
Counting, Enumerating, and Sampling of Execution Plans
in a Cost-Based Query Optimizer

Florian Waas1,2

flw@cwi.nl

1CWI
P.O. Box 94079

1090 GB Amsterdam

The Netherlands

César Galindo-Legaria2

cesarg@microsoft.com

2Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

U.S.A.

Abstract

Testing an SQL database system by running large sets of de-
terministic or stochastic SQL statements is common practice
in commercial database development. However, code defects
often remain undetected as the query optimizer’s choice of
an execution plan is not only depending on the query but
strongly influenced by a large number of parameters describ-
ing the database and the hardware environment. Modifying
these parameters in order to steer the optimizer to select
other plans is difficult since this means anticipating often
complex search strategies implemented in the optimizer.

In this paper we devise algorithms for counting, exhaus-
tive generation, and uniform sampling of plans from the
complete search space. Our techniques allow extensive vali-
dation of both generation of alternatives, and execution al-
gorithms with plans other than the optimized one—if two
candidate plans fail to produce the same results, then either
the optimizer considered an invalid plan, or the execution
code is faulty. When the space of alternatives becomes too
large for exhaustive testing, which can occur even with a
handful of joins, uniform random sampling provides a mech-
anism for unbiased testing.

The technique is implemented in Microsoft’s SQL Server,
where it is an integral part of the validation and testing
process.

1 Introduction

Cost-based query optimizers typically consider a large
number of candidate execution plans, and select one
for execution. The choice of an execution plan is the
result of various, interacting factors, such as database
and system state, current table statistics, calibration of
costing formulas, algorithms to generate alternatives of
interest, and heuristics to cope with the combinatorial
explosion of the search space. Normally, experimental

validation and testing of the query processor is limited
to considering the one plan that was chosen by the
optimizer for execution. This is a severe limitation,
as this plan is only a minuscule fraction of the space
of alternatives. In fact, during regular development
and maintenance of a query processor, it has been
our experience that some code defects can remain
undetected for a long time, until the right combination
of factors steer the optimizer to chose a plan that
exposes the problem.

Rather than waiting for these problem scenarios to
occur, or trying to manually influence optimizer choices
towards ”potentially problematic” cases, we generate al-
ternative execution plans by enumeration and sampling,
from the space of alternatives considered by the opti-
mizer. The plans are generated independently from op-
timizer decisions and provide a large set of test cases for
both the optimizer—are the alternatives considered re-
ally valid execution plans?—and the execution engine—
do different but semantically equivalent plans produce
the same output?

This approach to testing is similar to that taken by
Slutz [11], in which a large number of random SQL
statements are submitted to the database. Random
statements can be generated quickly, and extensive
coverage of the code can be achieved in a short
time. Multiple execution plans for a given query
test smaller system components; it shows the result
of arbitrary combinations of optimization rules, and
exercises execution algorithms in configurations that
are less common. Starting from a query with that
has specific properties, e.g. joins and outerjoins, or
joins and aggregations, an ”area” of the optimizer and
execution code is targeted and exercised in a variety of
combinations.

We develop a general approach based on ranking
elements of a space, which allows enumeration and
sampling of plans. The basic idea is to establish a one-
to-one mapping between integers 0, . . . , N − 1 and the
N elements of a space. Ranking an element, e.g. an
execution plan, means finding its number; unranking

1

a number means constructing the corresponding plan.
Once an unranking mechanism is available, uniform
sampling of elements in the space reduces to random
generation of numbers in the range 0, . . . , N − 1.

None of the known ranking and unranking techniques
for tree structures apply to the current problem [10, 2],
as the space of alternatives considered by industrial
query optimizers is not restricted to an abstract com-
binatorial problem, such as join reordering. Multiple
execution algorithms, index utilization, reordering of
grouping operators, special-purpose physical operators,
and heuristics to control the time spent on searching,
all make up for an actual space that is hard to describe
succinctly using abstract, regular structures.

The technique we devised achieves an unranking
mechanism based on the compact representation of mul-
tiple alternatives, in the style of the MEMO struc-
ture of Volcano [7, 5], used in Microsoft’s SQL Server
and Tandem’s NonStop SQL. Initially introduced in
a transformation-based system, this data structure
simply captures the multiple choices available to a
cost-based optimizer, not necessarily constructed us-
ing transformation rules—a bottom-up enumeration ap-
proach implicitly uses a similar data structure.

After performing the regular optimization of a query,
we modify this data structure to facilitate the counting
of all possible plans and the subsequent generation of
a particular plan. The overhead incurred by this kind
of post processing is negligible for both, counting and
extracting a certain plan. Furthermore, we extended
the SQL syntax to allow the specification of a plan,
i.e., the specification of a the plan’s number, within the
standard interfaces.

Its marginal overhead together with a simple and easy
to use interface have made this technique a valuable
tool and integral part of the testing process in the SQL
Server development.

In addition to its immediate use for testing, we also
used this mechanism to perform some experiments in
a largely unexplored field of query processing: The
cost distribution of query plans. Cost distributions
are of interest, because they can be taken as obvious
indicators of the stochastic difficulty of a problem, by
simply considering the ratio of high quality to low
quality plans [6].

The remainder of this paper is organized as follows.
In Section 2, we briefly outline the optimizer framework
and the MEMO structure. The counting and unranking
schemes are introduced in Section 3. In Section 4, we
report on the experience with using the tools in the
ongoing development of Microsoft’s SQL Server. We
present initial results on cost distributions computed
for TPC-H queries in Section 5. Section 6 concludes
the paper.

2 Preliminaries

In this section we review the concept of a compact
representation of the plan space in form of the MEMO
structure. This concept was developed by Graefe
and DeWitt in the context of transformation-based
query optimization [4, 5, 1]. Independent of this
development, a similar structure has been developed
for bottom-up enumeration of join trees in Starburst
[8]. Our technique is based on the MEMO but could be
transferred easily to the Starburst enumerator.

We will briefly introduce the essential aspects of the
MEMO and refer the interested reader to [3] for further
reading.

A query plan determines the execution order of a
set of relational algebra operators which implements a
given, declarative query. Query plans are n-ary trees
whose nodes correspond to algebra operators and are
therefore referred to as operators too. Due to the tree
structure, every operator represents a sub-goal of the
plan, that is, the partial query evaluation done by the
sub-tree rooted in it.

A cost function computes a cost value for a query
plan which is for instance the time needed to execute
the plan. The goal of the optimization is to generate
the query plan with the least cost value, i.e. to solve the
associated combinatorial optimization problem. Cost
based query optimizers like the ones used in Microsoft’s
SQL Server, Tandem’s NonStopSQL or IBM’s DB2
generate partial query plans, cost them and—if a partial
plan is a candidate to be part of the optimal plan—store
them in a lookup table. The generation of sub-plans
and their alternatives is guided by strategies and can
be implemented for instance in a transformation-based
framework or with dynamic programming.

In the following we outline the optimization process
as implemented in SQL Server, which is similar to that
of Volcano. We distinguish two kinds of operators:
(1) logical operators that map to relational algebraic
operators, e.g. join operator, and (2) physical operators
that represent a particular implementation of a logical
operator, e.g. hash join. Only physical operators may
be used in the final query plan. Following Volcano, we
call the aforementioned lookup table MEMO structure.
It is a data structure that manages a system of groups,
which represent different sub-goals of a query plan, i.e.
every group corresponds to the root of a sub-plan.

We start out with an initial query plan that consists
of logical operators only. This plan is a direct
translation of a declarative query given in SQL. We map
the initial query plan to the groups of the MEMO so
that every operator is assigned to one group. The group
that contains the initial plan’s root operator is referred
to as root group. We substitute the original references
to an operator’s children by references to the respective

2

Group

Group

Group

Group

Group

Group

Group
Scan A

Scan B

Join

Scan C

Join

Join

Scan A Scan B

Scan C

Join

1

3

4

5

6

7

2

1 2

3 4

1.1

2.1

3.1

4.1

7.1

Figure 1: Copying the initial plan into the MEMO structure.

groups. Figure 1 shows an initial tree and its equivalent
after copying it into the MEMO structure. Operators
in the MEMO are depicted as rounded boxes with the
references to the children’s groups in the lower right
corner and a unique identifier in the lower left corner.
The references to the children’s groups are ordered, that
is, the left number represents the first child’s groups,
and if available, the right is the second child’s. For
simplicity, we use only unary and binary operators in
the examples, however, the methods we present are not
limited to any given degree. To avoid renumbering
of groups at a later point in time we put the root
operator immediately into group 7 in this example.
Thus, group 7 becomes the root group. Notice, in
the actual implementation, groups are not ordered but
only referred to by their numbers. However, putting it
directly into group 7 and maintaining an order makes
this example more intuitive and easier to understand.

Once the initial plan is copied into the MEMO, we
derive alternatives by applying transformations to the
logical operators. A transformation rule can generate:

1. a logical operator in the same group, e.g. join(A,B)
→ join(B,A);

2. a physical operator in the same group, e.g. join →
hash join;

3. a set of logical operators that form a connected sub-
plan; the root goes to the original group, other op-
erators may go to any group, including the creation

of new groups as necessary, e.g. join(A,join(B,C) →
join(join(A,B),C).

In Figure 2, a partially expanded MEMO structure is
depicted. The physical operators are shaded and an
example plan is shown with darkened operators.

We do not apply rules to transform physical operators
since everything that could be derived from a physical
operator can also be derived from the logical one. A
technicality that needs special attention is the fact
that operators of the same group—i.e. with the same
logical properties—may differ in physical properties.
For instance, one operator may deliver a sort order
whereas another operator of the same group does not,
or it may deliver a sort order on a different attribute.
In case the parent operator requires a sort order on a
certain attribute, not all operators may be chosen as
potential children.

The MEMO framework includes routines that ana-
lyze the results of a rule application and assign it to
the groups, detect and eliminate duplicates, and create
new groups. Furthermore, it also provides costing tech-
niques that estimate and assign costs to each operator in
the MEMO, that is, the costs of the sub-plan rooted in
each operator. For every group we keep track of the best
physical operator for a each set of physical properties.
When costing a new operator we compute the costs us-
ing the children’s best implementations. Moreover, the
MEMO contains scheduler primitives that implement
different strategies as to when to apply what rule. A

3

Group

Group

Group

Group

Group

Group

Physical Operator

Logical Operator

Group
Scan A TableScan SortedIDXScan Sort

TableScan SortedIDXScan

SortedIDXScanTableScan

Scan B

Scan C

Join Join

Join

Join

JoinJoin

Join

Join

Join

HashJoin

HashJoin

HashJoin HashJoin

SortMergeJoin

SortMergeJoinNestedLoop

NestedLoop Sort

HashJoin NestedLoop

12 1 2

1

3

4

5

6

7

2

64 2 4 2

41

42

41 41

1

34 34

1 4 14

2442

523 4 61

1 2 21

1.31.2 1.4

2.1 2.2 2.3

3.1 3.2 3.3 3.4

4.1 4.2 4.3

5.1 5.2 5.3 5.4 5.5

6.1 6.2 6.3 6.4 6.5 6.6

7.1 7.2 7.3 7.7 7.8

1.1

Figure 2: MEMO structure representing alternative solutions.

cost based pruning heuristic helps avoid expansion of
very costly alternatives that, given the current state of
optimization, cannot be a sub-plan of the optimal plan,
and therefore need not to be explored.

The optimal query plan is the one rooted in the most
cost effective operator in the root group. To extract this
plan, we follow the references to the children’s groups
and select the most cost effective operator of each group,
observing compatibility of physical properties. This
step is repeated until we reach the terminal operators.
Note, this plan was already implicitly used for costing
the best operator in the root group.

Though we described the use of transformations to
generate alternative sub-plans form an initial plan,
also other techniques like bottom-up enumeration [8]
could be used to populate a structure functionally
equivalent to the MEMO. The methods developed in
the following are independent of the algorithms to
construct the MEMO structure, and simply rely on this
structure as a compact representation of the candidate
plans considered by the optimizer. Some optimizers
by default discard suboptimal expressions. For our
technique to be most effective, it is useful to have the
optimizer keep each alternative generated, so they can
be freely used, regardless of their cost.

3 Counting and Unranking Query
Plans

Once all alternatives are generated, the MEMO struc-
ture contains all operators but does not keep track of
how many combinations of operators there are, and only
the optimal plan is completely assembled. That is, at
the end of the optimization, the MEMO contains a con-
cise and compact encoding of the complete search space
that was considered during the optimization.

To illustrate the counting framework, let us assume
a final state of the MEMO —after generation of
alternatives is complete— as given in Figure 3.

3.1 Preparatory Steps

In order to facilitate later operations we extract all
physical operators and materialize the links between
operators and their possible children. In Figure 3,
the materialized links for all children of the previous
example’s root (operator 7.7) are shown. The resulting
structure describes all possible execution plans that can
be rooted in this operator.

Due to the differences in physical properties some
operators of a group may qualify as potential children
while others do not. For instance operator 3.3 in
Figure 3, can have any operator from group 1 and 2 as
left and right child, respectively. Operator 3.4 however
can use only the darkened operators 2.3 and 1.3 or 1.4.

4

Group

Group

Group

Group

Group

Group

Group

Physical Operator

1

1 1

1

1 1

2

1 * 3 = 32 * 4 = 8

2 * 11 = 22

1

3

4

5

6

7

2

64 2 4 2

41

42

41 41

1

12

34 34

21

1.2 1.3 1.4

2.2 2.3

3.3 3.4

4.2 4.3

5.3 5.4 5.5

6.3 6.4 6.5 6.6

7.7 7.8

Figure 3: MEMO Structure with materialized links between operators and children, for possible plans
rooted in operator 7.7.

3.2 Counting Query Plans

We compute the total number of possible plans bottom-
up by computing the individual numbers of possible
plans that can be extracted from each operator. We
denote the number of children of operator v by |v|, and
the j-th alternative for the i-th child of v by w(v)

i,j . For

example, in Figure 3, take v = 7.7, then w(v)
1,1 = 4.2, and

w
(v)
2,2 = 3.4.

To compute the number of plans N(v) rooted in an
operator v, we first determine the number of possible
alternatives for each child i as

bv(i) =
∑
j

N(w(v)
i,j).

Operator v will take any of the available alternatives for
each child, independently, so the number of combined
choices is given by a product. The numbers of plans we
can generate using only the first k children is

Bv(k) =
k∏
i=1

bv(i).

Hence, the number of plans rooted in v is

N(v) =

{
1, if |v| = 0
Bv(|v|), otherwise

In Figure 3, this process is illustrated for operator
7.7. The upper right corner of operators has the
computation of the number of alternatives that can be
extracted using it as a root.

The total number of plans is the sum of possible plans
rooted in any of the root group’s operators:

N =
∑
i

N(vi), vi ∈ Groot

where Groot denotes the root group.
Computing the counts for operators takes linear time

on the size of the MEMO, as each operator has to be
visited exactly once.1 In practice, the time needed for
counting never exceeded 1 second even for large queries.

3.3 Unranking Plans
Before we describe the unranking mechanism in detail,
it might be helpful to give a short outline of the idea:

Starting with the root group and the rank r, we
choose an operator of the group to be the root of the
tree. We then compute a local rank for this operator.
This local rank for an operator v is in the interval
0, . . . , N(v).

1For the number of logical operators for the problem of join
reordering, see [8, 9]. There are a few physical operators for
each logical joins, implementing different alternatives of hash join,
merge join, and index lookups, so the number of physical joins is
usually a small multiple of the count of logical joins.

5

Now, assume operator v has children alternatives

{w(v)
1,1, . . . , w

(v)
1,j1
}, . . . , {w(v)

n,1, . . . , w
(v)
n,jn
},

with n = |v|. n sub-ranks are computed, and used in
each child choice to recursively unrank a sub-plans. The
resulting tree is assembled from unranked sub-plans,
using v as the root.

Detailed steps are described next.

1. Given a pair (r,G) consisting of a rank and a group
we determine which operator of this group becomes
the root of the sub-plan.

The first physical operator in the group covers the
plans 0, 1, . . . , N(v1)−1, the second N(v1), N(v1)+
1, . . . , N(v1)+N(v2)−1 and so on. Thus, the sought
operator has index

k = max{i|
∑
i

N(vi) ≤ r}.

vk becomes the root of the (sub-)plan. The local
rank rl of vk is

rl = r −
k−1∑
i=1

N(vi)

The local rank is necessary to determine the sub-
ranks for the children in the next step.

2. Using the concepts introduced in the previous
section, we can write the sub-rank for the i-th child
as

sv(i) =

Rv(i), if i = 1⌊
Rv(i)
Bv(i−1)

⌋
, else

with

Rv(i) =

{
rl , if i = |v|
Rv(i+ 1) mod Bv(i), otherwise

3. We add operator vk to plan and repeat this step
for each child, i.e. for the i-th child we unrank
(sv(i), Gi) where Gi is the group for this child.

4. We repeat steps 1 through 3 recursively until we
reach the terminal operators.

Unranking is in O(m), m being the number of
operators in the tree which is limited by the number
of groups in the MEMO. In terms of running time,
unranking takes only a small fraction of the time needed
for counting and is thus negligible.

4 Verifying Query Processors

In [11], Slutz presents a tool to generate SQL statements
probabilistically, to increase the test coverage of the
database engine. One simple advantage of this approach
is the sheer speed at which new, different tests are
generated, making it a very effective testing tool. The
same claim can be made for our schema of selection and
execution of multiple plans given a single query, which
increases even further the coverage of query optimizer
and execution logic.

In our current implementation in Microsoft’s SQL
Server, we extend the SQL syntax with an option to
specify what plan to use for the execution. The SQL
statement shown in Figure 4 causes the optimizer to
build the MEMO structure, count the possible plans,
and select plan number 8 for execution.

SELECT *
FROM Professors P, Students S, Enrolled E,

Courses C
WHERE S.Name = “Sam White” AND

S.SID = E.SID AND
E.Title = C.Title AND
C.By = P.PID

OPTION (USEPLAN 8)

Figure 4: Query with USEPLAN directive

Using scripting primitives, any given query can be ex-
tended easily with the OPTION clause and a loop con-
struct that iterates over a deterministically or randomly
selected set of possible plans. This way developers are
able to generate test cases for specific queries, instantly
extending existing test libraries substantially.

The main advantages of using these techniques in
testing are:

1. It is easy to generate large test sets for the engine
to scrutinize both correctness of the query execution
and its performance.

2. The results are simple to verify since all plans should
deliver the same outcome. The probability that
an incorrect result is overlooked is rather small as
opposed to conventional testing where each result
requires manual verification.

3. It is possible to test operator implementations that
the optimizer would not chose for the current state
of the test database.

4. Optimizer decisions and correct assembling of plans
by the optimizer can be easily verified. This point
is of particular importance when extending the set
of both operators and their implementations.

6

In a sample of 10000

Query #Plans Min◦ Mean◦ Max◦ costs◦≤ 2 costs◦≤ 10

Q5 68572049 1.14 17098 4034135 0.47% 12.15%
Q7 228107572 1.15 3318 178720 0.11% 44.55%
Q8 20112521035 1.01 111 609 1.11% 14.7%
Q9 67503460 1.10 4107 109825 0.11% 4.08%

Q5∗ 455348910 1.23 105418 1287700 0.29% 5.70%
Q7∗ 3907373772 1.48 1793052 1523086611 0.03% 2.79%
Q8∗ 4432829940185 1.31 28159718 32595091399 0.06% 1.85%
Q9∗ 250657568 1.30 38363213 35866936219 0.02% 7.00%

◦as factor of the optimum (=scaled costs); ∗including Cartesian products

Table 1: Parameters of search spaces of TPC-H join queries.

5. The verification and calibration of cost formulas is
no longer restricted to one single plan per query but
can also check cost values of sub-optimal plans.

6. The enumeration of complete search spaces for small
queries helps check and analyze optimizer principles
like cost-bound pruning and search strategies.

The features described are part of the routine testing
in the development of Microsoft’s SQL Server.

5 Cost Distributions

Besides their practical application to testing which was
the driving force behind our efforts, the techniques pre-
sented are of importance for the experimental analysis
of cost distributions, which we believe to be a promis-
ing area of research. Cost distributions capture the fre-
quency of plans of certain costs, and they can be in-
dicators of the difficulty of a query in that they show
how many plans of what quality there are in the whole
space.

Ioannidis and Kang were the first to report on cost
distributions explicitly, i.e. they performed a sampling
of the search space for the restricted problem of join
ordering [6]. They pointed out that knowledge of the
cost distribution helps understanding certain effects
occurring in optimization, specifically needed for the
tuning of probabilistic optimization techniques. They
developed a search space model based on this analysis
which provides useful insights into the working of
randomized join ordering. The distributions they found
were asymmetric and resembled Gamma-distributions
implying certain topological structures in the search
space. They attributed their findings to the particular
cost model used.

However the question as to what degree do those
results apply to the unrestricted, general case of query
optimization is still open so far.

Using our framework we are able to perform a fair
random sampling of costs in the search spaces that are

not limited to join ordering only but may include ar-
bitrary relational operators, various kinds of indexes
and aggregates, and even cover parallel processing. We
carried out numerous experiments with both standard
benchmark queries like TPC-H and customer queries
taken from various applications. Under the precondi-
tion that the queries were of sufficiently large size, i.e.,
involving more than 4 or 5 joins, the distributions ob-
tained were characterized by a relatively strong concen-
tration of costs relatively close to the optimum, asym-
metric, and often resembling exponential distributions.
These shapes correspond to Gamma-distributions with
shape parameter close to 1, which were also observed
by Ioannidis and Kang.

Figures presented here are the result of experiments
with TPC-H queries 5, 7, 8, 9, which are the join-
intensive queries of the benchmark, and have a larger
search space. Table 1 summarizes some of the relevant
values obtained. The first four rows consider a space
of alternatives that does not allow cross products;
while the last four rows allow cross products. Each
experiment consists of a random sample of 10,000 plans
from the space. All costs are normalized to the optimum
plan found by the optimizer, which has cost 1.0.2 The
”min” column shows that with a relatively small sample
from the space, it is possible to find plans that are pretty
close to the optimum. In fact, the percentage of plans
that are within twice the optimum cost is non-trivial.
Also, it should be noted that the results are slightly
different for the different queries, which vary in their
selectivity and other properties. But the same trends
can be seen in all the experiments.

Figure 5 shows histograms of the cost distributions
discussed. All plots show that almost all plans are

2The measure of a very large number of plans in the space
considered by the optimizer does not imply that a structure
requires as many bytes—recall that the plans are obtained
through composition and reuse of operators, from the compact
encoding of the MEMO structure.

7

TPC-H Q5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.00E+00 8.07E+05 1.61E+06 2.42E+06 3.23E+06 4.03E+06

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00E+00 3.05E+08 6.09E+08 9.14E+08 1.22E+09 1.52E+09

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00E+00 6.52E+09 1.30E+10 1.96E+10 2.61E+10 3.26E+10

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00E+00 7.17E+09 1.43E+10 2.15E+10 2.87E+10 3.59E+10

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

Figure 5: Cost distributions for TPC-H Query 5,7,8, and 9.

within the lower 10% of the entire cost range, suggesting
a Gamma-distribution of costs. Figure 6 shows zoom-
ins to the lower 50% sampled costs; that is, the part
of the distribution that makes up for 50% of the space
with the optimum as left edge. Still all four plots show
a very strong resemblance with Gamma distributions.
However, little disturbances are visible, particularly in
case of Query 5.

Finally, Figure 7 shows a further zoom, to the points
that are up to 50 times the cost of the optimum. In the
”macro” view, we find that plans tend to be clustered
to the left, close to the optimum solution. As we zoom
in to the dense area, the histograms get less smooth,
but they still seem to suggest Gamma distributions.

Our findings lend strong support to the assumption
that cost distributions of the form detailed above are
characteristic to query optimization and are of a much
more general nature than first suspected by Ioannidis
and Kang.

The distributions of queries that contained few

tables were of no particular shape but consisted only
of random noise (e.g. TPC-H 6). Although it is
hypothetically possible to devise queries of arbitrary
size where the cost distribution degenerates to a single
point—e.g. the cross product of several instances of
the same table, with a space restricted to be linear
joins—we never observed any such tendency in practical
instances or customer queries.

These results are only preliminary and further re-
search is needed to investigate this subject. Besides
the observation that cost distributions are generally of
a certain shape, it would be particularly interesting to
know what parameters are responsible in order to pre-
dict the distribution analytically.

6 Summary

Query optimizers select one execution plan out of a
large number of alternatives considered, and traditional
testing can verify only this one plan. In this paper
we developed primitives to generate either the whole

8

TPC-H Q5

0

500

1000

1500

2000

2500

0.00E+00 6.24E+01 1.25E+02 1.87E+02 2.50E+02 3.12E+02

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.00E+00 1.61E+02 3.23E+02 4.84E+02 6.45E+02 8.07E+02

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q8

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.00E+00 4.28E+03 8.55E+03 1.28E+04 1.71E+04 2.14E+04

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.00E+00 4.49E+03 8.99E+03 1.35E+04 1.80E+04 2.25E+04

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

Figure 6: Cost distributions for TPC-H Query 5,7,8, and 9; lower 50% sampled costs.

space of alternatives, or a uniform random sample
within that space. The problem is challenging because
cost-based optimizers do not represent entire execution
plans explicitly, but rather rely on data structures
that maximize sharing of common expressions between
candidate plans.

By opening up the space of alternatives to stocastic
testing, we are able to validate the optimizer logic, and
exercise the execution engine effectively. Unexpected
interactions between different transformation rules can
be seen, and execution iterators are tested in uncom-
mon, but possible configurations. This provides a valu-
able tool to certify and increase the quality of a query
processor, which would be difficult to match using only
hand-crafted examples, either written by testers or ob-
tained from customers.

Our validation tool is unintrusive to the workings of
the optimizer, and it can be implemented separately,
as long as it can access the table of alternatives
constructed during optimization. A small extension to

the language provides access to the functionality, so it
is easy to write scripts to do the extensive testing.

A further use of our enumeration and sampling
primitives is the study of the search space itself. What
was it all that the optimizer considered, and how does
it compare with the actual optimal plan? We were
able to obtain for the first time some initial results
on cost distributions of real search spaces. Results on
cost distributions are important for work on randomized
query optimization, and we are also interested in their
use to characterize the difficulty of particular problems
—and the optimization effort required to solve them.
This is a subject for future research.

References

[1] J. A. Blakeley, W. J. McKenna, and G. Graefe.
Experiences Building the Open OODB Query
Optimizer. In Proc. of the ACM SIGMOD Int’l.
Conf. on Management of Data, pages 287–296,
Washington, DC, USA, May 1993.

9

TPC-H Q5

0

50

100

150

200

250

300

350

0 10 20 30 40 50

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q7

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q8

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q9

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

Figure 7: Cost distributions for TPC-H Query 5,7,8, and 9; blow-up of the interval [0, 50].

[2] C. A. Galindo-Legaria, A. Pellenkoft, and M. L.
Kersten. Uniformly-distributed Random Genera-
tion of Join Orders. In Proc. of the Int’l. Conf. on
Database Theory, pages 280–293, Prague, Czech
Republic, January 1995.

[3] G. Graefe. The Cascades Framework for Query
Optimization. IEEE Data Engineering Bulletin,
18(3):19–29, September 1995.

[4] G. Graefe and D. J. DeWitt. The EXODUS
Optimizer Generator. In Proc. of the ACM
SIGMOD Int’l. Conf. on Management of Data,
pages 160–172, San Francisco, CA, USA, May
1987.

[5] G. Graefe and W. J. McKenna. The Volcano
Optimizer Generator: Extensibility and Efficient
Search. In Proc. of the IEEE Int’l. Conf. on
Data Engineering, pages 209–218, Vienna, Austria,
April 1993.

[6] Y. E. Ioannidis and Y. C. Kang. Left-Deep vs.
Bushy Trees: An Analysis of Strategy Spaces and
its Implications for Query Optimization. In Proc.
of the ACM SIGMOD Int’l. Conf. on Management
of Data, pages 168–177, Denver, CO, USA, May
1991.

[7] W. J. McKenna. Efficient Search in Extensible
Database Query Optimization: The Volcano Op-
timizer Generator. PhD thesis, University of Col-
orado, Boulder, CO, USA, 1993.

[8] K. Ono and G. M. Lohman. Measuring the Com-
plexity of Join Enumaration in Query Optimiza-
tion. In Proc. of the Int’l. Conf. on Very Large
Data Bases, pages 314–325, Brisbane, Australia,
August 1990.

[9] A. Pellenkoft, C. A. Galindo-Legaria, and M. L.
Kersten. The Complexity of Transformation-Based
Join Enumeration. In Proc. of the Int’l. Conf. on

1

Very Large Data Bases, pages 306–315, Athens,
Greece, September 1997.

[10] R. Ruskey and T. C. Hu. Generating Binary Tree
Lexicographically. SIAM Journal of Computation,
6(4):745–758, December 1977.

[11] D. Slutz. Massive Stochastic Testing of SQL. In
Proc. of the Int’l. Conf. on Very Large Data Bases,
pages 618–622, New York, NY, USA, September
1998.

1

