
On the Correct and Complete Enumeration of the Core
Search Space

Guido Moerkotte
University of Mannheim
Mannheim, Germany

moerkotte@informatik.uni-
mannheim.de

Pit Fender
University of Mannheim
Mannheim, Germany

pfender@informatik.uni-
mannheim.de

Marius Eich
University of Mannheim
Mannheim, Germany

meich@informatik.uni-
mannheim.de

ABSTRACT

Reordering more than traditional joins (e.g. outerjoins, anti-
joins) requires some care, since not all reorderings are valid.
To prevent invalid plans, two approaches have been de-
scribed in the literature. We show that both approaches
still produce invalid plans.

We present three conflict detectors. All of them are (1)
correct, i.e., prevent invalid plans, (2) easier to understand
and implement than the previous (buggy) approaches, (3)
more flexible in the sense that the restriction that all pred-
icates must reject nulls is no longer required, and (4) ex-
tensible in the sense that it is easy to add new operators.
Further, the last of our three approaches is complete, i.e., it
allows for the generation of all valid plans within the core
search space.

Categories and Subject Descriptors

H.2.4 [Database Management]: query processing, rela-
tional databases

Keywords

query optimization, join ordering, non-inner joins

1. INTRODUCTION
For a DBMS that provides support for SQL, the query

optimizer is a crucial piece of software. The declarative na-
ture of a query allows its translation into many equivalent
plans. The process of choosing a low cost plan from the
alternatives is known as query optimization or, more specif-
ically, plan generation. Essential for the costs of a plan is its
ordering of join operations, since the runtime of plans with
different join orders can vary by several orders of magnitude.

When designing a plan generator, there are two approach-
es suitable to find an optimal join order: bottom-up join
enumeration via dynamic programming (DP) and top-down
join enumeration through memoization. Both approaches
face the same challenge: the considered plans must be valid,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

i.e., produce the correct result. This is simple if only joins
are considered, since they are commutative and associative.
Thus, every plan is a valid plan.

If more operators like left outerjoins, full outerjoins, an-
tijoins, semijoins, and groupjoins are considered then no
longer are all plans valid. In fact, in the literature we find
only two ways of preventing invalid plans in a DP-based plan
generator. The first approach (NEL/EEL) is by Rao, Lind-
say, Lohman, Pirahesh, and Simmen [20, 21]. Their conflict
detector allows for joins, left outerjoins and antijoins. The
second approach (SES/TES) is by Moerkotte and Neumann
[15]. As we will show in Sections 7 and 8, both approaches
generate INVALID PLANS. This leaves the implementer of
a plan generator with zero (correct) choices for a DP-based
plan generator (cf. Sec. 8).

We found this situation unbearable and decided to do
some research on it. Here, we present our results. The
highlight will be the conflict detector CD-C, which is

1. correct,

2. complete,

3. easy to understand and implement,

4. flexible, and

5. extensible.

Correct means that only valid plans are generated. Com-
plete means that all valid plans in the core search space
(defined in Sec. 3) are generated. As we will see, this is
not easily achieved. Obviously, easy to understand and im-
plement is a nice feature. CD-C is flexible in two respects.
First, NEL/EEL and SES/TES both require that all join
predicates reject nulls. In our approach, we eliminate this
restriction. Thus, within a query some predicates may re-
ject nulls, while others do not. This is important, since SQL
allows predicates which are not null rejecting (e.g., IS NOT
DISTINCT FROM). Second, we allow (as did NEL/EEL
and SES/TES) for complex join predicates to reference more
than two relations. Extensibility allows to extend the set
of binary operators considered by a conflict detector. We
achieve extensibility by a table-driven approach: several ta-
bles encode the properties of the operators, and CD-C sim-
ply explores these tables to detect conflicts and prevent in-
valid plans.

The rest of the paper is organized as follows. Sec. 2 defines
some preliminaries. Sec. 3 defines the core search space. In
order to do so, the essential properties of binary operators
are defined. Sec. 4 clearly states the goal of our paper and
uses the well-known algorithm DPsub to illustrate how a
conflict detector is integrated into DP-based plan generators.

493

Sec. 5 presents three conflict detectors. Each of them is cor-
rect, and the last one is complete. Sec. 7 contains the exper-
imental results. Sec. 8 discusses related work and presents
invalid plans generated by NEL/EEL and SES/TES. Sec. 9
concludes the paper.

2. PRELIMINARIES
This section contains basic definitions.
LOP denotes the set of logical binary operators we allow

for in our plans: join (), full outerjoin (), left outerjoin
(), left antijoin (), left semijoin (), and groupjoin ()
[16]. In Sec. 6, we also consider cross products ().

Null Rejecting for predicates is defined as follows [10]:

Definition 1. A predicate is null rejecting for a set of
attributes A if it evaluates to false or unknown on every
tuple in which all attributes in A are null.

For examples, we refer to the introduction and [10]. In the
literature, some synonyms for null rejecting are used: null
intolerant, strong, and strict.

Free Attributes and Tables F(·),FT(·). As usual,
we denote by A(e) the set of attributes/variables provid-
ed by some expression e and by F(e) the set of free at-
tributes/variables in some expression e. For example, if
p ≡ R.a + S.b = S.c + T.d, then F(p) = {R.a, S.b, S.c, T.d}.

Set of tables (T), and subtree operators (STO). For
a set of attributes A, T (A) denotes the set of tables to which
these attributes belong. We abbreviate T (F(e)) by FT(e).
For p we have T (F(e)) = {R, S, T}. Let ◦ be an operator
in the initial operator tree. We denote by left(◦) (right(◦))
its left (right) child. STO(◦) denotes the operators contained
in the operator subtree rooted at ◦. T (◦) denotes the set of
tables contained in the subtree rooted at ◦.

NEL/SES model the producer/consumer constraints.
[15] introduced the notion of the syntactic eligibility sets
(SES for short). The SES are attached to operators and con-
tain the set of tables that must be present before the op-
erator can be applied. The producer/consumer constraints
for a plan of the form plan(S1) ◦ plan(S2) are satisfied if
SES(◦) ⊆ S1 ∪ S2 holds. SES is also called NEL [21]. For
non-dependent operators, their SES is equal to the set of at-
tributes referenced in their predicate. For p as above, we
have SES(◦p) = {R, S, T}.

Degenerate Predicates contained in binary operators
are those that do not reference tables from both of their
inputs:

Definition 2. Let p be a predicate associated with a
binary operator ◦ and FT(p) the tables referenced by p.
Then, p is called degenerate if T (left(◦)) ∩ FT(p) = ∅ ∨
T (right(◦)) ∩ FT(p) = ∅ holds.

For example, in true the predicate true is degenerate. Fur-
ther, the expression is equivalent to a cross product. Since
degenerate predicates are troublesome, we assume until
Sec. 6 that no degenerate predicates (and, hence, no cross
products) occur. In Sec. 6, we relax this assumption. Fur-
ther, while presenting CalcSES and CD-C, we will already
take some care of degenerate predicates and cross products.

3. CORE SEARCH SPACE
This section defines the core search space. It is defined by

a set of transformation rules exploring all valid alternatives
to a given initial plan. Sec. 3.1 introduces these transforma-
tion rules and Sec. 3.2 defines the core search space.

3.1 Reorderability
Traditional join ordering approaches just reorder joins and

no other binary operators. Since the join is commutative
and associative, all plans are valid and there is no danger of
generating invalid plans. Real plan generators must reorder
more than just plain joins (e.g., , , , ,). In order to
describe the reorderability properties of these operators, we
need to carry over the notions of commutativity and asso-
ciativity to pairs of operators. It is easy to see that some of
these operators are commutative while others are not (see
Table 1). If some binary operator ◦ is commutative, we
denote this by comm(◦).

◦
comm(◦) + + - - - + -

Table 1: The comm(◦)-property

Associativity is just a little more complex. We say that
two not necessarily distinct operators ◦a and ◦b are associa-
tive if the following equivalence holds:

(e1 ◦
a
12 e2) ◦

b
23 e3 ≡ e1 ◦

a
12 (e2 ◦

b
23 e3). (1)

Here, we use the following convention. If operators do
not carry a predicate or other expressions, their subscripts
are immaterial and can be ignored. If an operator has
a predicate, then ij indicates that it references attributes
(and, thus, relations) from at most ei and ej . Thus, (for
1 ≤ i, j ≤ 3, i 6= j) this also indicates that F(e) ∩ ek = ∅
for 1 ≤ k ≤ 3 and k 6∈ {i, j}. This ensures that the equiv-
alence is correctly typed on both sides of the equivalence
sign. For example, the predicate of ◦a12 accesses tables from
e1 and e2, but not e3. Note that ◦a12 may carry a com-
plex predicate referencing more than two tables from e1 and
e2. We will see an example in the next subsection. If some
◦a123 referenced tables in all three expression ei, the expres-
sion on the left-hand side of Eqv. 1 would be invalid and
the right-hand side would be valid, but could not be trans-
formed into the left-hand side. For the purpose of conflict
detection, complex predicates accessing more than two re-
lations are no challenge, they just enlarge the set of tables
that must be present before the complex predicate can be
evaluated. The real challenge with complex predicates is to
efficiently enumerate the now more restricted search space
(cf. Sec. 6.1).

If for two operators ◦a and ◦b Eqv. 1 holds, we denote this
by assoc(◦a, ◦b). It is important to note that assoc is not
symmetric. Thus, the order of the operators (i.e., (◦a, ◦b)
vs. (◦b, ◦a)) is important. Therefore, we tie the order in
assoc to the syntactic pattern of Eqv. 1. It has to be the
same order as on the left-hand side of the equivalence. This
means that the left association has to be on the left-hand
side and, consequently, the right association on the right-
hand side of the equivalence.

If comm(◦a) and comm(◦b) holds, then assoc(◦a, ◦b) im-
plies assoc(◦b, ◦a) and vice versa, as can be seen from

(e1 ◦
a
12 e2) ◦

b
23 e3 ≡ e1 ◦

a
12 (e2 ◦

b
23 e3) assoc(◦a, ◦b)

≡ (e2 ◦
b
23 e3) ◦

a
12 e1 comm(◦a)

≡ (e3 ◦
b
23 e2) ◦

a
12 e1 comm(◦b)

≡ e3 ◦
b
23 (e2 ◦

a
12 e1) assoc(◦b, ◦a)

≡ (e2 ◦
a
12 e1) ◦

b
23 e3 comm(◦b)

≡ (e1 ◦
a
12 e2) ◦

b
23 e3 comm(◦a).

Table 2 summarizes the associativity properties. Be careful,
since assoc is not symmetric, ◦a must be looked up within

494

a row and ◦b within a column, not vice versa. Entries with
a footnote in Table 2 denote that assoc(◦a, ◦b) only holds if
the predicates reject nulls (see Def. 1). For more details, see
the corresponding footnotes at the bottom of Table 2.

◦a
◦b

+ + + + + - +
+ + + + + - +
- - - - - - -
- - - - - - -
- - - - +1 - -
- - - - +1 +2 -
- - - - - - -

1 if p23 rejects nulls on A(e2) (Eqv. 1)
2 if p12 and p23 reject nulls on A(e2) (Eqv. 1)

Table 2: The assoc(◦a, ◦b)-property

Are we done? No! Consider the following well-known
equivalence for the semijoin:

(e1 12e2) 13e3 ≡ (e1 13e3) 12e2.

It is easy to see that we cannot derive the plan on the right-
hand side from the plan on the left-hand side using asso-
ciativity and commutativity of : neither holds. Thus, we
need something new.

We define the left asscom property (l-asscom for short) as
follows:

(e1 ◦
a
12 e2) ◦

b
13 e3 ≡ (e1 ◦

b
13 e3) ◦

a
12 e2. (2)

We denote by l-asscom(◦a, ◦b) the fact that Eqv. 2 holds for
◦a and ◦b.

Analogously, we can define a right asscom property (r-
asscom):

e1 ◦
a
13 (e2 ◦

b
23 e3) ≡ e2 ◦

b
23 (e1 ◦

a
13 e3). (3)

First, note that l-asscom and r-asscom are symmetric prop-
erties, i.e.,

l-asscom(◦a, ◦b) ↔ l-asscom(◦b, ◦a),

r-asscom(◦a, ◦b) ↔ r-asscom(◦b, ◦a).

The following reasoning

(e1 ◦
a
12 e2) ◦

b
23 e3 ≡ (e2 ◦

a
12 e1) ◦

b
23 e3 if comm(◦a12)

≡ (e2 ◦
b
23 e3) ◦

a
12 e1 if l-asscom(◦a12, ◦

b
23)

≡ e1 ◦
a
12 (e2 ◦

b
23 e3) if comm(◦a12)

≡ (e1 ◦
a
12 e2) ◦

b
23 e3 if assoc(◦a12 , ◦b23)

implies that

comm(◦a12), assoc(◦a12, ◦
b
23) → l-asscom(◦a12, ◦

b
23),

comm(◦a12), l-asscom(◦a12, ◦
b
23) → assoc(◦a12, ◦

b
23).

Thus, the l-asscom property is implied by associativity and
commutativity, which explains its name. Quite similarly,
the implications

comm(◦b23), assoc(◦a12, ◦
b
23) → r-asscom(◦a12, ◦

b
23),

comm(◦b23), r-asscom(◦a12, ◦
b
23) → assoc(◦a12, ◦

b
23)

can be deduced.
Table 3 summarizes the l-/r-asscom properties. Again,

entries with a footnote require that the predicates reject

◦
+/+ +/+ +/- +/- +/- -/- +/-
+/+ +/+ +/- +/- +/- -/- +/-
+/- +/- +/- +/- +/- -/- +/-
+/- +/- +/- +/- +/- -/- +/-
+/- +/- +/- +/- +/- +1/- +/-
-/- -/- -/- -/- +2/- +3/+4 -/-
+/- +/- +/- +/- +/- -/- +/-

1 if p12 rejects nulls on A(e1) (Eqv. 2)
2 if p13 rejects nulls on A(e3) (Eqv. 2)
3 if p12 and p13 rejects nulls on A(e1) (Eqv. 2)
4 if p13 and p23 reject nulls on A(e3) (Eqv. 3)

Table 3: The l-/r-asscom(◦a, ◦b) property

assoc(◦a, ◦b)
F(pa) ∩A(e3) = ∅
F(pb) ∩ A(e1) = ∅

◦bpb

◦apa

e1 e2

e3
≡

◦apa

e1 ◦bpb

e2 e3

l-asscom(◦a, ◦b)
F(pa) ∩A(e3) = ∅
F(pb) ∩ A(e2) = ∅

◦bpb

◦apa

e1 e2

e3
≡

◦apa

◦bpb

e1 e3

e2

r-asscom(◦a, ◦b)
F(pa) ∩A(e2) = ∅
F(pb) ∩ A(e1) = ∅

◦apa

e1 ◦bpb

e2 e3

≡

◦bpb

e2 ◦apa

e1 e3

Figure 1: Transformation rules for assoc, l-asscom,
and r-asscom

nulls. We assume that calls to assoc and l/r-asscom take
care of this.

If an entry in one of the Tables 1 to 3 is marked with − or
its condition in the footnote is violated, we say that there is
a conflict regarding this property. A conflict means that the
application of the corresponding transformation rule results
in an invalid plan.

3.2 Definition of the Core Search Space
Typically, for a given input query, the query optimizer

constructs an initial operator tree. In a transformation-
based plan generator, all valid plans are then generated by
exhaustively applying transformations to the initial plan.

If commutativity, associativity, l-asscom, and/or r-asscom
hold, this gives rise to the according transformations. Ex-
cept for commutativity, these are shown in Fig. 1. All equiv-
alences can be applied from left to right and from right to
left. We define the core search space for a given initial plan
to be the set of plans generated by exhaustively applying
these four transformations to the initial plan.

Fig. 2 shows a larger operator tree. Let us consider several
possibilities for the predicates of the top-most operator ◦b.
If pb ≡ R0.a + R1.a + R2.a + R3.a = R4.a ∗ R5.a, then
no reordering is possible, since all tables are referenced. If
pb ≡ R2.a+R3.a = R4.a∗R5.a, then applying associativity is
possible from a syntactic point of view, since F(pb)∩ T (e1)
becomes in our example {R2, R3, R4, R5} ∩ {R0, R1} = ∅.
In fact, although the predicate is complex, it references only
tables below ◦2 and ◦3, whose subtrees correspond to e2

and e3 in Fig. 1. Accordingly, we would write ◦b12. Clearly,

495

◦bpb

◦apa

◦1p1

R0 R1

◦2p2

R2 R3

◦3p3

R4 R5

Figure 2: Example operator tree

comm (ob)
e3 o

b

13
(e2 o

a

12
e1)(e2 o

a

12
e1) o

b

13
e3

comm (ob)
(e1 o

a

12
e2) o

b

13
e3 e3 o

b

13
(e1 o

a

12
e2)

comm (oa)

l-asscomm (oa
, o

b)

comm (oa)
(e1 o

b

13
e3) o

a

12
e2 e2 o

a

12
(e1 o

b

13
e3)

comm (ob)

comm (oa)
(e3 o

b

13
e1) o

a

12
e2 e2 o

a

12
(e3 o

b

13
e1)

comm (oa)

comm (ob)

r-asscomm (oa
, o

b)

assoc (ob
, o

a)

assoc (oa
, o

b)

Figure 3: Core search space example

a binary predicate, e.g., pb ≡ R0.a = R5.a, generates the
largest search space and, thus, the highest opportunity for
generating invalid plans and missing valid plans. This is the
reason why we will restrict ourselves to binary predicates in
Sec. 7.

Taking a look at the syntactic constraints shown in Fig. 1,
we see that for non-degenerate predicates (see Def. 2) the
following observation holds:

Observation 1. The syntactic constraints for non-dege-
nerate predicates imply that (1) either associativity or l-
asscom can be applied for left nesting but not both, and
(2) either associativity or r-asscom can be applied for right-
nesting but not both.

Thus, non-degenerate predicates simplify the handling of
conflicts, since we have to take care of either associativity
or l/r-asscom and never both at the same time.

Fig. 3 shows an example of the core seach space for the
expression (e1 ◦

a
12 e2)◦

b
13 e3. We observe that any expression

in the core search space can be reached by a sequence of at
most two applications of commutativity, at most one appli-
cation of associativity, l-asscom, or r-asscom, finally followed
by at most two applications of commutativity. The total
number of applications of commutativity can be restricted
to 2. More specifically, one application of commutativity to
each operator in the plan suffices.

DPsube

� Input: a set of relations R = {R0, . . . , Rn−1}
a set of operators O with associated
conflict descriptors

� Output: an optimal bushy operator tree
1 for all Ri ∈ R
2 BestPlan({Ri}) ← Ri

3 for 1 ≤ i < 2n − 1 ascending
4 S ← {Rj ∈ R|(⌊i/2j⌋mod 2) = 1}
5 if |S| = 1
6 continue
7 for all S1 ⊂ S, S1 6= ∅
8 S2 ← S \ S1

9 for all ◦ ∈ O
10 if applicable(◦, S1, S2)
11 build and handle the plans

BestPlan(S1) ◦ BestPlan(S2)
12 if comm(◦)
13 build and handle the plans

BestPlan(S2) ◦ BestPlan(S1)
14 return BestPlan(R)

Figure 4: Pseudocode for DPsube

4. GOAL OF THE PAPER
This section discusses how the complete core search space

can be explored by a plan generator.
Therefore, we extend the simple dynamic programming

algorithm DPsub [14] to one called DPsube. The resulting
pseudo-code is shown in Fig. 4. As input, DPsube takes
the set of n relations R = {R0, . . . , Rn−1} and the set of
operators O containing n− 1 operators which DPsube has
to apply in order to build a plan. First, it constructs a plan
for single relations (Line 2). Then, it enumerates all subsets
S of relations by decoding an integer, which is interpreted as
a bitvector encoding a subset of the set of relations. For each
set of relations S, DPsube then enumerates all subsets S1 of
S (Line 7) and their complements S2 (Line 8). Both of them
must be non-empty. For each pair (S1, S2), all operators ◦ in
O are then tested for applicability via a call to applicable

(Line 10). If the operator is applicable, the best plans P1 for
S1 and P2 for S2 are recalled from the dynamic programming
table (DP-table for short) via BestPlan and combined into
the plan P1 ◦ P2 for S (Line 11). The costs of this plan
are then calculated, and if this plan is cheaper than the
existing one, it is added to the DP-table. Since this piece
of code is straightforward, we do not detail on it. Note
that only if an operator is applicable, DPsube also considers
commutativity. Thus, the plan P2 ◦ P1 is built and handled
if comm(◦) (Line 12) holds. The goal of the paper is to
provide different implementations for applicable.

5. CONFLICT DETECTION

5.1 Outline
In order to open our approach for new algebraic operators,

we use a table-driven approach. We use four tables which
contain the properties of the algebraic operators. These con-
tain the information of Tables 1, 2 and 3. (The latter in-
cludes two tables.) Extending our approach only requires to
extend these tables!

We develop our final approach in three steps. In each step,
we introduce one of our conflict detectors CD-A, CD-B, and

496

CD-C. For these conflict detectors, we present a complete
bundle consisting of three components:

1. a representation for conflicts,

2. a conflict detection (CD) algorithm, which detects the
conflicts in the initial operator tree and produces a
conflict representation for each operator contained in
it, and

3. the implementation of applicable, which uses the
conflict representation for an operator and then deter-
mines whether the operator can be applied in a given
context.

Each of the subsequently discussed bundles is correct, but
only the last one is complete.

The main idea in the following (the same as in [15, 20,
21]) is to extend the producer/consumer constraints mod-
eled through SES (NEL) by adding more tables to it in or-
der to restrict the explored search space to valid plans only.
This is possible, since SES is used to express the syntactic
constraints: all referenced attributes/tables must be present
before an expression can be evaluated. Therefore, if we add
more tables, the explored search space becomes smaller.

Let us now define SES. First of all, SES contains the ta-
bles referenced by a predicate. If some operator like the
groupjoin [16] introduces new attributes, they are treat-
ed as if they belonged to a new table. This new table is
present in the set of accessible tables after the groupjoin
has been applied. Let R be a table and ◦p any of our binary
operators except a groupjoin. We give the pseudo code for
the SES calculation:

CalcSES(◦p)

� Input: binary operator ◦ ∈ LOP carrying predicate p
1 if ◦p ∈ { , , , , } � and later: cross product
2 return

S

R∈FT(p){R} ∩ T (◦p)

3 elseif ◦p;a1:e1,...,an:en
∈ { }

4 return
S

R∈FT(p)∪FT(ei)
{R} ∩ T (◦p)

5 else � cross product
6 return ∅

In case of non-degenerate predicates and in the absence
of dependent operators (cf. Sec. 6.3) and table functions,
CalcSES(◦p) = FT(p). Note that CalcSES handles cross
products, which we will not need until Sec. 6.2.

All conflict representations have a component called total
eligibility set (TES for short) which contains a set of tables.
We always initialize TES with SES as calculated above. Fur-
ther, we assume that our conflict representation has two
accessors L-TES and R-TES returning

L-TES(◦) := TES(◦) ∩ T (left(◦)) and

R-TES(◦) := TES(◦) ∩ T (right(◦)).

This distinction is necessary since we want to consider com-
mutativity explicitly, and in those cases where commuta-
tivity does not hold, we want to prevent operators which
occurred on the left-hand side of an operator from moving
to its right-hand side or vice versa.

All our implementations of applicable conjunctively in-
clude the test L-TES ⊆ S1 ∧ R-TES ⊆ S2.

5.2 Approach CD-A
Let us first consider a simple operator tree with only two

operators. Take a look at the upper half of Fig. 5. There,

◦b

◦a

e1 e2

e3

assoc
=⇒

◦a

e1 ◦b

e2 e3

if ¬assoc(◦a, ◦b) then TES(◦b) ∪= T (e1)

l-asscom
=⇒

◦a

◦b

e1 e3

e2

if ¬l-asscom(◦a, ◦b) then TES(◦b) ∪= T (e2)

◦b

e3 ◦a

e1 e2

assoc
=⇒

◦a

◦b

e3 e1

e2

if ¬assoc(◦b, ◦a) then TES(◦b) ∪= T (e2)

r-asscom
=⇒

◦a

e1 ◦b

e3 e2

if ¬r-asscom(◦b, ◦a) then TES(◦b) ∪= T (e1)

Figure 5: Calculating TES for simple operator trees

the application of associativity and l-asscom to some plan
is illustrated. In case that associativity does not hold, we
add T (e1) to TES(◦b). This prevents the plan on the right-
hand side of the arrow marked with assoc. It does not,
however, prevent the plan on the right-hand side of the arrow
marked with l-asscom. Similarly, adding T (e2) to TES(◦b)
does prevent the plan resulting from l-asscom but not the
plan resulting from applying associativity. The lower part
of Fig. 5 shows the actions needed if an operator is nested
in the right argument. Again, we can precisely prevent the
invalid plans.

There is only one more problem we have to solve. It occurs
if a conflicting operator ◦a is not a direct child of ◦b, but
instead a descendant situated deeper in the operator tree.
This is possible since in general, the ei are trees themselves.
Some reordering could possibly move a conflicting operator
◦a up to the top of an argument subtree.

Thus, we have to calculate the total eligibility sets bottom-
up by applying CD-A to every operator ◦b in the operator
tree. The pseudo code of CD-A is:

CD-A(◦b)

� Input: operator ◦b

1 TES(◦b)← CalcSES(◦b)
2 for ∀ ◦a ∈ STO(left(◦b))
3 if ¬assoc(◦a, ◦b)
4 TES(◦b)← TES(◦b) ∪ T (left(◦a))
5 if ¬l-asscom(◦a, ◦b)
6 TES(◦b)← TES(◦b) ∪ T (right(◦a))
7 for ∀ ◦a ∈ STO(right(◦b))
8 if ¬assoc(◦b, ◦a)
9 TES(◦b)← TES(◦b) ∪ T (right(◦a))

10 if ¬r-asscom(◦b, ◦a)
11 TES(◦b)← TES(◦b) ∪ T (left(◦a))

497

If we do not have degenerate predicates and cross products
among the operators in the initial operator tree, we can
safely use TES instead of T .

The conflict representation comprises the TES for every
operator. The pseudo code for applicable is:

applicableA(◦, S1, S2)

� Input: binary operator ◦, set of tables S1, S2

1 return L-TES(◦) ⊆ S1 ∧ R-TES(◦) ⊆ S2

Let us now see why applicableA is correct. We have to
show that it prevents the generation of bad plans. Take
the ¬assoc case with nesting on the left. Let the original
operator tree contain (e1 ◦

a
12 e2) ◦

b
23 e3. Define the set of

tables R2 := FT(◦b23) ∩ T (left(◦b23)) and R3 := FT(◦b23) ∩
T (right(◦b23)). Then SES(◦b23) = R2 ∪ R3. Further, since
¬assoc(◦a12, ◦

b
23), we have

TES(◦b23) ⊇ SES(◦b23) ∪ T (e1).

Note that we used ⊇ and not equality, since due to other
conflicts, TES(◦b) could be larger. Next, we observe that

L-TES(◦b23) ⊇ (SES(◦b23) ∪ T (e1)) ∩ T (left(◦b23))

⊇ (SES(◦b23) ∩ T (left(◦b23))) ∪

(T (e1) ∩ T (left(◦b23)))

⊇ ((R2 ∪R3) ∩ T (left(◦b23))) ∪ (T (e1))

⊇ R2 ∪ T (e1)

and

R-TES(◦b23) ⊇ (SES(◦b23) ∪ T (e1)) ∩ T (right(◦b23))

⊇ SES(◦b23) ∩ T (right(◦b23))

⊇ R3.

Let S1, S2 be a pair of two arbitrary subsets of tables gen-
erated by DPsube. Then, the call applicable(◦b, S1,S2)
checks

L-TES(◦b23) ⊆ S1 and

R-TES(◦b23) ⊆ S2,

and fails if S1 6⊇ T (e1). Thus, neither e2 ◦
b
23 e3 nor e3 ◦

b
23 e2

will be generated and, hence, e1 ◦
a
12 (e2 ◦

b
23 e3) will not be

generated either. Similarly, if ¬l-asscom(◦a, ◦b), L-TES(◦b)
will contain T (e2), and the test prevents the generation of
e1◦

be3. The remaining two cases can be checked analogously.
From this discussion, it follows that DPsube generates on-

ly valid plans. However, it does not generate all valid plans.
It is thus incomplete, as we can see from the example shown
in Fig. 6. Since ¬assoc(0,1, 2,3), TES(2,3) contains R0

(line 4 of CD-A(2,3)) . Thus, neither of the valid plans
Plan 1 nor Plan 2 nor any of those derived from applying
join commutativity to them will be generated.

5.3 Approach CD-B
In order to avoid this problem, we introduce the more

flexible mechanism of conflict rules. A conflict rule (CR) is
simply a pair of table sets denoted by T1 → T2. With every
operator node ◦ in the operator tree, we associate a set of
conflict rules. Thus, our conflict representation now asso-
ciates a TES and a set of conflict rules with every operator.

2,3

0,2

0,1

R0 R1

R2

R3 0,2

0,1

R0 R1

2,3

R2 R3

0,1

0,2

R0 2,3

R2 R3

R1

initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

◦b

◦a

e1 e2

e3

assoc
=⇒

◦a

e1 ◦b

e2 e3

if ¬assoc(◦a, ◦b) then CR(◦b) + = T (e2)→ T (e1)

l-asscom
=⇒

◦a

◦b

e1 e3

e2

if ¬l-asscom(◦a, ◦b) then CR(◦b) + = T (e1)→ T (e2)

◦b

e3 ◦a

e1 e2

assoc
=⇒

◦a

◦b

e3 e1

e2

¬assoc(◦b, ◦a) then CR(◦b) + = T (e1)→ T (e2)

r-asscom
=⇒

◦a

e1 ◦b

e3 e2

if ¬r-asscom(◦b, ◦a) then CR(◦b) + = T (e2)→ T (e1)

Figure 7: Calculating conflict rules for simple oper-
ator trees

Before we introduce their construction, let us illustrate
their role in applicable(◦, S1, S2). A conflict rule T1 → T2

is obeyed for S1 and S2 if with S = S1 ∪ S2 the following
condition holds:

T1 ∩ S 6= ∅ =⇒ T2 ⊆ S.

Thus, if T1 contains a single table from S, S must contain
all tables in T2. Keeping this in mind, it is easy to see that
the invalid plans are indeed prevented by the rules shown in
Fig. 7 if they are obeyed. As we will see, the TES is restricted
to SES in CD-B. Thus, the conflict rules allow for more flex-
ibility: whereas the TES containment test is unconditioned,
conflict rules represent a conditioned containment test.

The pseudo code for the new conflict detection is given in
Fig. 8 with CD-B. As before, we apply CD-B bottom-up to
every operator ◦b in the tree.

With the conflict rules, we need a new test for applicabili-
ty. Now, the test given in Fig. 9 with applicableB/C(◦, S1,
S2) checks for two conditions:

1. L-TES ⊆ S1 ∧ R-TES ⊆ S2 must hold (line 1), and

2. all rules in the rule set of ◦ must be obeyed (Lines 2-6).

498

CD-B(◦b)

� Input: operator ◦b

1 TES(◦b)← CalcSES(◦b)
2 for ∀ ◦a ∈ STO(left(◦b))
3 if ¬assoc(◦a, ◦b)
4 CR(◦b) + = T (right(◦a))→ T (left(◦a))
5 if ¬l-asscom(◦a, ◦b)
6 CR(◦b) + = T (left(◦a))→ T (right(◦a))
7 for ∀ ◦a ∈ STO(right(◦b))
8 if ¬assoc(◦b, ◦a)
9 CR(◦b) + = T (left(◦a))→ T (right(◦a))

10 if ¬r-asscom(◦b, ◦a)
11 CR(◦b) + = T (right(◦a))→ T (left(◦a))

Figure 8: Pseudocode for CD-B

Note that now all plans in Fig. 6 can be generated.

applicableB/C(◦, S1, S2)

� Input: binary operator ◦, set of tables S1, S2

1 if L-TES(◦) ⊆ S1 ∧ R-TES(◦) ⊆ S2

2 for all (T1 → T2) ∈ CR(◦)
3 if T1 ∩ (S1 ∪ S2) 6= ∅
4 if T2 6⊆ (S1 ∪ S2)
5 return false

6 return true

7 else
8 return false

Figure 9: Pseudocode for applicableB/C

Again, this implementation of applicable is correct but
not complete, as the example in Fig. 10 shows. Since
assoc(0,1, 1,3), assoc(1,2, 1,3) and l-asscom(1,2, 1,3),
the only conflict occurs due to ¬r-asscom(0,1, 1,3). Thus,

T ({R3})→ T ({R1, R2}) ∈ CR(0,1).

The latter rule prevents the plan on the right-hand side
of Fig. 10. Note that this is overly careful, since R2 6∈
FT(1,3). In fact, r-asscom would never be applied in
this example, since 0,1 accesses table R1, and applying r-
asscom would thus destroy the producer/consumer relation-
ship (FT(0,1)∩{R1, R2} 6= ∅) already checked by SES(0,1).

5.4 Approach CD-C
The approach CD-C differs from CD-B only by the cal-

culation of the conflict rules. The conflict representation
and the procedure applicable remain the same. The idea
is to learn from the above example and include only those
tables under operator ◦a which occur in the predicate. How-
ever, we have to be careful to include special cases for de-

0,1

R0 1,3

1,2

R1 R2

R3

1,2

0,1

R0 1,3

R1 R3

R2

initial plan valid plan prevented

Figure 10: Example for incompleteness of CD-B

generate predicates and cross products. The pseudo code
is given with CD-C in Fig. 11. Let us revisit the exam-
ple of Section 5.3. Since the only conflict occurs due to
¬r-asscom(0,1, 1,3), the rule set CR(0,1) contains (Line 21
of CD-C) T ({R3}) → T ({R1}) ∈ CR(0,1). As a conse-
quence, the plan on the right of Fig. 10 will not be prevented
anymore.

CD-C(◦b)

� Input: operator ◦b

1 TES(◦b)← CalcSES(◦b)
2 for ∀ ◦a ∈ STO(left(◦b))
3 if ¬assoc(◦a, ◦b)
4 if T (left(◦a)) ∩ FT(◦a) 6= ∅
5 CR(◦b) + = T (right(◦a))→

T (left(◦a)) ∩ FT(◦a)
6 else
7 CR(◦b) + = T (right(◦a))→ T (left(◦a))
8 if ¬l-asscom(◦a, ◦b)
9 if T (right(◦a)) ∩ FT(◦a) 6= ∅

10 CR(◦b) + = T (left(◦a))→
T (right(◦a)) ∩ FT(◦a)

11 else
12 CR(◦b) + = T (left(◦a))→ T (right(◦a))
13 for ∀ ◦a ∈ STO(right(◦b))
14 if ¬assoc(◦b, ◦a)
15 if T (right(◦a)) ∩ FT(◦a) 6= ∅
16 CR(◦b) + = T (left(◦a))→

T (right(◦a)) ∩ FT(◦a)
17 else
18 CR(◦b) + = T (left(◦a))→ T (right(◦a))
19 if ¬r-asscom(◦b, ◦a)
20 if T (left(◦a)) ∩ FT(◦a) 6= ∅
21 CR(◦b) + = T (right(◦a))→

T (left(◦a)) ∩ FT(◦a)
22 else
23 CR(◦b) + = T (right(◦a))→ T (left(◦a))

Figure 11: Pseudocode for CD-C

Correctness of CD-C. We show that applicableB/C

for the ¬ assoc case with nesting on the left is correct. The
remaining cases can be proven similarly. Let the original
operator tree contain (e1 ◦

a
12 e2) ◦

b
23 e3. Since ¬assoc(◦a, ◦b)

(line 3 of CD-C(◦b)), one of the following (line 5 or line 7)
holds:

CR(◦b) + = T (e2)→ T (e1) or

+ = T (e2)→ T (e′1) with e′1 ⊂ e1 ∧ e′1 6= ∅.

The second case subsumes the first case. Thus, it suffices to
show the second case. To construct e1 ◦

a
12 (e2 ◦

b
23 e3) (right

hand side of Eqv. 1), (e2 ◦
b
23 e3) must be constructed first.

We show that applicableB/C(◦b, S1, S2) with either (A)
T (e2) ⊆ S1 ∧ T (e3) ⊆ S2 or (B) T (e3) ⊆ S1 ∧ T (e2) ⊆ S2

returns false. If the test in line 1 fails, false is returned
and we are done. Otherwise, L-TES(◦) ⊆ S1 holds. Note
that since we are trying to construct (e2 ◦

b
23 e3), T (e1) ∩

(S1 ∪ S2) = ∅ must hold. On the other hand, the conflict
rule T1 → T2 with T1 = T (e2) and T2 ⊇ T (e′1) is contained
in CR(◦b). Thus, for this rule T1 → T2: T1 ∩ (S1 ∪ S2) 6= ∅
and T2 6⊆ (S1 ∪ S2) hold in both cases (A) and (B). This

499

cleary shows that false is returned. Hence, CD-C and,
consequently, CD-B are correct.

5.5 Rule Simplification
It is well-known that larger TES have a positive impact on

the runtime of plan generators like DPhyp [15] or TDMc-

CHyp [7] (see also Sec. 6). Further, reducing the number of
rules slightly decreases plan generation time. Thus, applying
laws like

R1 → R2, R1 → R3 ≡ R1 → R2 ∪R3

R1 → R2, R3 → R2 ≡ R1 ∪ R3 → R2

can be used to rearrange the rule set for efficient evaluation.
However, we are much more interested in eliminating rules
altogether by adding their right-hand side to the TES. For
some operator ◦, consider a conflict rule R1 → R2. If R1 ∩
TES(◦) 6= ∅, we can add R2 to TES due to the existential
quantifier on the left-hand side of a rule in the definition of
obey. Further, if R2 ⊆ TES(◦), we can safely eliminate the
rule. Applying these rearrangements is often possible, since
both T (left(◦a)) ∩ FT(◦) and T (right(◦a)) ∩ FT(◦) will be
non-empty.

6. MINOR ISSUES

6.1 Larger TES, Faster Plan Generation
Typically, a query graph is used to model the produc-

er/consumer constraints defined in a given input query, and,
thus, to represent the possible search space. For queries with
complex predicates, i.e., predicates that reference more than
two relations, the query graph is a hypergraph.

Definition 3. A hypergraph is a pair H = (V, E) such
that

1. V is a non-empty set of nodes, and

2. E is a set of hyperedges, where a hyperedge is an un-
ordered pair (u, v) of non-empty subsets of V (u ⊂ V
and v ⊂ V) with the additional condition that u∩v = ∅.

We call any non-empty subset of V a hypernode.

Every plan generator based on dynamic programming or
memoization constructs an optimal plan for a set of relations
S by combining all suitable pairs of optimal subplans for sets
of relations (S1, S2) where S = S1∪S2∧S1 6= ∅∧S2 6= ∅must
hold (see Section 4). Furthermore, the producer/consumer
constraints have to be met. Therefore, only certain sets
S together with their combinations of S1, S2 are allowed.
These combinations of S1, S2 are called csg-cmp pairs.

Definition 4. Let H = (V, E) be a hypergraph and S1,
S2 two non-empty subsets of V with S1 ∩ S2 = ∅. Then,
the pair (S1, S2) is called a csg-cmp-pair if the following
conditions hold:

1. S1 and S2 induce a connected subgraph of H, and

2. there exists a hyperedge (u, v) ∈ E such that u ⊆ S1

and v ⊆ S2.

(See [15] for induced subgraphs and connectedness.)

Simple plan generators like DPSub, DPSize [14], and
MemoizationBasic [6] generate various combinations for
(S1, S2) and then possibly reject some (most) of them later
on if they turn out to be invalid (applicable fails). This is
not very efficient. In fact, the reason for DPHyp’s [15] effi-
ciency is that it only enumerates valid csg-cmp pairs. The
above problem can be avoided if we use the TES (which are
contained in all three conflict detectors and are (possibly)
enlarged by rule simplification) to generate hyperedges in-
stead of using them only within applicable. Hence, the
hyperedges can directly cover most of the possible conflicts,
if not all (see Sec. 7). The construction of the hyperedges
proceeds as follows. For every operator ◦, we construct a hy-
peredge (l, r) such that r = TES(◦)∩T (right(◦)) = R-TES(◦)
and l = TES(◦) \ r = L-TES(◦). These hyperedges are then
the input to DPHyp. Two things are important to observe.
First, in case of non-empty rule sets, the applicable test
must still be executed. Second, since SES ⊆ TES, no other
hyperedges have to be constructed.

Let us now come to the question why larger TES result
in higher efficiency. The efficiency of an advanced plan
generator is directly correlated to the number of csg-cmp-
pairs. Obviously, larger TES result in larger hypernodes in
the hyperedges (l, r). Potentially, a hyperedge (l, r) gives
rise to a csg-cmp-pair (l, r) if both l and r induce connected
subgraphs. Further, every (S1, S2) with S1 ⊇ l, S2 ⊇ r,
S1 ∩ S2 = ∅ is a potential csg-cmp-pair. Thus, enlarging
(l, r) decreases the number of csg-cmp-pairs.

6.2 Cross Products and Degenerate Predi-
cates

Cross products and degenerate predicates are a little brit-
tle. Consider the example (R1 R2) 1,3(R3 3,4R4). So
far, nothing prevents DPsube to consider invalid plans like
R1 1,3(R3 3,4(R2 R4)). Note that in order to prevent this
plan, we would have to detect conflicts on the “other side”
of the plan. Since cross products and degenerate predicates
should be rare in real queries, it suffices to produce correct
plans. We have no ambition to explore the complete search
space. Thus, we just want to make sure that in these abnor-
mal cases, the plan generator still produces a correct plan.
This can be achieved by conjunctively adding the check

T (left(◦)) ∩ S1 6= ∅ ∧ T (right(◦)) ∩ S2 6= ∅

to the test for applicable(◦, S1, S2). This results in a cor-
rect test, but about a third of the valid search space will
not be explored if cross products are present in the initial
operator tree. However, note that if the initial plan does
not contain cross products and degenerate predicates, this
test will always succeed such that in this case still the whole
core search space is explored. Moreover, still a larger por-
tion of the core search space is explored when comparing this
approach to the one by Rao et al. [20, 21]. There, two sepa-
rate runs of the plan generator for each of the arguments of
a cross product are performed, which hinders any reordering
of operators with cross products. Note that Moerkotte and
Neumann’s approach cannot handle cross products [14].

There is a second issue concerning cross products. In some
rare cases, they might be beneficially introduced, even if the
initial plan does not demand them. In this case, we can pro-
ceed as proposed by Rao et al. [20, 21]. For each relation
R, a companion set is calculated which contains all relations
that are connected to R only by inner join predicates. With-

500

in a companion set, all join orders and introductions of cross
products are valid.

6.3 Unnesting
Dependent joins (d-joins,) and the dependent variants

of the other binary operators (, , ,) play a central
role in unnesting nested queries [2, 3, 8, 5]. Their incorpo-
ration into our approach is simple. In general, we just need
to extend the matrices containing the assoc and l/r-asscom
properties. In the special case of the dependent operators
this is even simpler, since they have the same properties
as their independent counterparts, except that they are not
commutative. In any case, the conflict detectors can be used
as is. However, the plan generator has to be adapted to de-
pendent operators [14].

6.4 Pushing Grouping
Pushing group-by operators is a well-known technique to

speed up data warehouse queries [24, 25]. To decide whether
a group-by operator can be pushed and to do so is handled
in Lines 11 and 13 of DPsube. Thus, these techniques are
untouched by our conflict detector.

7. EVALUATION
In order to evaluate the different approaches, we imple-

mented a transformation-based plan generator. It exhaus-
tively applies the transformation rules defined in Sec. 3 until
no new plan can be generated. Additionally, we implement-
ed all known conflict detectors and used them within DP-

sube (see Sec. 4). Thereby, we modified DPsube such that
it does not prune dominated plans but instead keeps all gen-
erated plans. This set of plans was then compared with the
set of plans generated by the transformation-based plan gen-
erator. This way, we found (1) invalid plans and (2) valid
plans not generated by DPsube equipped with some given
conflict detector. Since NEL/EEL allows only for join, anti-
join and left outerjoin but CD-X allow for more operators,
we run experiments for two sets of operators ({ , , } and
{ , , , , }).

For any given set of operators, we generated all possible
initial plans for a given number of relations (varied between
3 and 7). For each initial plan, the different plan generators
were called. The generation of all initial plans for n relations
proceeds in three steps. In a first step, we unrank all integers
from 1 to C(n − 1), where C denotes the Catalan numbers
(C(n) is the number of binary trees in n inner nodes), us-
ing the method proposed by Liebehenschel [13]. This gives
us raw binary trees. In the second step, an operator from
the operator set is attached to every inner node, making
sure that every combination is generated exactly once. In
the last step, we generate binary predicates by exploring all
possibilities to reference one relation from the operator’s left
subtree and one from its right subtree. We did not generate
complex predicates, since this simplifies the enumeration of
the core search space (cf. Sec. 3.2).

Tables 4 and 5 show the results. The columns contain the
number of relations (n), the number of distinct queries (ini-
tial operator trees), the number of plans the transformation-
based plan generator generates for these queries, and for
each conflict detector the number of invalid plans (I) and
the number of plans not found (missing, M). The conflict
detector EEL-F is a fixed version of the original NEL/EEL
approach (see Sec. 8.1.1). Additionally, Table 5 contains for

CD-C the number of rule sets which are empty after apply-
ing rule simplifications, and the number of non-empty rule
sets.

From Table 4 we see that both the EEL/NEL approach
and the SES/TES approach produce invalid plans. From
Table 5 we see that CD-A and CD-B lose large fractions
of the valid search space but CD-C does not. We also see
that about 70% of all rule sets are empty if we apply rule
simplification.

8. RELATED WORK

8.1 DP-based Plan Generation
If an input query involves binary operators other than

and , not all transformations as discussed in Section 3.2 are
valid. Thus, any plan generator must be modified such that
it restricts its search to valid transformations only. Other-
wise, without these restrictions the generated plan may not
be equivalent to the input query and, therefore, the result
might be wrong.

There exist several proposals to restrict the search space.
First, the problem of outerjoin simplification and reordering
has been studied extensively by Galindo-Legaria and Rosen-
thal [23, 9, 10]. They identified a subclass of join/outerjoin
queries where the query graph unambiguously determines
the semantics of a query. For this type of queries, they pro-
posed a procedure that analyzes paths in the query graph
to detect conflicting reorderings. They enhanced a conven-
tional dynamic programming algorithm to deal with these
conflicts. Although very useful, their approach is restrict-
ed to joins and outerjoins and the query graph must ex-
hibit special properties. In order to handle complex predi-
cates, Bhargava, Goel and Iyer [1] extended this approach
and present a conflict detection which analyzes paths in hy-
pergraphs. Again, the approach is limited to joins and out-
erjoins. Rao et al. presented a method that is not restricted
to joins/outerjoins. They additionally consider antijoins [21,
20]. They propose to use the initial operator tree instead of
the query graph in order to maintain the semantics of the
input query. Their idea is to calculate a set of relations asso-
ciated with every predicate (operator). This set of relations
(called EEL, for extended eligibility list) must be available
before the predicate can be evaluated. EELs are a superset
of NELs. Moerkotte and Neumann [15] adopted the idea of
EEL and called it TES. Their approach considers all join oper-
ators in LOP and their dependent counterparts. Additionally,
they reformulated non-inner joins as complex predicates by
modeling their reordering conflicts in the form of hyperedges
in order to make plan generation more efficient.

Both the approach of Rao et al. as well as Moerkotte and
Neumann’s approach are not correct. Both generate invalid
plans. We will present examples demonstrating why they
fail. Further, we present a fix for the algorithm of Rao et al.

8.1.1 Outerjoin and Antijoin Reordering Using EELs

First, we explain the approach of Rao et al. in short [20,
21]. Then, we give a counter-example that shows the incor-
rectness of their method. After that, we make an attempt
to repair the proposed EEL computation algorithm.

Conflict Detection with EELs The main idea of [20,
21] is to compute an extended eligibility list (EEL), which is
a shorthand representation of possible reordering conflicts.
In [20], Rao et al. proposed an algorithm called CalcEEL to

501

n #Queries #Plans EEL EEL-F TES CD-A CD-B CD-C
I M I M I M I M I M I M

3 26 88 0 0 % 0 1.14 % 0 0 % 0 0 % 0 0 % 0 0 %
4 344 4059 2 0 % 0 2.02 % 23 2.24 % 0 3.30 % 0 2.02 % 0 0 %
5 5834 301898 296 0 % 0 2.51 % 3964 6.47 % 0 8.54 % 0 5.38 % 0 0 %
6 117604 32175460 41108 0 % 0 2.70 % 605914 12.23 % 0 14.66 % 0 9.77 % 0 0 %
7 2708892 4598129499 6349126 0 % 0 2.71 % 99179293 19.05 % 0 21.06 % 0 15.04 % 0 0 %

Table 4: Small operator set: join, left outerjoin, antijoin

#Queries #Plans CD-A CD-B CD-C Rule Sets
n I M I M I M ∅ ¬∅
3 62 203 0 0 0 0 0 0 107 17
4 1114 11148 0 473 (4.24 %) 0 246 (2.21 %) 0 0 2725 617
5 25056 934229 0 102019 (10.92 %) 0 55725 (5.96 %) 0 0 77484 22740
6 661811 108294798 0 20113801 (18.57 %) 0 11868102 (10.96 %) 0 0 2432717 876338
7 19846278 16448441514 0 4329578881 (26.32 %) 0 2793701760 (16.98 %) 0 0 83560096 35517572

Table 5: Large operator set: join, left/full outerjoin, semijoin, antijoin

compute the EEL for each predicate carried by a join operator
◦ ∈ { , , }. The pseudo code of CalcEEL is shown in
Fig. 12.

CalcEEL computes the EELs in a single bottom-up traversal
(lines 4-20) of the initial operator tree. During the traversal,
it maintains for each relation R an outerjoin set outerR and
an antijoin set antiR. Initially, both sets contain only the
corresponding relation itself (lines 2, 3). Thereby, outerR

stores all relations that are linked together through either
inner or antijoin predicates (lines 13-16). And antiR keeps
track of all relations R ∈ T (left(◦)) ∩ NEL(◦) that are linked
through ◦ ∈ { } (lines 17-20). Essentially, this means that
R has to be on the preserving side of a one-sided outerjoin
predicate. As the name implies, outerR is used to compute
the EEL for an outerjoin predicate (lines 6-8). Similarly,
antiR is used to compute the EEL for an antijoin predicate
(lines 9-12). The test of applicable is EEL ⊆ S1 ∪ S2.

CalcEEL

� Input: T (◦), NEL(◦) where ◦ ∈ { , , }
� Output: EEL(◦)

1 for each R ∈ T (topmost ◦)
2 outerR ← {R}
3 antiR ← {R}
4 for each operator ◦ during bottom-up traversal
5 EEL(◦)← NEL(◦)
6 if ◦ ∈ { }
7 W ←

S

R∈T (right(◦))∩NEL(◦) outerR

8 EEL(◦)← EEL(◦) ∪W
9 elseif ◦ ∈ { }

10 V ←
S

R∈T (left(◦))∩NEL(◦) antiR
11 U ← {R|R ∈ T (right(◦)) ∩ NEL(◦)}
12 EEL(◦)← EEL(◦) ∪ V ∪ U
13 if ◦ ∈ { , }
14 W ←

S

R∈NEL(◦) outerR

15 for each R ∈ W
16 outerR ←W
17 elseif ◦ ∈ { }
18 V ←

S

R∈T (left(◦))∩NEL(◦) antiR
19 for each R ∈ T (right(◦)) ∩ NEL(◦)
20 antiR ← antiR ∪ V

Figure 12: Pseudocode for CalcEEL

0,1

R0 2,3

1,2

R1 R2

R3

2,3

0,1

R0 1,2

R1 R2

R3

initial plan not prevented plan

Figure 13: Example showing the incorrectness of
CalcEEL

The EEL computation is not correct. Fig. 13 shows
an example where EELs as computed by CalcEEL do not pre-
vent the generation of invalid plans. The initial plan is given
on the left. The plan on the right of Fig. 13 can be derived
by applying assoc(0,1, 2,3). A look at Table 2 reveals that
assoc(0,1, 2,3) is not valid. Thus, the initial plan and the
not prevented plan are not equivalent. We can verify this by
using the relations in Table 6 as input for both plans. The
result for the initial plan is given in Table 7. Clearly, this
differs from the result of the invalid plan (Table 8).

Table 9 shows antiR and outerR during CalcEEL execu-
tion. Table 10 displays the results of CalcEEL. According
to EEL(0,1) and EEL(2,3), the antijoin 2,3 can be applied
on top of the outerjoin 0,1, which is wrong. EEL(0,1)
should contain {R0, R1, R2, R3} in order to be correct be-
cause ¬assoc(0,1, 2,3) holds.

R0

A

1

R1

A B

1 1

R2

B C

1 1

R3

C

1

Table 6: Example Relations.

R0 R0.A=R1.A((R1 R1.B=R2.BR2) R2.C=R3.C)
R0.A R1.A R1.B R2.B R2.C R3.C

1 null null null null null

Table 7: Result for executing initial plan Fig. 13
using relations of Table 6 as input.

502

(R0 R0.A=R1.A(R1 R1.B=R2.BR2)) R2.C=R3.C

R0.A R1.A R1.B R2.B R2.C R3.C

∅

Table 8: Result for executing initial plan Fig. 13
using relations of Table 6 as input.

R outerR antiR
R0 {R0} {R0}
R1 {R1} {R0, R1}
R2 {R2, R3} {R1, R2}
R3 {R2, R3} {R3}

Table 9: antiR and outerR sets after executing
CalcEEL.

Fixing the EEL computation CalcEEL can be fixed:
we only have to eliminate the intersection with NEL(◦) in
Lines 7 and 18 as in

7 W ←
S

R∈T (right(◦)) outerR

With this fix, CalcEEL prevents reordering conflicts, but
is not complete any more. Hence, we traded in correct-
ness for incompleteness, which still is a better choice. This
can be verified by using R0 0,1(R1 1,2R2) as input plan.
The modified CalcEEL procedure now calculates EEL(0,1) =
{R0, R1, R2}, which prevents (R0 0,1R1) 1,2R2, although
the latter is an equivalent and valid plan because assoc(0,1,

1,2) holds. Thus, EEL(0,1) should contain {R0, R1} only.

8.1.2 Join Reordering using TESs

Before a join operator can be applied, the plan generator
needs to ensure that the producer/consumer constraints are
fulfilled. The conventional test is to check if the SES(◦) of
some operator ◦ is a subset of T (◦). Moerkotte and Neu-
mann extend this test to prevent reordering conflicts [15].
Therefore, they introduce the notion of the total eligibility
set (TES for short). The TES is defined to be a set of relations
that is attached to any binary operator ◦. Before ◦ can be
applied (line 11 of DPsube), applicable ensures that all
elements of TES(◦) are present in S1 ∪ S2. Since TES is an
extension of SES, SES ⊆ TES holds.

Moerkotte and Neumann propose an algorithm called
CalcTES . It calculates the TES for every ◦ ∈ LOP. Its pseu-
do code can be found in [15]. As it turns out, Moerkotte’s
and Neumann’s approach is neither correct nor complete: it
generates wrong plans and misses good plans.

Fig. 14 contains an example showing the incorrectness of
the SES/TES approach: the plan on the right is not equivalent
to the initial plan on the left. Applying assoc(1,2, 2,3) as
a first step and assoc(0,1, 2,3) thereafter transforms the
initial plan into the plan on the right. To see that the plan on
the right is invalid, consider the different results in Tables 11

◦ NEL EEL

1,2 {R1, R2} {R1, R2}

2,3 {R2, R3} {R1, R2, R3}

0,1 {R0, R1} {R0, R1}

Table 10: Computed NEL and EEL after executing
CalcEEL.

0,1

R0 1,2

R1 2,3

R2 R3

2,3

0,1

R0 1,2

R1 R2

R3

initial plan not prevented plan

Figure 14: Example showing the incorrectness of
CalcTES

R0 R0.A=R1.A(R1 R1.B=R2.B(R2 R2.C=R3.CR3))
R0.A R1.A R1.B R2.B R2.C

1 null null null null

Table 11: Result for executing initial plan Fig. 14
using relations of Table 6 as input.

and 12, which are based on the same input relations as before
(Table 6).

Table 13 shows the results of applying CalcTES to the
initial plan. (For details, see [15].) Due to the actual val-
ues of TES(0,1) and TES(2,3), applicable allows that the
antijoin 2,3 moves on top of 0,1, which is invalid since
¬assoc(0,1, 2,3) holds. In order to prevent the reordering,
TES(0,1) should contain {R0, R1, R2, R3}.

8.2 Transformation-Based Plan Generation
Besides DP-based and memoization-based algorithms for

plan generation, there exists plenty of work on transformation-
based plan generators [11, 17]. Unfortunately, transformation-
based plan generators are less efficient. First, they are mem-
ory consuming, since they cannot prune plans because they
need them to generate more plans via transformations. Sec-
ond, they generate an exponential number of duplicates, as
pointed out by Pellenkoft, Galindo-Legaria, and Kersten [17,
18, 19]. They also propose a solution to avoid the generation
of duplicates, but this solution only works for acyclic query
graphs. Thus, until better transformation-based algorithms
are found, DP-based or memoization-based plan generators
are the approaches of choice. Note that the latter also need
a correct conflict detector.

(R0 R0.A=R1.A(R1 R1.B=R2.BR2)) R2.C=R3.CR3

R0.A R1.A R1.B R2.B R2.C

∅

Table 12: Result for executing right plan Fig. 14
using relations of Table 6 as input.

◦ SES TES

2,3 {R2, R3} {R2, R3}

1,2 {R1, R2} {R1, R2}

0,1 {R0, R1} {R0, R1, R2}

Table 13: Computed SES and TES after executing
CalcTES.

503

8.3 Beyond the Core Search Space
There exist several approaches to go beyond the core

search space. The first one is based on generalized outer-
joins [1, 4, 23]. To incorporate generalized outerjoins into
our framework, we need to extend the property matrices.
Another approach replaces all outerjoins by joins [12]. To
make this work correctly, a complete semijoin reduction is
performed upfront and virtual rows are introduced. Yet an-
other interesting approach is proposed by Rao et al. [22].
They deliberately apply wrong reorderings and then com-
pensate for it. For the compensation they rely on a new
operator called best match that is relatively expensive. If
no best-match operator is available in the runtime system,
only compensation-free plans can be generated. However,
whether a plan needs compensation or not is decided when
the top-most operator is put in place. Hence, plans that
need compensation are still built and have to be thrown
away afterwards. Consequently, when compared to our ap-
proach far more (sub-) plans are generated but no cheaper
plan is found. Moreover, our optimization techniques as de-
scribed in Sec. 5.5 and Sec. 6.1 cannot be applied which
renders modern plan generators like DPHyp [15] or TD-

McCHyp [7] almost useless. Furthermore, we conjecture
that [22] does not cover the whole core search space. For
example, for the initial plan (R1 p12

R2) p23
R3, the alter-

native R1 p12
(R2 p23

R3) cannot be produced. It is future
research to see how compensation can be incorporated into
our approach.

9. CONCLUSION
We showed that existing approaches to reorder a not nec-

essarily strict superset of { , , } are incorrect: they pro-
duce invalid plans. We then presented the first valid conflict
detectors. The third one of them, CD-C, is not only correct
but also complete. It thus explores the full core search space.
Further, our approach is extensible. If new algebraic opera-
tors pop up, we only need to extend four matrices containing
their properties. The code itself remains unchanged.

Acknowledgements. We thank Simone Seeger for her
help preparing the manuscript. We are also grateful to the
anonymous referees for their comments, which helped us to
significantly improve the paper.

10. REFERENCES
[1] G. Bhargava, P. Goel, and B. Iyer. Hypergraph based

reorderings of outer join queries with complex
predicates. In SIGMOD, pages 304–315, 1995.

[2] S. Cluet and G. Moerkotte. Nested queries in object
bases. In DBPL, pages 226–242, 1993.

[3] S. Cluet and G. Moerkotte. Classification and
optimization of nested queries in object bases.
Technical Report 95-6, RWTH Aachen, 1995.

[4] U. Dayal. Of nests and trees: A unified approach to
processing queries that contain nested subqueries,
aggregates, and quantifiers. In VLDB, pages 197–208,
1987.

[5] M. Elhemali, C. Galindo-Legaria, T. Grabs, and
M. Joshi. Execution strategies for SQL subqueries. In
SIGMOD, pages 993–1003, 2007.

[6] P. Fender and G. Moerkotte. A new, highly efficient,
and easy to implement top-down join enumeration
algorithm. In ICDE, pages 864–875, 2011.

[7] P. Fender and G. Moerkotte. Top down plan
generation: From theory to practice. In ICDE, pages
1105–1116, 2013.

[8] C. Galindo-Legaria and M. Joshi. Orthogonal
optimization of subqueries and aggregation. In
SIGMOD, pages 571–581, 2001.

[9] C. Galindo-Legaria and A. Rosenthal. How to extend
a conventional optimizer to handle one- and two-sided
outerjoin. In ICDE, pages 402–409, 1992.

[10] C. Galindo-Legaria and A. Rosenthal. Outerjoin
simplification and reordering for query optimization.
TODS, 22(1):43–73, Marc 1997.

[11] G. Graefe and W. McKenna. Extensibility and search
efficiency in the volcano optimizer generator. In ICDE,
pages 209–218, 1993.

[12] G. Hill and A. Ross. Reducing outer joins. VLDB
Journal, 18:599–610, 2009.

[13] J. Liebehenschel. Ranking and unranking of
lexicographically ordered words: An average-case
analysis. J. of Automata, Languages, and
Combinatorics, 2:227–268, 1997.

[14] G. Moerkotte and T. Neumann. Analysis of two
existing and one new dynamic programming algorithm
for the generation of optimal bushy trees without cross
products. In VLDB, pages 930–941, 2006.

[15] G. Moerkotte and T. Neumann. Dynamic
programming strikes back. In SIGMOD, pages
539–552, 2008.

[16] G. Moerkotte and T. Neumann. Accelerating queries
with group-by and join by groupjoin. PVLDB,
4(11):843–851, 2011.

[17] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten.
Complexity of transformation-based optimizers and
duplicate-free generation of alternatives. Technical
Report CS-R9639, CWI, 1996.

[18] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten.
The complexity of transformation-based join
enumeration. In VLDB, pages 306–315, 1997.

[19] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten.
Duplicate-free generation of alternatives in
transformation-based optimizers. In DASFAA, pages
117–124, 1997.

[20] J. Rao, B. Lindsay, G. Lohman, H.Pirahesh, and
D. Simmen. Using EELs: A practical approach to
outerjoin and antijoin reordering. Technical Report RJ
10203, IBM, 2000.

[21] J. Rao, B. Lindsay, G. Lohman, H. Pirahesh, and
D. Simmen. Using EELs: A practical approach to
outerjoin and antijoin reordering. In ICDE, pages
595–606, 2001.

[22] J. Rao, H. Pirahesh, and C. Zuzarte. Canonical
abstraction for outerjoin optimization. In SIGMOD,
pages 671–682, 2004.

[23] A. Rosenthal and C. Galindo-Legaria. Query graphs,
implementing trees, and freely-reorderable outerjoins.
In SIGMOD, pages 291–299, 1990.

[24] W. Yan and P.-A. Larson. Performing group-by before
join. In ICDE, pages 89–100, 1994.

[25] W. Yan and P.-A. Larson. Eager aggregation and lazy
aggregation. In VLDB, pages 345–357, 1995.

504

