PLANDESCRIPTORs need to store additional information. For example, when MERGEJOIN is

added to the system, information about whether the output of a particular algorithm is sorted or not

needs to be added. In this case, the DERIVETREEDESCRIPTOR, or the DERIVEPLANDESCRIPTORmethods of

all the operators or algorithms might have to be changed to reect this new property. This admittedly

goes against the OPT++ philosophy, and is a shortcoming. However, we believe this cannot be avoided

without compromising the e�ciency of OPT++. Further, these changes are localized to only the DERI-

VETREEDESCRIPTOR or DERIVEPLANDESCRIPTOR methods.

Changing the Search Space : As mentioned earlier, the search space explored by any search strategy
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is controlled by the GENERATOR classes. It can be changed by adding a new GENERATOR class, or by

removing or modifying an existing GENERATOR class. For example, in our simple relational optimizer,

the search space can be changed from the space of left-deep join trees to the space of bushy join trees

by adding a BUSHYJOINEXPAND class.

Since all the search strategy code is in the Search Strategy Component of OPT++, and all the code

that depends only on the query algebra is in the Algebra Component, the Search Space Component is

only a small amount of code. Thus changing generator code or adding a new generator is easy.

Changing the Search Strategy : OPT++ o�ers a choice of search strategies, and makes it relatively

easy to switch from one search strategy to another. Often, one search strategy can be replaced by another

without changing any of the code in the \Algebra" or \Search Space" component. This is the case if the

search strategy is changed from the Transformative Strategy to one of the randomized strategies, or vice

versa. Unfortunately, this is not always true. Sometimes changing from one search strategy to another

might require writing new TREETOTREEGENERATOR classes. For example, switching from a bottom-up

System-R-like strategy to a transformative strategy requires replacing all the TREETOTREEGENERATOR

classes (that are based on the concept of expanding an operator tree) with new TREETOTREEGENERA-

TOR classes that representing the transformation rules. However, since there is very little code in the

classes derived from the TREETOTREEGENERATOR classes, this change is rather easy. Further, note that

only the TREETOTREEGENERATOR classes need to be rewritten. All the code in the \Algebra" component,

the TREETOPLANGENERATORs, and the PLANTOPLANGENERATORs remain unchanged. Hence, although this

change in search strategy does require some new code to be added, a lot of old code can be re-used. We

describe a speci�c example in Section 3.

3 Experiences with OPT++

In this section, we describe various optimizers that we have constructed using OPT++. We started

with a simple relational optimizer that does System-R style join enumeration and then modi�ed it in

various ways { to change the search space; to extend it to accept a more complex query algebra; and to

change the search strategy used for optimization. This was done with the intention of illustrating the

ease of use and extensibility of OPT++. We also report on several performance studies { including a

performance comparison with an optimizer generated using the Volcano Optimizer Generator [GM93] {

to show that, in spite of its exibility, OPT++ is e�cient.

We also performed a study of the various search strategies and optimization techniques that have

been implemented in OPT++ to study their relative e�ectiveness in the presence of the object-relational

operators.

The purpose of this section is twofold. First, it gives an idea of the kind of optimizers and optimization

techniques that can be implemented using OPT++. This speaks for the extensibility and exibility of

OPT++. Second, it illustrates the kind of experimentation that can easily be done by an optimizer

implementor when trying to evaluate di�erent optimization techniques. Studies like this would be key

in fast prototyping of new optimizers and optimization techniques, and for exploring new ideas.

19



3.1 Join Enumeration

In this section we consider a simple relational optimizer that does System-R style join enumeration,

and describe how it was easily extended to consider the space of bushy join trees, as well as cartesian

products. The purpose of this section is to just show the baseline case (a relational optimizer that can

do di�erent kinds of join enumerations). In the later sections, we extend the base optimizer to handle

more complex cases.

Since all the examples used in Section 2 describe this simple relational optimizer, we will not repeat

the details here. Briey, the DB-RELATION, SELECT, and JOIN classes were derived from the OPERATOR

class to represent the relational operators, and the HEAPFILE, INDEX, SELECTSCAN, INDEXSELECT, NESTED-

LOOPSJOIN, and MERGEJOIN classes were derived from the ALGORITHM class to represent the corresponding

physical implementation algorithms. SELECTEXPAND and JOINEXPAND were derived from the TREETO-

TREEGENERATOR class. HEAPFILEGENERATOR, INDEXGENERATOR, SELECTSCANGENERATOR, INDEXSELECT-

GENERATOR, NESTEDLOOPSJOINGENERATOR, and MERGEJOINGENERATOR were derived from TREETOPLAN-

GENERATOR to indicate how the corresponding algorithms could be used to implement the associated

operators. SORTENFORCER is derived from PLANTOPLANGENERATOR to enforce sort orders.

We note that the SELECTEXPAND::APPLY method was written so as to apply all selection predicates

as soon as possible (the \select pushdown" heuristic) and the JOINEXPAND::APPLYmethod allowed only

single relations as the inner (right-hand) input for the join operation (the \left-deep join trees only"

heuristic).

The \Algebra" component that includes the various operator and algorithm classes as well as the

TREEDESCRIPTOR and PLANDESCRIPTOR classes consists of about 900 lines of code. The \Search Space"

components that includes classes derived from the TREETOTREEGENERATOR, TREETOPLANGENERATOR, and

PLANTOPLANGENERATOR classes consists of 150 lines of code. In contrast, the \Search Strategy" compo-

nent, which consists entirely of code that is provided with OPT++ (i.e., the OI does not have to write

this code) was about 2500 lines of code. The fact that the search strategy code is already provided

and does not have to be written or modi�ed by the OI considerably simpli�ed the task of writing the

optimizer. Further, as will become clear later, the fact that the \Search Space" component is very

small (150 lines of code spread across 10 classes) makes it very easy to evaluate various optimization

techniques.

We decided to modify the search space explored to include both bushy join trees and join trees that

contain cartesian products. As described in Section 2.5.1 these enumerators can be implemented in two

ways. A naive implementation that makes no assumptions about the underlying search strategy results

in code that is more re-usable but less e�cient. To do this we derived the NAIVEBUSHYJOINENUME-

RATOR and NAIVECARTESIANJOINENUMERATOR classes from the TREETOTREEGENERATOR class to generate

instances of the JOIN operator that allowed composite inners (i.e., the inner operand is allowed to be

the result of a join), and those containing cartesian products. A smarter implementation (built with

access to the internal data structures of the System-R dynamic programming style search strategy that

was used) was also coded to give better performance. This resulted in the SMARTBUSHYJOINENUMERATOR

and SMARTCARTESIANJOINENUMERATOR classes which are based on the schemes described in [OL90].

As an experimental evaluation of the optimizer, we studied its performance (optimization time and

estimated execution cost) as a function of the number of joins in the input query. For each query size
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(number of joins) 10 di�erent queries were generated randomly and optimized. The experiments were

run on a Sun SPARC-10/40 with 32MB of memory. Virtual memory was also limited to 32MB (using

the limit command).
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Figure 17: Comparison of Search Spaces:

Optimization Times (Log-scale)

Figure 18: Comparison of Search Spaces:

Estimated Costs (scaled)

Figure 17 illustrates the e�ect of di�erent search spaces on the optimization time. Figure 18 shows the

e�ect on the relative estimated execution costs of the optimal plans produced

5

. (Note that optimization

times are shown on a logarithmic scale.)

3.2 A More Complex Query Algebra

In this section, we describe how the base optimizer was extended to handle a more complex query algebra.

The new algebra allows reference-valued attributes, set-valued attributes, and the use of path-indices.

We extended the optimizer to implement the optimization techniques described in [BMG93]. We

added a MATERIALIZE query algebra operator that represents materialization of a reference-valued at-

tribute (in other words, dereferencing a pointer). A corresponding ASSEMBLY algorithm class is used

to represent the physical execution algorithm used to implement MATERIALIZE [KGM91]. An UNNEST

operator class and the corresponding UNNESTALGORITHM class is used to represent unnesting of set-valued

attributes.

The MATERIALIZEEXPAND class derived from the TREETOTREEGENERATOR class takes an operator tree

and expands it by adding a materialize operation that dereferences a reference-valued attribute present

in its input.

Materialization of a reference-valued attribute can also be achieved using a pointer-based join [SC90].

We specialized the JOINEXPAND class by deriving a new POINTERJOINEXPAND class from it. This new class

creates instances of the JOIN operator that actually correspond to materialization of reference-valued

attributes using a pointer-based join.

5

These numbers just con�rm the results of [OL90]
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The UNNESTEXPAND class derived from TREETOTREEGENERATOR takes an operator tree and expands it

by adding to it an unnest operation that unnests a set-valued attribute present in its input.

The optimizer also had to be extended to handle path-indices. A select predicate involving a path-

expression (like city.mayor.name = "Lee") can be sometimes evaluated using a path-index without

really having to materialize the individual components of the path-expression. For example, if a path-

index exists on city.mayor.name, the predicate city.mayor.name = "Lee" can be evaluated without

having to materialize the city or mayor objects (see [BMG93] for details).

A new PATHINDEXSELECT algorithm was derived from the ALGORITHM class to capture such path-index

scans. A PATHINDEXSCANGENERATOR class was derived from the TREETOPLANGENERATOR class to replace

occurrences of a string of materialize operators followed by a select operator in an operator tree by a

single PATHINDEXSELECT algorithm, if possible

6

.

This extension of the optimizer to handle the new query algebra constructs resulted in an addition

of about 350 lines of code to the \Algebra" component (most of it for cost and selectivity estimation)

and about 100 lines of code to the \Search Strategy" component. Considering the complexity of the

extensions to the algebra, and compared to the size of the whole optimizer, the changes were rather easy.

3.3 A Transformative Optimizer

As a third test of OPT++, we decided to change the optimizer from a bottom-up dynamic programming

optimizer to one that uses algebraic transformation rules. In other words, a shift from the \Bottom-

Up" strategy to the \Transformative" strategy. This change required that new classes be derived from

the TREETOTREEGENERATOR class to represent the transformation rules. One class was used for each

transformation rule. For instance, the JOINASSOCIATIVITY class was used to represent the associativity

of the join operator, while the SELECTPUSHDOWN class was used to capture the property that selects can

be pushed down under joins.

Modifying the whole optimizer to use the transformative paradigm required the addition of about

250 lines of code in the form of TREETOTREEGENERATORs representing the transformation rules

7

. We note

that no code in the \Algebra" component had to be changed, while in the \Search Space" component,

only new TREETOTREEGENERATORs had to be added. The old TREETOPLANGENERATOR and PLANTOPLAN-

GENERATOR classes were used unchanged.

The Transformative Search Strategy in OPT++ is based upon the search engine of the Volcano Opti-

mizer Generator. To validate our implementation of that strategy, and to show that its performance does

not su�er even though it has been implemented in the more exible OPT++ framework, we compared

it to an optimizer generated using Volcano. Using the Volcano Optimizer Generator we implemented an

optimizer equivalent to our Transformative Optimizer. The two optimizers were equivalent in the sense

that they used the same transformation rules and exactly the same code for cost estimation, selectivity

estimation, etc.

6

In the interests of space and clarity, we do not describe our implementation of the mechanism by which components of

the path that are not materialized into memory in because of the existence of the path-index are automatically materialized

if they are needed for some other operation. The implementation is very similar to the scheme described in [BMG93].

7

In the next section we shall see that a switch from the Transformative strategy to one of the Randomized strategies is

much easier than this.
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Figure 19: OPT++ vs. Volcano: Opti-

mization Times (Log-scale)

Figure 20: OPT++ vs. Volcano: Mem-

ory Requirements

Figures 19 and 20 compare the two optimizers in terms of optimization times and memory consumed

for randomly generated queries of increasing sizes. As before, the experiments were run on a Sun SPARC-

10/40 with 32MB of memory. The �gures show us that the performance of the Transformative Search

Strategy of OPT++ is almost as good as that of the Volcano search engine. We see approximately a

degradation of about 5% in the optimization times, while space utilization is roughly equivalent.

3.4 Randomized Strategies

Finally, we modi�ed the transformative optimizer to use the randomized search strategies available

with OPT++. To do this, we replaced the Transformative Search Strategy object by an object of the

required Randomized search strategy. Thus, switching from a Transformative search strategy to either

Simulated Annealing, Iterated Improvement or Two Phase Optimization (or vice versa) can be trivially

accomplished by changing one line of code.

We compared the performance of these search strategies with each other and with the dynamic-

programming based search strategies. This is one illustration of the kind of experiments that can be

very easily conducted using OPT++. This section also serves as a validation of our implementation of

these search strategies in OPT++ as we obtain results similar to those found in the literature.

3.5 Comparison of Search Strategies

We compared the performance of each of the di�erent search strategies in terms of the time taken

to optimize randomly generated queries of increasing sizes, and the quality of the plans produced.

The stopping conditions and other parameters for the randomized search strategies were as described

in [IK90]. Figures 21 and 22 show the performance results obtained. Since the Bottom-up and the

Transformative strategies produce exactly the same plans, Figure 22 shows only one curve for both

of them. Qualitatively, they con�rm the �ndings of [Kan91] that for smaller queries the exhaustive

23



6 8 10 12 14

Number of Joins

1

10

100

O
p

ti
m

iz
at

io
n

 T
im

e 
(s

ec
on

d
s,

 lo
gs

ca
le

)

Bottom-Up

Transformative

Iterated Improvement

Simulated Annealing

Two Phase Optimization

6 8 10 12 14

Number of Joins

0.99

1

1.01

1.02

E
st

im
at

ed
 E

xe
cu

ti
on

 C
os

ts
 (

Sc
al

ed
) Iterated Improvement

Bottom-Up (same as Transformative)

Simulated Annealing

Two Phase Optimization

Figure 21: Comparing Search Strategies:

Optimization Times (Log-scale)
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algorithms consume much less time for optimization than the randomized algorithms and yet produce

equivalent or better plans, while for larger queries, the randomized algorithms take much less time to

�nd plans that are almost as good as those found by the exhaustive algorithms. They also con�rm the

�ndings of [IK90] that Two Phase Optimization performs better than either Simulated Annealing or

Iterated Improvement.

In Figure 23, the memory requirements of the di�erent strategies are presented. The randomized

strategies require a negligible amount of memory irrespective of the size of the input query, while the

exhaustive strategies require exponentially increasing amounts of memory. Hence, for queries larger

than those shown in Figure 21, the randomized strategies will continue to give reasonable performance

while the exhaustive strategies will fail due to lack of enough memory. We also note that although the

Bottom-Up and Transformative search strategies have comparable performance in terms of optimization

time and quality of plans produced (because both are exhaustive strategies and explore the same search

space), the Bottom-Up strategy has a signi�cant advantage in terms of space consumption as it can

perform more aggressive pruning of operator trees.

3.5.1 Comparing optimization techniques

In this section, we describe and evaluate a variety of di�erent optimization techniques. Using randomly

generated queries of varying sizes, we compared the optimization time required for the optimizer with

the feature turned \on", to that of the optimizer with the feature turned \o�". We report a summary

of the results in this section. Each feature was evaluated with all the remaining features turned on. The

reason for describing the features and their performance in the section are, 1) to give an example of the

kind of optimizations OPT++ is capable of handling, and 2) to study the e�ect each feature has upon

the speed of the search engine. We have also reported the estimated costs of the resulting access plans

to provide an idea about the trade-o�s involved.

GET

Countries: c1

MATERIALIZE

c1.capital

Countries: c1

c1.capital

Countries: c1

ASSEMBLY

FILESCAN FILESCAN

POINTER−JOIN

FILESCAN
Capitals: c2

c1.capital = c2.self

Query Plan A Plan B

Figure 24: Converting Materializes to Joins

Convert materialize to join : Instead of the materialize operator, a pointer-based join [SC90] can be

used to \follow" inter-object references. Figure 24 illustrates the use of this feature. Plan A gives an

example of a plan that can be generated when this feature is turned \o�", and plan B show an example

of a plan that can be generated when this feature is turned \on"

8

. (This convention will be used in

the rest of the examples in this section.) Note that the self method on any object returns the OID of

8

This does not mean that plan A will necessarily be rejected in favor of plan B. Plan B will be considered and then accepted

or rejected based on the cost estimates.
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Figure 25: Converting Materializes to Joins:

Optimization Times (Log-scale)

Figure 26: Converting Materializes to Joins:

Improvement in Estimated Costs (Scaled)

that object. Hence the pointer-join on c1.capital() = c2.self() is equivalent to materializing the

c1.capital() method.

Figure 25 shows the e�ect on the optimization time, for various randomly generated queries. The

number of materialize operations in the query was varied while the number of select predicates was

kept constant at 4 (there were no explicit joins in these queries). Figure 26 plots the ratios of the

estimated costs of the generated optimal plans and thus shows the improvement in the estimated cost

when the feature is turned \on". Due to the increase in number of alternative plans to be considered

the optimization time increases signi�cantly (about 50% when there are 8 materialize operators in the

query) when this transformation was turned \on". On the other hand, the generated optimal plans were

much cheaper (in terms of estimated cost).

Overall, this experiment seems to indicate that although there is an increase in optimization cost

involved in considering \pointer-join" as a possible method for computation of the materialize operator,

there are large bene�ts in terms of reduction of execution cost. Hence, this is a useful optimization

technique to implement for a query algebra that allows it.

GET

Countries: c1

MATERIALIZE

c1.capital

Countries: c1
FILESCAN

POINTER−JOIN

FILESCAN

Capitals: c2

Query Plan A Plan B

Countries: c1
FILESCAN

POINTER−JOIN

FILESCAN
Capitals: c2

c1.capital = c2.self c2.country = c1.self

Figure 27: Use of Inverse Links
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Figure 28: Use of Inverse Links: Optimization

Times (Log-scale)

Figure 29: Use of Inverse Links: Improvement

in Estimated Costs (Scaled)
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Figure 30: Use of Inverse Links when all ref-

erences have inverses: Optimization Times

(Log-scale)

Figure 31: Use of Inverse Links when all ref-

erences have inverses: Improvement in Esti-

mated Costs (Scaled)
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Figure 32: Collapsing Materializes
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Figure 33: Collapsing Materializes: Opti-

mization Times (Log-scale)

Figure 34: Collapsing Materializes: Improve-

ment in Estimated Costs (Scaled)
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Figure 35: Collapsing Materializes in absence

of Pointer Joins: Optimization Times (Log-

scale)

Figure 36: Collapsing Materializes in absence

of Pointer Joins: Improvement in Estimated

Costs (Scaled)

Use of Inverse Links : A join that uses an inter-object reference method to join its inputs can be con-

verted to a join that uses the inverse of that method, if one exists. Figure 27 illustrates the use of this op-

timization. (We assume that the Capital.country()method is the inverse of the Country.capital()

method. Figures 28 and 29 show the e�ect on performance. In the random queries generated for this

experiment, any method that was referred to had a 10% chance of having an inverse. Use of inverse links

causes a 10-20% increase in the optimization time for queries that contain methods that have inverses.

The estimated execution cost of the optimal plans shows a 10-30% improvement.

In the previous experiment, for any reference in the input query there was only a 10% chance of

the existence of a corresponding inverse link. Obviously this �gure a�ects the performance that we see.

We repeated this experiment with a setting in which all the references in the input queries had inverse

links. Figures 30 and 31 show the new performance. We see that now the increase in optimization time

is higher (30-35%). The estimated execution cost of the optimal plans shows a much higher (upto 50%)

improvement.

Collapse multiple materializes : A string of materialize operator applications can be collapsed into

a single materialize operator application. Figures 32, 33 and 34 show the use and performance of this

feature. The number of materialize operations in the randomly generated queries was varied while the

number of select predicates was kept constant at 4 (there were no explicit joins in these queries). An

increase in optimization time, of about 20-30% was observed. This increase can be directly attributed to

the increase in the number of alternative operator trees that have to be considered. We did not observe

any any signi�cant improvement in the estimated execution costs for this setup.

For the previous experiment, the optimization of converting materialize operators to joins was turned

on. To see how that a�ected the results we repeated the same experiment with this optimization turned
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o�. (This involved commenting out one line of code in the optimizer.) Figures 35 and 36 show the

results of the new experiment. We see that with this setup, the use of the complex assembly operator

does give signi�cant (about 30%) improvements in the estimated execution cost of the query.

Thus, this experiment indicates that for the cost model we used, considering the complex assembly

operator is a considerable improvement over naive materialization, but does not help very much if

pointer-joins can be used.

GET

MATERIALIZE ASSEMBLY

FILESCAN

Query Plan A Plan B

Cities: c1 Cities: c1

SELECT FILTER

c1.mayor.name = "Yu"

c1.mayor c1.mayor

c1.mayor.name = "Yu"

PATH−INDEX−SCAN

Cities: c1, c1.mayor.name = "Yu"

Figure 37: Use of Path Indices
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Figure 38: Use of Path Indices: Optimization

Times (Log-scale)

Figure 39: Use of Path Indices: Improvement

in Estimated Costs (Scaled)

Path Indices : A select-materialize-�lescan sequence might be collapsed into a single index scan with

a predicate if a path-index exists on the path expression in the select predicate

9

. Figure 37 shows how

this can be useful. Note that the path index scan shown in plan B does not retrieve any mayor objects

from the disk. Thus, if there were a select predicate on the mayor object, then the mayor objects

would actually have to be materialized from disk. An assembly enforcer is required to make this work.

9

There can be more than one materialize operations between the select and the �lescan.
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Figure 40: Path Indices: E�ect of Selectivity on Estimated Costs (Scaled)
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Figure 41: Path Indices (e�ect of availability):

Increase in Optimization Times

Figure 42: Path Indices (e�ect of availability):

Improvement in Estimated Costs (Scaled)
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See [BMG93] for a detailed discussion of this issue. We have incorporated in our optimizer the assembly

enforcer as described in [BMG93]. We conducted experiments to study the e�ect of path indexes upon

optimization time and the estimated execution cost. In these experiments, there was a 20% chance

of a path index being available for evaluating any given predicate. The selectivity of these predicates

varied uniformly from 0 to 100%. Figures 38 and 39 indicate that while the e�ect of this feature on the

optimization time is negligible (less that 5%), its use can signi�cantly reduce the estimated cost of the

optimal plan.

If a suitable path index exists, then the improvement in execution cost is often very large. On the

other hand, if there is no such index, then the improvement is zero. Also, the amount of improvement

depends upon the selectivity of the selection predicate involving the use of the path index. Due to

this, there is a large variance in the scaled execution costs. This accounts for the erratic behavior seen

in Figure 39. We repeated this experiment with controlled settings of selectivity of the predicate and

availability of path index to study their e�ect upon the performance.

In one experiment, we varied the selectivity of the predicate (used for the path index) from 1% to

50% while keeping the availability of the path index constant at 50%. Figure 40 shows that for lower

selectivities there are signi�cant gains in the estimated execution cost of the query. These gains decrease

as the selectivity is increased. We have not reported the optimization times, since they are not a�ected

by the selectivity of the predicate.

In the next experiment, we kept the selectivity of the predicate constant at 10% and varied the

availability of the path index. Figure 42 shows the improvement in execution cost of the query as the

availability is increased. Figure 41 shows that although the increase in optimization time depends upon

the availability of path indexes (greater the availability, greater the number of options to consider) it is

never worse than 10%.

These experiments indicate that considering path indexes only marginally increases the optimization

time of a query while providing a dramatic reduction in query execution time if the predicate is suitably

selective. Hence this can be a very e�ective optimization technique.

GET FILESCAN

Query Plan A Plan B

UNNEST

SELECT FILTER

Tasks: t

t.team_members: m

t.time = 100

Tasks: t

t.team_members: m

UNNEST−ALGO

t.time = 100

FILESCAN

FILTER

Tasks: t

t.team_members: m

UNNEST−ALGO

t.time = 100

Figure 43: Unnest and Select Operators

Unnest : Methods of objects (attributes or links) can be set-valued. In that case, the unnest operator

can be used to atten such set-valued methods. Figures 43, 44, and 45 show the various kinds of

query processing alternatives that need to be considered by the optimizer. Since unnest is a necessary

\feature" and cannot be turned \o�", we do not present a performance comparison here. All the previous
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Figure 44: Unnest and Materialize Operators
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Figure 45: Unnest and Join Operators
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experiments in this section included the unnest operator. Any method (attribute or link) referred to in

the randomly generated queries, had a 10% chance of being a set-valued method to which an unnest

operator was applied.

3.6 Summary

In this section we have described our experiences building optimizers using OPT++. We have seen

how di�erent operators and algorithms can be added to the optimizer. We have also seen how di�erent

optimization policies (for example, left-deep vs. bushy, select pushdown vs. exhaustive positioning) can

be implemented in OPT++. In addition to System-R style bottom-up building of operator trees, we

have also been able to incorporate algebraic transformation rules in our optimizer. This exibility has

been achieved without sacri�cing optimizer e�ciency.

4 Related Work

Extensible query optimizers proposed in the literature fall mainly into two categories: those that o�er

a �xed search strategy and make it easy to add new algorithms and operators, and those that allow

the search strategy itself to be extensible. In OPT++ we have tried to achieve both these goals by

coming up with a design in which the search strategy itself is extensible, and, for any search strategy

implemented using this framework, the addition of new algorithms and operators is easy.

Most optimizers that allow extensibility of the query algebra employ some form of a rule-based

system that uses rewrite rules to describe transformations that can be performed to optimize a query

expression [Fre87, Gra87, PHH92, FG91]. These systems usually o�er a more-or-less �xed search strategy

that is di�cult to modify or extend.

Freytag [Fre87] describes an architecture in which the translation of a query into an executable plan

is completely based on rules. He describes a System-R style optimizer that can be built using various

sets of rules. One set of rules is used to convert the query into an algebraic tree. Other sets of rules are

used to generate access paths, join orderings, and join methods in that order.

The optimizer developed as a part of the Starburst project [LFL88, HP88] uses a two step process

to optimize queries. The �rst phase uses a set of production rules to heuristically transform the query

into an equivalent query that (hopefully) o�ers both faster execution than the old query and is better

suited for cost-based optimization. In the second phase, query processing alternatives are speci�ed using

grammar{like production rules. Each \non-terminal" in the grammar can have multiple production rules

(suggesting execution alternatives) and conditions of applicability. These rules are used to construct an

optimal execution plan in a bottom up fashion similar to the System-R optimizer. Cost estimates are

used for choosing between alternatives.

This approach has several limitations. The rewrite phase (�rst one) uses equivalence transformations

to rewrite the query heuristically. While such heuristic transformations work in a number of cases,

the heuristics sometimes make incorrect decisions because they are not based on cost estimates. The

second phase (the cost-based optimizer) is built using grammar{like rules that are used to build bigger

and bigger plans. While this approach is well suited for access method and join enumeration, it is

not clear how this can be used to optimize queries containing non-relational operators and complicated
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transformations.

The optimizers generated by the Exodus Optimizer Generator [GD87], the Volcano Optimizer Gen-

erator [GM93] and the Cascades Framework [Gra95] use algebraic equivalence rules to transform an

operator tree for a query into other, equivalent operator trees. Implementation rules are used to deter-

mine what algorithms can be used to implement the various operators. The algebraic transformation

rules are used to generate all possible operator trees that are equivalent to the input query. The imple-

mentation rules are used to generate access plans corresponding to the operator trees.

Like the Volcano Optimizer Generator and the Starburst optimizer, OPT++ incorporates extensible

speci�cation of logical algebra operators, execution algorithms, logical and physical properties, and

selectivity and cost estimation functions. Interesting physical properties, input constraints for execution

algorithms and enforcers (\glue" operators) are also supported. OPT++ can be used to emulate both,

the Starburst as well as the Exodus/Volcano based optimizers. The search strategies that are used in

those optimizer generators are both built into OPT++. In fact, OPT++ can also be used to implement

the transformation rules and implementation rules of Volcano and the rewrite rules and production

rules of Starburst. In addition, the search strategy in OPT++ is extensible and can be modi�ed to �t

the optimization problem, if necessary. Our experience with the implementation of an optimizer using

OPT++ shows that this exibility is achieved without sacri�cing performance.

The Cascades Framework [Gra95] is similar to the Volcano Optimizer Generator, but it uses C++

classes to represent the transformation rules, implementation rules and predicates. It also allows the

search strategy to be \guided" through the use of user de�ned Guidance classes that can heuristically

control the application of the transformation rules. However, the basic search strategy remains a trans-

formative strategy that uses transformation rules to generate equivalent plans. It can be \guided",

but cannot be changed or replaced. For example, a System-R style bottom-up optimizer cannot be

implemented using the Cascades Framework.

Various architectures have been proposed to allow extensible control over the search strategy of an

optimizer. The region-based optimizer architecture of Mitchell et al. [MDZ93], the modular optimizer

architecture by Sciore and Sieg [SJ90], the blackboard architecture of Kemper, Moerkotte and Peith-

ner [KMP93], are all based on the concept of dividing an optimizer into regions that carry out di�erent

parts of the optimization. A query then has to pass through these various regions to be optimized. These

architectures di�er in the methods used to pass control between the various regions. In [SJ90], control

passes from one region to another in a �xed sequence. [MDZ93] uses a hierarchy of regions in which

the parent region dynamically controls the sequence of regions through which the query passes while

being optimized. In the blackboard approach [KMP93], knowledge sources are responsible for moving

the queries between regions.

All these architectures describe very general frameworks for extensible query optimization that sup-

port multiple optimizer control strategies and allow the addition of new control strategies. By making

very speci�c assumptions about the kinds of manipulations that are allowed on the operator trees and

access plans, OPT++ is able to put a signi�cant fraction of the functionality of an optimizer into the

part of the code that does not depend upon the speci�c query algebra. This makes it much easier to

write an optimizer from scratch. In spite of these assumptions, a number of di�erent search strategies

can easily be implemented in OPT++ quite easily.
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The query optimizer used in the [BG92] system uses a formal concept of a many-sorted relational

algebra to design a rule-based optimizer that is extensible and can handle new data types. However,

the architecture is based on algebraic equivalence rules. Hence, unlike OPT++, it limits the OI to

implement only transformation based optimization schemes.

Lanzelotte and Valduriez [LV91] also describe an object-oriented design for an extensible query

optimizer. The design of the search strategy code in OPT++ is inspired by this work. However,

OPT++ di�ers in its modeling of the query algebra and the search space. In particular, OPT++ has

a clear separation between the logical algebra (operator trees) and the physical algebra (access plans).

We believe this separation is necessary for the e�ciency of the optimizer as well as for clarity and

extensibility. Although [LV91] discusses extensibility of the search strategy in detail, it is not clear how

extensible their design is in terms of adding new operators and algorithms, modifying the search space,

or how such changes would interact with one another or with the search strategy.

The EROC toolkit for building optimizers [MBHT96] was developed concurrently with OPT++

and comes closest in terms of design philosophy to OPT++. EROC is a toolkit for building query

optimizers based on components that are C++ abstract classes that they have identi�ed as central to

query optimization. These classes provide System-R and Volcano style search strategies, implementation

of common algebraic equivalence rules, derivation of properties and handling of predicate manipulations,

catalog information and types. At the current time, EROC does not have implementations of any other

search strategies, but randomized algorithms and greedy heuristics are planned future work.

Although the basic principles of EROC are very similar to those of OPT++ there are fundamental

di�erences between the two architectures. First, EROC does not di�erentiate between the Search Space

and the Search Strategy components. There is an Enumerator abstract class that determines both the

search space that will be searched, and what search strategy will be used. We believe, that by separating

these two components, OPT++ provides for more re-use of code and easier extensibility. Second, in

OPT++ the mapping from the Logical Algebra (operator trees) to the Physical Algebra (access plans)

is done on a per operator tree basis, by a number of di�erent classes

10

, each of which handles one speci�c

type of mapping. By contrast, in EROC, the whole space of generated operator trees is transformed to

access plans by a single call to a \Mapper" class. We believe, this model misses some opportunities at

modularization and �ne-grained control, and this would make it more di�cult to modify or extend this

operation. Finally, we would like to point out that the EROC architecture also contains abstractions to

handle predicates, catalog information, types, and other \support" functions needed for implementing

an optimizer. This is an issue not addressed in OPT++ currently.

5 Conclusions and Future Work

In this paper, we have described a new tool for building extensible optimizers. It uses an object-oriented

design to provide extensibility through the use of inheritance and late binding. The design makes it

easy to implement a new optimizer as well as to modify existing optimizers implemented using OPT++.

Extensibility is provided in the form of the ability to easily extend the logical or physical query algebra,

to easily modify the search space explored by the search strategy, and to even change the search strategy.

10

Di�erent classes derived from the TREETOPLANGENERATOR classes, as explained in Section 2.3
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We believe that these features of OPT++will make it a very useful tool for building query optimizers.

First, it can be used for quickly building an optimizer for a new database system as well as to evaluate

di�erent optimization techniques and search strategies. This process can be very useful to an OI in

deciding what strategy is best suited to that database system. Further, having multiple search strategies

provides the option of dynamically determining the search strategy based on the input query and other

criteria. For example, an optimizer could use an exhaustive strategy for small queries and a randomized

strategy for large queries, or it could use bushy join tree enumeration for small queries and left-deep join

tree enumeration for larger queries. Thus OPT++ can be used to build a smart query optimizer that

dynamically customizes its optimization strategy depending upon the input.

We plan to add some additional search strategies to the repertoire of strategies available in OPT++.

In particular, the A* heuristic [Pea84, KMP93], and the heuristics described in [Swa89] seem promising.

We also plan to add debugging support to OPT++. Debugging an optimizer remains a complex

and time-consuming task. In particular, determining the source of a bug in an optimizer that produces

sub-optimal plans is di�cult. ([Hel94] discusses some of the di�culties with this.) We plan to incorpo-

rate support for debugging into OPT++, including visual optimizer execution tracing, and automated

detection of potential sources of errors using hints from the OI.
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