

Query Optimization Time: The New Bottleneck in Real-
time Analytics

 Rajkumar Sen Jack Chen Nika Jimsheleishvilli
 MemSQL Inc. MemSQL Inc. MemSQL Inc.
 534 4th Street, 534 4th Street, 534 4th Street,
 San Francisco, San Francisco, San Francisco,

 CA 94107, U.S.A CA 94107, U.S.A CA 94107, U.S.A

 raj@memsql.com jack@memsql.com nika@memsql.com

ABSTRACT
In the recent past, in-memory distributed database management
systems have become increasingly popular to manage and query
huge amounts of data. For an in-memory distributed database like
MemSQL, it is imperative that the analytical queries run fast. A
huge proportion of MemSQL’s customer workloads have ad-hoc
analytical queries that need to finish execution within a second or
a few seconds. This leaves us with very little time to perform
query optimization for complex queries involving several joins,
aggregations, sub-queries etc. Even for queries that are not ad-
hoc, a change in data statistics can trigger query re-optimization.
Query Optimization, if not done intelligently, could very well be
the bottleneck for such complex analytical queries that require
real-time response. In this paper, we outline some of the early
steps that we have taken to reduce the query optimization time
without sacrificing plan quality. We optimized the Enumerator
(the optimizer component that determines operator order), which
takes up bulk of the optimization time. Generating bushy plans
inside the Enumerator can be a bottleneck and so we used
heuristics to generate bushy plans via query rewrite. We also
implemented new distribution aware greedy heuristics to generate
a good starting candidate plan that significantly prunes out states
during search space analysis inside the Enumerator. We
demonstrate the effectiveness of these techniques over several
queries in TPC-H and TPC-DS benchmarks.

1. INTRODUCTION
 In the past few years, there has been a massive adoption of
distributed in-memory databases. The ability to store and query
huge amounts of data by parallelizing execution across nodes

leads to dramatic performance improvements in execution times
for analytical data workloads. A few industrial database systems
such as MemSQL [13], SAP HANA [9], Teradata/Aster [10],
Netezza [11], SQL Server PDW [6], Oracle Exadata [12], Pivotal
GreenPlum [7], Vertica [8], VectorWise [16] etc. have gained
popularity and are designed to run queries very fast.

1.1 Overview of MemSQL
 MemSQL [13] is a database for performing real time
transactions and analytics. By storing data in memory, MemSQL
can concurrently read and write data on a distributed system,
therefore enabling real-time analytics over an operational
database. Due to its innovative in-memory storage of data with
lock-free data structures and its extremely scalable distributed
architecture, MemSQL achieves sub-second query latencies
across very high volumes of data. MemSQL is designed to scale
on commodity hardware and does not require any special
hardware or instruction set to demonstrate its raw power.
MemSQL has a shared-nothing architecture, which means that no
two nodes in the distributed system share memory, disk or CPU.
MemSQL has a two-tiered [14] clustered architecture that consists
of two types of nodes: aggregator nodes and leaf nodes.
Aggregator nodes serve as mediators between the client and the
cluster, while leaf nodes provide the data storage and query
processing backbone of the system. Users route queries to the
aggregator nodes, where they are parsed, optimized, and planned.

1.2 Query Optimization in MemSQL
 MemSQL [13] is a database for real-time transactions and
analytics, which must support a wide variety of challenging
queries. A lot of queries that MemSQL executes are complex
queries from enterprise analytical workloads, involving joins
across star and snowflake schemas, sorting, grouping and
aggregations, and nested sub-queries. A considerable percentage
of those queries go through the process of query optimization
because they are either ad-hoc or the data statistics have changed
enough to trigger re-optimization. These queries often must be
answered within latencies measured in seconds or even
milliseconds despite being highly resource intensive. The goal of
the query optimizer is to find the best query execution plan for a
given query by enumerating a wide space of potential execution
paths and then selecting the plan with the least cost.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
IMDM '15, August 31 2015, Kohala Coast, HI, USA
Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM 978-1-4503-3713-7/15/08�$15.00
DOI: http://dx.doi.org/10.1145/2803140.2803148

The MemSQL Query Optimizer is a modular layer in the database
engine. The optimizer framework is divided into three major
modules:

(1) Rewriter: The Rewriter applies SQL-to-SQL rewrites on
the query. Depending on the characteristics of the query
and the rewrite itself, the rewrite decides whether to apply
the rewrite using heuristics or cost. The Rewriter is also
smart to apply certain rewrites in a top-down fashion while
applying others in a bottom-up manner. It also interleaves
rewrites that can mutually benefit from each other.

(2) Enumerator: The Enumerator is a central component of the
optimizer, which determines the distributed join order and
data movement decisions. It considers a wide search space
of various execution alternatives and selects the best join
order, based on the cost models of the database operations
and the network data movement operations. The
Enumerator is invoked by the Rewriter to cost transformed
queries when the Rewriter wants to perform a cost-based
query rewrite.

(3) Planner: The Planner converts the chosen logical
execution plan to a sequence of distributed query and data
movement operations.

1.3 Reducing Query Optimization time
 It is imperative for a system like MemSQL that the time spent
in optimizing a query should not overshadow the benefits of in-
memory and distributed query execution. Query Optimization
cannot afford to be the bottleneck in a system that is expected to
answer real-time analytic queries within a second or few second
(sometimes fraction of a second). At the same time, it is also
essential that the optimizer generate a good plan for complex
queries involving joins, aggregations, sub-queries etc. This poses
a new challenge in the process of query optimization. Query
Optimization, if not done intelligently, could very well be the
bottleneck for such complex analytical queries that require real-
time response. At MemSQL, we have taken some initial steps in
this direction

(a) Instead of generating bushy join trees inside the Enumerator,
we generate bushy join trees via query rewrite using heuristics
that are based on schema and query.

(b) Enumerate very fast by extensively pruning the operator order
search space. We implemented new data distribution aware
greedy heuristics to determine an initial candidate operator order
and use that to extensively prune states in the search space
analysis phase.

1.4 Related Work
 In the past, there have been several attempts to improve query
optimization time. Bruno et al. [19] propose several polynomial
heuristics that take into account selectivity, intermediate join size
etc. Some other previous work [20][21] also propose several
heuristics but all these techniques were designed in the days when
distributed query processing was not in vogue and therefore, they
do not take data distribution into consideration. Another area
where there have been attempts to improve query optimization
time is in parallelizing the Enumeration process. Han et al. in [23]
proposes several techniques to parallelize parts of the System-R
style enumerator and prototyped in PostGreSQL. Waas et al. in
[22] propose techniques to parallelize the enumeration process for
Cascade style enumerators. A very recent work by Heimel et al.

[24] suggests using GPU co-processor to speed up the query
optimization process.

2. BUSHY PLAN GENERATION
 As mentioned in the literature [3][4], generating Bushy Plans as
part of the join enumeration makes the problem of finding the
optimal join permutation extremely challenging and time-
consuming. MemSQL solves this problem by generating Bushy
Plans using heuristics and implementing it via query rewrite. A
direct advantage of generating bushy plans in this way is that we
would only consider bushy plans when there is a potential benefit.

2.1 Bushy Plans via Query Rewrite
 Even if the Enumerator considers only left-deep join trees, it is
easy to generate a query execution plan that is bushy in nature.
This can be done by creating a subselect/view/derived-table using
the query rewrite mechanism and using the view as the right side
of the join. The Enumerator works as usual; it treats the
view/derived-table as another base table.

 In particular, we use a query rewrite called Table Pushdown to
generate bushy plans in MemSQL. Table Pushdown is a rewrite
mechanism, which transforms a table joined with a subselect by
pushing the table inside the subselect. Table Pushdown has its
origins in Magic-set subquery de-correlation technique proposed
in [18]. For Table Pushdown, we primarily look for subselects,
which are joined with an outer table on its primary key. This
ensures that evaluating the join with the outer table does not
increase the size of the join, so that the transformed query plan is
unlikely to do worse. It also ensures that if the sub-select has any
grouping, as long as we have a join between the group-by
columns of the subselect and the primary key of the outer table,
pushing the table inside will not change the semantics of the
grouping. It is still possible to do Table Pushdown without a
primary key join, but it is less likely to be advantageous, and may
be more complex: for example, if the subselect has a group by, we
must add the primary key of the outer table to the group by to
preserve the correct grouping. The following sample query using
tables from TPC-H benchmark would help us understand it better.

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem,
 part,
 (
 SELECT 0.2 * Avg(l_quantity) AS s_avg,
 l_partkey AS s_partkey
 FROM lineitem
 GROUP BY l_partkey
) sub
WHERE p_partkey = l_partkey
 AND p_brand = 'Brand#43'
 AND p_container = 'LG PACK'
 AND p_partkey = s_partkey
 AND l_quantity < s_avg

After applying Table Pushdown rewrite, we get the following
equivalent query

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem,
 (
 SELECT 0.2 * Avg(l_quantity) AS s_avg,
 l_partkey AS s_partkey
 FROM lineitem,
 part
 WHERE p_brand = 'Brand#43'

 AND p_container = 'LG PACK'
 AND p_partkey = l_partkey
 GROUP BY l_partkey
) sub
WHERE s_partkey = l_partkey
 AND l_quantity < s_avg

Note that the join between the subselect and part is on p_partkey
= s_partkey, the primary key of part and the group by key of the
subselect. So we can easily push the join with part inside the
subselect, making it far cheaper.

2.2 Bushy Plan Heuristics
 Using smart heuristics, it is possible to consider particularly
promising bushy joins with relatively little cost. We can form one
or more subselects, each of which has an independent left-deep
join tree. The Enumerator chooses the best left-deep join tree
within each sub-select, as well as the outer select block. By
placing a sub-select on the right side of a join, we form a bushy
join tree. For example, consider a snowstorm shape query, where
there are multiple large fact tables, each joined against its
associated dimension table(s), which have single-table filters. The
best left-deep join plan generally must join each fact table after
the first by either joining it before its associated dimension tables,
when its size has not yet been reduced by their filters, or by
joining the dimension table first, an expensive Cartesian product
join. We may benefit greatly from a bushy join plan where we
join the fact table with its dimension tables, benefiting from their
filters, before joining it to the previous tables.

 Our strategy to generate bushy join plans is to try moving a
single table into a subselect, and then apply Table Pushdown to
push joined tables into that subselect, especially ones with
selective table filters. To determine which “seed” tables to
consider as candidate starting points for forming these subselects,
we use heuristics which often allow us to find helpful bushy join
plans on snowstorm query shapes, such as trying all tables which
are joined against the primary key of another table which has a
single-table filter. In a snowstorm-type query, this will find fact
tables, which are joined to the primary key of their associated
dimension tables where at least one of the dimension tables has a
single-table filter. This is exactly the type of situation where we
most benefit from generating a bushy join plan through Table
Pushdown. The Rewriter will generate different candidate bushy
join trees using these “seed” tables (one bushy view per seed
table) and it will use the Enumerator to cost each combination and
then (based on cost) decide which ones to retain. As an example,
consider TPC-DS [2] query 25:
SELECT …….
FROM store_sales ss,
 store_returns sr,
 catalog_sales cs,
 date_dim d1,
 date_dim d2,
 date_dim d3,
 store s,
 item i
WHERE d1.d_moy = 4
 AND d1.d_year = 2000
 AND d1.d_date_sk = ss_sold_date_sk
 AND i_item_sk = ss_item_sk
 AND s_store_sk = ss_store_sk
 AND ss_customer_sk = sr_customer_sk
 AND ss_item_sk = sr_item_sk
 AND ss_ticket_number = sr_ticket_number

 AND sr_returned_date_sk = d2.d_date_sk
 AND d2.d_moy BETWEEN 4 AND 10
 AND d2.d_year = 2000
 AND sr_customer_sk = cs_bill_customer_sk
 AND sr_item_sk = cs_item_sk
 AND cs_sold_date_sk = d3.d_date_sk
 AND d3.d_moy BETWEEN 4 AND 10
 AND d3.d_year = 2000
GROUP BY i_item_id,
 i_item_desc,
 s_store_id,
 s_store_name
ORDER BY i_item_id,
 i_item_desc,
 s_store_id,
 s_store_name
LIMIT 100;

Here, there are three fact tables (store_sales, store_returns, and
catalog_sales), each joined against one dimension table with a
single-table filter (date_dim). In the cluster setup described in
Section 4, the best left-deep join plan chosen by the Enumerator is
(d1, ss, sr, d2, s, i, d3, cs). Note that when we join d3 it is as a
Cartesian product join, because d3 only has join predicates with
cs, so this is expensive, but given the restriction to left-deep join
trees it is the better alternative to first joining cs without having
any of the filtering that comes from the single-table filters on d3.
We consider cs as the first “seed” table for forming a sub-select
for a bushy join plan because it is joined against the primary key
of d3, which has single-table filters. Applying Table Pushdown
pushes d3 into the subselect to join with cs, because it is joined on
its primary key and has table filters. Now, the Enumerator chooses
the best left-deep join plan in each select block, producing the
overall bushy join order (d1, ss, sr, d2, s, i, (d3, cs)). We also
consider ss and sr as “seed” tables, but these bushy views do not
improve the cost of the query and are rejected. The bushy join
plan runs 10.1 times as fast as the left-deep join plan. The
transformed query is

SELECT ……
FROM store_sales,
 store_returns,
 date_dim d1,
 date_dim d2,
 store,
 item,
 (SELECT *
 FROM catalog_sales,
 date_dim d3
 WHERE cs_sold_date_sk = d3.d_date_sk
 AND d3.d_moy BETWEEN 4 AND 10
 AND d3.d_year = 2000) sub
WHERE d1.d_moy = 4
 AND d1.d_year = 2000
 AND d1.d_date_sk = ss_sold_date_sk
 AND i_item_sk = ss_item_sk
 AND s_store_sk = ss_store_sk
 AND ss_customer_sk = sr_customer_sk
 AND ss_item_sk = sr_item_sk
 AND ss_ticket_number = sr_ticket_number
 AND sr_returned_date_sk = d2.d_date_sk
 AND d2.d_moy BETWEEN 4 AND 10
 AND d2.d_year = 2000
 AND sr_customer_sk = cs_bill_customer_sk
 AND sr_item_sk = cs_item_sk
GROUP BY i_item_id,
 i_item_desc,
 s_store_id,

 s_store_name
ORDER BY i_item_id,
 i_item_desc,
 s_store_id,
 s_store_name
LIMIT 100;

By considering these query shapes in the context of a query
transformation pushing tables into a subselect, rather than by
considering bushy join trees in the Enumerator, we are able to
take advantage of this same transformation for simple bushy join
trees as well as join trees with subselects, especially those with a
group by. For example, using Group-by Pushdown in conjunction
with Table Pushdown, we can transform the query by moving
some of the tables along with a group by into a subselect: we can
join a fact table together with its associated dimension tables, then
evaluate the group by, then join with the remaining tables. We are
now able to separately join the inner and outer tables, and then
join the two intermediate relations together, forming a bushy join
tree, which also contains a group by.

It is worthwhile to note here that the technique of using a query
rewrite mechanism to generate bushy join plans is not new and
has already been explored in [5]. However, the methods used to
achieve the same in [5] and in our Rewriter are totally different
from each other. The mechanism in [5] identifies fact (large),
dimension (small) and branch tables using table cardinalities,
statistics and join conditions. It then uses a combination of such
tables to form a view (sub-select). Instead, the MemSQL Rewriter
does not do any categorization of tables based on cardinalities and
statistics. It identifies a set of “seed” tables as candidate starting
points for the sub-selects based on a set of heuristics that the seed
table joins with a primary key of another table (without taking
into account the cardinality or any other statistic of the seed table).
Using the seed table and our Table Pushdown rewrite, we
construct the bushy view (subselect).

3. FAST ENUMERATION
 Since MemSQL is an in-memory distributed database that
satisfies real-time constraints on complex analytical queries, there
are several occasions where the optimizer has to come up with the
DQEP within very limited time budgets. For readers who are well
versed in the area of query optimization, it would not come as a
surprise that the enumeration component takes up bulk of the time
as it has to implement a search space analysis algorithm using
some pruning criteria. The greater the number of tables in the
query, the more time consuming the process becomes. Many
industrial query optimizers implement a left deep or right deep
join order enumeration algorithm to limit the number of states in
the search space and avoid a combinatorial explosion. That alone
is not enough for MemSQL because the join order is distributed
and addition of data movement operations increases the state
space further.

3.1 Enumerator Search Space Analysis
 The Enumerator optimizes the join plan within each select block,
but does not consider optimizations involving moving joins
between different select blocks, which is instead done by the
Rewriter. The Enumerator processes the select blocks bottom-up,
starting by optimizing the smallest expressions (subselects), and
then using the annotation information to progressively optimize
larger expressions (subselects that are parents of other sub-
selects). Eventually, the physical plan for the entire operator tree

is determined when the enumerator is done with the outermost
SELECT block. Even though a bottom-up approach is used, a top-
down enumeration should still be applicable with the same set of
pruning heuristics. Figure 1 depicts the pseudo-code for the
bottom-up enumerator.

As mentioned before, the set of possible plans is huge and the
search space size increases by the introduction of data movement
operations. To limit the combinatorial explosion, the Enumerator
implements a bottom-up System-R [1] style dynamic
programming based join order enumerator with interesting
properties. System-R style optimizers have the notion of
“interesting orders” to help optimize for physical properties like
sort order etc. MemSQL Optimizer Enumerator employs an
interesting property of “sharding distribution”; i.e. the set of keys
over which data is sharded in the distributed system. The

interesting shard keys are (1) predicate columns of equality joins
and (2) grouping columns.

3.2 Pruning & Pre-Processing
 Pruning is vital to finishing enumeration within a limited time
budget. In the ideal situation, we want to generate very good plans
using heuristics so that we can eliminate most of the join orders
during the enumeration process. The Enumerator, therefore, starts
by using a number of heuristics to generate a set of initial
candidate join orders. These candidate join orders are then cost
estimated, including the size, cost of individual joins and cost of
data movement operations. After costing the candidate join orders,
the cheapest one amongst them provides an upper bound on the
cost we need to consider in the dynamic programming, allowing
us to prune the search space. We can easily use multiple cheap
heuristics, since the cost of generating these initial join orders is
far smaller than the cost of the full enumeration. These heuristics,
depending on the schema and the query, can considerably reduce
the time spent in enumeration.
The very first candidate join order we consider is the given join
order as specified in the query, which often is meaningful, and
makes it very easy to give a hint to the optimizer. We also
consider a simple greedy order, joining the tables in increasing
order of size, preferring co-located joins over ones which require
data movement, and preferring primary key-foreign key joins over
other joins, and over Cartesian product joins. In addition, we
consider join orders from a rule-based greedy approach.

Enumerator(Select)
{
 Apply the Enumerator over all child sub-selects
 Use the heuristics to generate initial candidate join orders
 Select the best cost plan from the candidates

 Determine the best join order for Select, using the best
known cost to prune.
 Add optimizer annotations to the operator tree
}

Figure 1: Pseudo-code for the Enumerator

3.2.1 Rule-based Greedy Candidate Join order
 We use a relatively simple and fast rule-based greedy algorithm
to construct a candidate join order, which often is fairly
reasonable. The heuristics are based on primary key-foreign key
relationships and shard keys of the tables. The greedy algorithm
starts with a table that joins with the largest number of tables on
their primary keys, which is often a central fact table. (Note that
we can later swap the first and second tables to start with a
smaller dimension table in the left-deep join tree.) Then, we
greedily select the next table in the join using the following rules,
in order of precedence:

• Prefer a table that has a join with the current tables.
Among these, prefer a join on a primary or unique key
over any other join condition.

• If there are any remaining tables which can be joined
without data movement (i.e. the join and shard keys
match), prefer one of them, or any other table for which
the join method will preserve this partitioning (i.e.
where we would choose to broadcast or repartition that
table). The rationale allowing a next table, which does
have a shard/join key match, is that after joining with
the ones, which do, we would still in most
circumstances join it with the same data movement
method. By joining it first, we can still join the
shard/join key matching tables without movement later,
and we may benefit from a more selective join (the next
rule).

• Prefer a table that results in the smallest intermediate
join size, taking into account the selectivity of the
available join and table filters.

• Prefer the table that requires the least cost to join.
Consider TPC-H query 8 as an example:
SELECT …..
 FROM part,
 supplier,
 lineitem,
 orders,
 customer,
 nation n1,
 nation n2,
 region
 WHERE p_partkey = l_partkey
 AND s_suppkey = l_suppkey
 AND l_orderkey = o_orderkey
 AND o_custkey = c_custkey
 AND c_nationkey = n1.n_nationkey
 AND n1.n_regionkey = r_regionkey
 AND r_name = 'AMERICA'
 AND s_nationkey = n2.n_nationkey
 AND o_orderdate BETWEEN DATE
('1995-01-01') AND DATE ('1996-12-31')
 AND p_type = 'LARGE BRUSHED BRASS'
) AS all_nations
GROUP BY o_year
ORDER BY o_year

In this example, we will assume the cluster setup described in
Section 4, at scale factor 10. We begin with lineitem, because it is
joined against three tables on their primary keys: orders, supplier,
and part. All three of those tables are tied under the first rule,
which favors primary key joins. Of those tables, orders table has a
join and shard key match, so it can be joined without movement.

However, because part is small (especially after filters), the best
way to join part would be to broadcast it, which preserves the
partitioning of the join-so-far. Between orders and part, we prefer
part because it has a more selective filter, thus yielding a smaller
number of rows after the join. After joining part, we join with
orders next, because it has both a shard key match and table
filters. Now we have a primary key match with supplier and
customer, both of which we would join by repartitioning the left
side. Since supplier is smaller and thus cheaper, we join it next.
Next is nation n2 by broadcasting the right side, then customer
(by repartitioning the left side), then nation n1 by broadcasting
nation, and finally region by broadcasting right. This is in fact the
optimal distributed join plan. Finding it therefore allows us to
prune the vast majority of the Enumerator’s dynamic
programming search space. After finding this initial candidate join
order, we can prune 96% of the total dynamic programming
search space. Even if we already heuristically prune all Cartesian
product joins, it still prunes 83% of the remaining search space.
Of course, this example includes only eight tables, and with more
tables the search space would be exponentially larger, as well as
the number and proportion of bad intermediate join plans which
could be pruned, making high-quality pruning even more
important.
Our Rule-based Greedy Heuristic, driven by data distribution,
have very little in common with the ones proposed in [19], [20]
and [21]. Primarily, because the aim is to reduce the amount of
data that goes over the network and in order to achieve that, we
have to necessarily take into account the physical data distribution
(shard keys etc.). Our heuristics also differ in the fact that the
previous work [19] and [20] employed the heuristics over an
Enumerator that supports bushy trees and that created more
opportunities for applying their heuristics whereas our
Enumerator only accepts left-deep trees and that constrains the
applicability of several heuristics proposed in [19] and [20].

4. EXPERIMENTS
 For our experimental comparisons, we ran MemSQL on
Amazon EC2 [15], using the MemSQL row-store only. For TPC-
H and TPC-DS scale factor 10, we used a cluster of 1 aggregator
and 4 leaves, while for scale factor 100 we used a cluster of 1
aggregator and 32 leaves. All instances were m3.2xlarges, with 8
virtual CPU cores (on 2.5 GHz Intel Xeon E5-2670 v2
processors), 30 GB RAM, and two 80GB SSDs.

In order to prove the effectiveness of the Rule-Based Greedy
Heuristic, we ran queries from the TPC-H benchmark. Figure 2
shows the percentage of states that were pruned for six queries
from the benchmark. We also mention the number of tables for
each query to indicate the benefit of the heuristic with the increase
in the number of tables.

Query Tables Pruned %

Q3 3 25.00%

Q5 6 61.46%

Q7 6 72.92%

Q8 8 95.80%

Q9 6 84.90%

Q10 4 62.50%

E
n
u
m
e
r
a
t
o
r
(
S
e
l
e
c
t
)
{

/
*

P
r
e
-
P
r
o
c
e
s
s
i
n
g

S
t
e
p

(
O
n
l
y

f
o
r

O
u
t

Figure 2: Percentage of pruned states for Greedy

It can be seen that the heuristic allows us to prune a majority of
the states for Q5, Q7, Q8, Q9 and Q10. Also, the pruning
percentage is consistently on the higher side as the number of
tables in the query increases. In the case of Q3, there were only
twelve states and we pruned only three, thus making the pruning
percentage 25.00%. But Q3 only had three tables, and it did not
matter a lot even if we prune less since the total number of states
was only twelve.
It is worthwhile to mention that the aim of the pruning heuristics
is to come up with a reasonably good plan that helps us prune a
majority of the states; the heuristic plan does not have to be the
optimal plan. In case of Q5, the cost of the optimal plan is
4,359,746 while the cost of the heuristic plan is 102,177,223.
However, it still led to a good pruning percentage of 61.46%. The
percentage numbers for the other queries in TPC-H are not
mentioned here but for every query that has more than three tables
joined, the Enumerator was able to prune at least 60% of the states
and more than 80% in most of the cases.
Another experiment performed was to evaluate the performance
gained by introducing bushy join plans and also the overhead of
introducing bushy joins. The first metric used in this case was the
actual query response time (including optimization time). The
second metric was the added overhead of the Bushy Join query
rewrite. We ran several queries from the TPC-DS benchmark and
our heuristics enabled bushy joins for several queries. Figure 3
(Column 3) mentions the speedup in query response time over the
left-deep tree plan chosen by the optimizer when bushy plans
were turned off. Figure 3 (Column 2) mentions the overhead in
the Rewriter when bushy joins were enabled. In all cases, the
Rewriter spent a very minimal amount of time to perform the
Bushy Plan generation. It can be seen that the queries get a
tremendous speedup in execution at the cost of a very minimum
overhead in the Rewriter. This validates our assumption that it is
indeed a good idea to generate bushy joins outside of the
Enumerator. In total, fourteen queries in TPC-DS benchmark were
benefitted by Bushy Joins; speedups ranging from 2.5X to 10.1X.

5. CONCLUSION & FUTURE WORK
In this paper, we described some of the early steps that we have
taken to reduce the query optimization time for large analytical
queries. We proposed generating bushy plans via query rewrite
mechanism the rewrite itself triggered using heuristics that use
properties of the schema and the query. We proposed new
distribution aware greedy heuristics to prune out states in the
distributed join order selection inside the Enumerator. We also
demonstrated the effectiveness of these techniques with
experimental results. Our Greedy heuristic is able to prune a
majority of the states for queries that involve more tables. Our
Bushy Join technique gives us huge improvements in execution
time for several TPC-DS queries. The next steps for us would be

to investigate parallelizing the enumeration process based on ideas
in literature. We also want to refine the existing heuristics based
on more customer experiences, and run the Enumerator over
queries that require a huge number of tables to be joined.

6. REFERENCES
[1] P. Selinger et al “Access Path Selection in a Database

Management System”, Proc. ACM SIGMOD, 1979.

[2] R. Othayoth et al., “The Making of TPC-DS”, Proc. of the
32nd International Conf. on VLDB, Seoul, S. Korea, 2006.

[3] K. Ono and G. M. Lohman, “Measuring the Complexity of
Join Enumeration in Query Optimization”, Proc. Of 16th
VLDB, Conf., Brisbane, Australia, 1990.

[4] G. Moerkotte and W. Scheufele, “Constructing Optimal
Bushy Processing Trees for Join Queries is NP-hard”,
Technical Report, University of Mannheim 1996.

[5] R. Ahmed, R Sen, M Poess, S Chakkappen “Of Snowstorms
and Bushy Trees”, Proc. of the 40th VLDB Conference,
Hangzhao, China, 2014.

[6] S. Shankar et al. Query Optimization in Microsoft SQL
Server PDW. In SIGMOD, 2012

[7] M A. Soliman et al. : Orca: a modular query optimizer
architecture for big data. SIGMOD Conference 2014

[8] Lamb et al. :The Vertica Analytic Database: C-Store 7 Years
Later. PVLDB 5(12): 1790-1801 (2012)

[9] Farber et al. SAP HANA database: data management for
modern business applications. SIGMOD Record, 2011

[10] Teradata. http://www.teradata.com/Teradata-Aster-Database
[11] M. Singh and B. Leonhardi. Introduction to the IBM Netezza

Warehouse Appliance. In CASCON, 2011.

[12] R. Weiss. A Technical Overview of the Oracle Exadata
Database Machine and Exadata Storage Server, 2012.

[13] MemSQL. www.memsql.com

[14] MemSQL Two-Tiered Architecture.
http://docs.memsql.com/docs/latest/intro.html#two-tiered-
architecture

[15] Amazon EC2. http://aws.amazon.com/ec2/
[16] VectorWise. http://www.actian.com
[17] SAP HANA. http://hana.sap.com/abouthana.html
[18] P. Seshadri, H. Pirahesh, T.Y. Leung. “Complex Query

Decorrelation”, In ICDE, 1996

[19] Bruno et al. Polynomial Heuristics for Query Optimization.
In ICDE, 2010.

[20] A. Swami. “Optimization of large join queries: combining
heuristics and combinatorial techniques”. In SIGMOD 1989

[21] L. Fegaras. “A new heuristic for optimizing large queries”. In
DEXA, 1998

[22] F Waas, J Hellerstein. “Parallelizing Extensible Query
Optimizers”. In SIGMOD 2009.

[23] Han et al. “Parallelizing Query Optimization”. VLDB 2008.

[24] Heimel et al. “A First Step Towards GPU-assisted Query
Optimization”. In ADMS, 2012

Query Overhead SpeedUp (X)

Q15 13% 5.8

Q25 16% 10.1

Q46 12% 2.85

Figure 3: Bushy Join Speedup for TPC-DS

