
Greedy Approximation Algorithms for FindingDense Components in a GraphMoses Charikar?Stanford University, Stanford, CA 94305, USA.moses@cs.stanford.eduAbstract. We study the problem of �nding highly connected subgraphsof undirected and directed graphs. For undirected graphs, the notion ofdensity of a subgraph we use is the average degree of the subgraph.For directed graphs, a corresponding notion of density was introducedrecently by Kannan and Vinay. This is designed to quantify highly con-nectedness of substructures in a sparse directed graph such as the webgraph. We study the optimization problems of �nding subgraphs maxi-mizing these notions of density for undirected and directed graphs. Thispaper gives simple greedy approximation algorithms for these optimiza-tion problems. We also answer an open question about the complexityof the optimization problem for directed graphs.1 IntroductionThe problem of �nding dense components in a graph has been extensively stud-ied [1, 2, 4, 5, 9]. Researchers have explored di�erent de�nitions of density andexamined the optimization problems corresponding to �nding substructures thatmaximize a given notion of density. The complexity of such optimization prob-lems varies widely with the speci�c choice of a de�nition. In this paper, thenotion of density we will be interested in is, loosely speaking, the average de-gree of a subgraph. Precise de�nitions for both undirected and directed graphsappear in Section 1.1.Recently, the problem of �nding relatively highly connected sub-structuresin the web graph has received a lot of attention [8,10{12]. Experiments suggestthat such substructures correspond to communities on the web, i.e. collections ofpages related to the same topic. Further, the presence of a large density of linkswithin a particular set of pages is considered an indication of the importance ofthese pages. The algorithm of Kleinberg [10] identi�es hubs (resource lists) andauthorities (authoritative pages) amongst the set of potential pages relevant toa query. The hubs are characterized by the presence of a large number of links tothe authorities and the authorities are characterized by the presence of a largenumber of links from the hubs.? Research supported by the Pierre and Christine Lamond Fellowship, an ARO MURIGrant DAAH04{96{1{0007 and NSF Grant IIS-9811904. Part of this work was donewhile the author was visiting IBM Almaden Research Center.

Kannan and Vinay [9] introduce a notion of density for directed graphs thatquanti�es relatively highly connected and is suitable for sparse directed graphssuch as the web graph. This is motivated by trying to formalize the notion of�nding sets of hubs and authorities that are highly connected relative to therest of the graph. In this paper, we study the optimization problem of �ndinga subgraph of maximum density according to this notion. We now proceed toformally de�ne the notions of density that we will use in this paper. These areidentical to the de�nitions in [9].1.1 De�nitions and NotationLet G(V;E) be an undirected graph and S � V . We de�ne E(S) to be the edgesinduced by S, i.e. E(S) = fij 2 E : i 2 S; j 2 SgDe�nition 1. Let S � V . We de�ne the density f(S) of the subset S to bef(S) = jE(S)jjSjWe de�ne the density f(G) of the undirected graph G(V;E) to bef(G) = maxS�V ff(S)gNote that 2f(S) is simply the average degree of the subgraph induced byS and 2f(G) is the maximum average degree over all induced subgraphs. Theproblem of computing f(G) is also known as the Densest Subgraph problem andcan be solved using
ow techniques. (See Chapter 4 in Lawler's book [13]. Thealgorithm, due to Gallo, Grigoriadis and Tarjan [7] uses parametric maximum
ow which can be done in the time required to do a single maximum
ow com-putation using the push-relabel algorithm).A related problem that was been extensively studied is the Densest k-SubgraphProblem, where the goal is to �nd an induced subgraph of k vertices of maximumaverage degree [1,2, 4, 5]. Relatively little is known about the approximability ofthis problem and resolving this remains a very interesting open question.We now de�ne density for directed graphs. Let G(V;E) be a directed graphand S; T � V . We de�ne E(S; T) to be the set of edges going from S to T , i.e.E(S; T) = fij 2 E : i 2 S; j 2 Tg:De�nition 2. Let S; T � V . We de�ne the density d(S; T) of the pair of setsS; T to be d(S; T) = jE(S; T)jpjSjjT jWe de�ne the density d(G) of the directed graph G(V;E) to bed(G) = maxS;T�V fd(S; T)g

The above notion of density for directed graphs was introduced by Kannanand Vinay [9]. The set S corresponds to the hubs and the set T correspondsto the authorities in [10]. Note that for jSj = jT j, d(S; T) is simply the averagenumber of edges going from a vertex in S to T (or the average number of edgesgoing into a vertex in T from S). Kannan and Vinay explain why this de�nitionof density makes sense in the context of sparse directed graphs such as the webgraph. Note that in the above de�nition, the sets S and T are not required tobe disjoint.The problemof computing d(G) was considered in [9]. They obtain anO(logn)approximation by relating d(G) to the singular value of the adjacency matrixof G and using the recently developed Monte Carlo algorithm for the SingularValue Decomposition of a matrix [3,6]. They also show how the SVD techniquescan be used to get an O(logn) approximation for f(G). They leave open thequestion of resolving the complexity of computing d(G) exactly.In this paper, we prove that the quantity d(G) can be computed exactly usinglinear programming techniques. We also give a simple greedy 2-approximationalgorithm for this problem. As a warmup, we �rst explain how f(G) can be com-puted exactly using linear programming techniques. We then present a simplegreedy 2-approximation algorithm for this problem. This proceeds by repeatedlydeleting the lowest degree vertex. Our algorithm and analysis for computing thedensity d(G) for directed graphs builds on the techniques for computing f(G)for undirected graphs.2 Exact Algorithm for f(G)We show that the problem of computing f(G) can be expressed as a linear pro-gram.We will show that the optimal solution to this LP is a convex combinationof integral solutions. This result by itself is probably not that interesting giventhe
ow based exact algorithm for computing f(G)[7]. However, the proof tech-nique will lay the foundation for the more complicated proofs in the algorithmfor computing d(G) later.We use the following LP: maxXij xij (1)8ij 2 E xij � yi (2)8ij 2 E xij � yj (3)Xi yi � 1 (4)xij; yi � 0 (5)Lemma 1. For any S � V , the value of the LP (1)-(5) is at least f(S).Proof. We will give a feasible solution for the LP with value f(S). Let x = 1jSj .For each i 2 S, set �yi = x. For each ij 2 E(S), set �xij = x. All the remaining

variables are set to 0. Now,Pi �yi = jSj �x = 1. Thus, (�x; �y) is a feasible solutionto the LP. The value of this solution isjE(S)j � x = jE(S)jjSj = f(S)This proves the lemma.Lemma 2. Given a feasible solution of the LP (1)-(5) with value v we canconstruct S � V such that f(S) � v.Proof. Consider a feasible solution (�x; �y) to the LP (1)-(5). Without loss ofgenerality, we can assume that for all ij, �xij = min(�yi; �yj).We de�ne a collection of sets S indexed by a parameter r � 0. Let S(r) =fi : �yi � rg and E(r) = fij : �xij � rg. Since �xij � �yi and �xij � �yj , ij 2 E(r))i 2 S(r); j 2 S(r). Also, since �xij = min(�yi; �yj), i 2 S(r); j 2 S(r)) ij 2 E(r).Thus E(r) is precisely the set of edges induced by S(r).Now, R10 jS(r)jdr =Pi �yi � 1. Note that R10 jE(r)jdr =Pij �xij. This is theobjective function value of the LP solution. Let this value be v.We claim that there exists r such that jE(r)j=jS(r)j � v. Suppose there wereno such r. Then Z 10 jE(r)jdr < v Z 10 jS(r)jdr � v:This gives a contradiction. To �nd such an r, notice that we can check all combi-natorially distinct sets S(r) by simply checking the sets S(r) obtained by settingr = �yi for every i 2 V .Putting Lemmas 1 and 2 together, we get the following theorem.Theorem 1. maxS�V ff(S)g = OPT (LP) (6)where OPT (LP) denotes the value of the optimal solution to the LP (1)-(5).Further, a set S maximizing f(S) can be computed from the optimal solution tothe LP.Proof. First we establish the equality (6). From Lemma 1, the RHS � the LHS.(Consider the S that maximizes f(S)). From Lemma 2, the LHS � the RHS.The proof of Lemma 6 gives a construction of a set S that maximizes f(S) fromthe optimal LP solution.3 Greedy 2-approximation for f(G)We want to produce a subgraph of G of large average degree. Intuitively, weshould throw away low degree vertices in order to produce such a subgraph.This suggests a fairly natural greedy algorithm. In fact, the performance of such

an algorithm has been analyzed by Asahiro, Iwama, Tamaki and Tokuyama [2]for a slightly di�erent problem, that of obtaining a large average degree subgraphon a given number k of vertices.The algorithm maintains a subset S of vertices. Initially S V . In eachiteration, the algorithm identi�es imin, the vertex of minimum degree in thesubgraph induced by S. The algorithm removes imin from the set S and moveson to the next iteration. The algorithm stops when the set S is empty. Of all thesets S constructed during the execution of the algorithm, the set S maximizingf(S) (i.e. the set of maximum average degree) is returned as the output of thealgorithm.We will prove that the algorithm produces a 2 approximation for f(G). Thereare various ways of proving this. We present a proof which may seem complicatedat �rst. This will set the stage for the algorithm for d(G) later. Moreover, webelieve the proof is interesting because it makes connections between the greedyalgorithm and the dual of the LP formulation we used in the previous section.In order to analyze the algorithm,we produce an upper bound on the optimalsolution. The upper bound has the following form: We assign each edge ij toeither i or j. For a vertex i, d(i) is the number of edges ij or ji assigned to i. Letdmax = maxifd(i)g. (Another way to view this is that we will orient the edgesof the graph and dmax is the maximum number of edges oriented towards anyvertex). The following lemma shows that f(S) is bounded by dmax.Lemma 3. maxS�V ff(S)g � dmaxProof. Consider the set S that maximizes f(S). Now, each edge in E(S) mustbe assigned to a vertex in S. ThusjE(S)j � jSj � dmaxf(S) = jE(S)jjSj � dmaxThis concludes the proof.Now, the assignment of edges to one of the end points is constructed asthe algorithm executes. Initially, all edges are unassigned. When the minimumdegree vertex is deleted from S, the vertex is assigned all edges that go from thevertex to the rest of the vertices in S. We maintain the invariant that all edgesbetween two vertices in the current set S are unassigned; all other edges areassigned. At the end of the execution of the algorithm, all edges are assigned.Let dmax be de�ned as before for the speci�c assignment constructed corre-sponding to the execution of the greedy algorithm. The following lemma relatesthe value of the solution constructed by the greedy algorithm to dmax.Lemma 4. Let v be the maximum value of f(S) for all sets S obtained duringthe execution of the greedy algorithm. Then dmax � 2v.

Proof. Consider a single iteration of the greedy algorithm. Since imin is selectedto be the minimum degree vertex in S, its degree is at most 2jE(S)j=jSj � 2v.Note that a particular vertex gets assigned edges to it only at the point when itis removed from S. This proves that dmax � 2v.Putting Lemmas 3 and 4 together, we get the following.Theorem 2. The greedy algorithm gives a 2 approximation for f(G).Running Time It is easy to see that the greedy algorithm can be implementedto run in O(n2) time for a graph with n vertices and m edges. We can maintainthe degrees of the vertices in the subgraph induced by S. Each iteration involvesidentifying and removing the minimum degree vertex as well as updating thedegrees of the remaining vertices both of which can be done in O(n) time. Infact, we can implement the algorithm to run in linear time. Since the degreeof a vertex is an integer 2 f0; ng, we can maintain lists of vertices with thesame degree, i.e. a list of vertices of degree 0; 1; 2 and so on. In each iteration,the minimum degree vertex is removed and degrees of the neighboring verticesupdated, requiring them to be moved to new lists. The total work done in theseupdates is O(m). Note that the minimum degree drops by at most 1 in eachiteration. If the minimum degree in a particular iteration was d, the minimumdegree vertex for the next iteration is obtained by scanning the lists for degreesd� 1, d, d + 1 and so on. The total work done in scanning these lists is O(n).Thus, the algorithm runs in time O(m + n).3.1 Intuition behind the upper boundThe reader may wonder about the origin of the upper bound on the optimalsolution used in the previous section. In fact, there is nothing magical aboutthis. It is closely related to the dual of the LP formulation used in Section 2. Infact, the dual of LP (1)-(5) is the following: min
 (7)8ij 2 E �ij + �ij � 1 (8)8i
 �Xj �ij +Xj �ji (9)�ij;
 � 0 (10)The upper bound constructed corresponds to a dual solution where �ij; �ij are0-1 variables. �ij = 1 corresponds to the edge ij being assigned to i and �ij = 1corresponds to the edge ij being assigned to j. Then
 corresponds to dmax.In e�ect, our proof constructs a dual solution as the greedy algorithm executes.The value of the dual solution is dmax, the upper bound in Lemma 3.We now proceed to the problem of computing d(G) for directed graphs G.Here, the ideas developed in the algorithms for f(G) for undirected graphs Gwill turn out to be very useful.

4 Exact Algorithm for d(G)Recall that d(G) is the maximumvalue of d(S; T) over all subsets S; T of vertices.We �rst present a linear programming relaxation for d(G). Our LP relaxationdepends on the value of jSj=jT j for the pair S; T that maximizes d(S; T). Ofcourse, we do not know this ratio a priori, so we write a separate LP for ev-ery possible value of this ratio. Note that there are O(n2) possible values. ForjSj=jT j = c, we use the following LP relaxation LP (c).maxXij xij (11)8ij xij � si (12)8ij xij � tj (13)Xi si � pc (14)Xj tj � 1pc (15)xij; si; tj � 0 (16)We now prove the analogue of Lemma 1 earlier.Lemma 5. Consider S; T � V . Let c = jSj=jT j. then the optimal value of LP (c)is at least d(S; T).Proof. We will give a feasible solution (�x; �s; �t) for LP (c) (11)-(16) with valued(S; T). Let x = pcjSj = 1pc�jT j . For each i 2 S, set �si = x. For each j 2 T , set�tj = x. For each ij 2 E(S; T), set �xij = x. All the remaining variables are set to0. Now,Pi �si = jSj �x = pc andPj �tj = jT j �x = 1=pc. Thus, this is a feasiblesolution to LP (c). The value of this solution isjE(S; T)j � x = jE(S; T)jpc � jT j = jE(S; T)jpjSjjT j = d(S; T)This proves the lemma.The following lemma is the analogue of Lemma 2.Lemma 6. Given a feasible solution of LP (c) with value v we can constructS; T � V such that d(S; T) � v.Proof. Consider a feasible solution (�x; �s; �t) to LP (c) (11)-(16). Without loss ofgenerality, we can assume that for all ij, �xij = min(�si; �tj).We de�ne a collection of sets S; T indexed by a parameter r � 0. Let S(r) =fi : �si � rg, T (r) = fj : �tj � rg and E(r) = fij : �xij � rg. Since �xij � �si and�xij � �tj, ij 2 E(r)) i 2 S(r); j 2 T (r). Also since �xij = min(�si; �tj). Thus E(r)is precisely the set of edges that go from S(r) to T (r).

Now, R10 jS(r)jdr = Pi �si � pc. Also, R10 jT (r)jdr = Pj �tj � 1pc . By theSchwarz inequality,Z 10 pjS(r)jjT (r)jdr �s�Z 10 jS(r)jdr��Z 10 jT (r)jdr� � 1Note that R10 jE(r)jdr = Pij �xij. This is the objective function value of thesolution. Let this value be v.We claim that there exists r such that jE(r)j=pjS(r)jjT (r)j � v. Supposethere were no such r. ThenZ 10 jE(r)jdr < v Z 10 pjS(r)jjT (r)jdr � v:This gives a contradiction. To �nd such an r, notice that we can check all com-binatorially distinct sets S(r); T (r) by simply checking S(r); T (r) obtained bysetting r = �si and r = �tj for every i 2 V , j 2 V .Note that the pair of sets S; T guaranteed by the above proof need not satisfyjSj=jT j = c. Putting Lemmas 5 and 6 together, we obtain the following theorem.Theorem 3. maxS;T�V fd(S; T)g = maxc fOPT (LP (c))g (17)where OPT (LP (c)) denotes the value of the optimal solution to LP (c). Further,sets S; T maximizing d(S; T) can be computed from the optimal solutions to theset of linear programs LP (c).Proof. First we establish the equality (17). From Lemma 5, the RHS � theLHS. (Consider the S; T that maximize d(S; T)). From Lemma 6, the LHS �the RHS. (Set c to be the value that maximizes OPT (LP (c)) and consider theoptimal solution to LP (c).) The proof of Lemma 6 gives a construction of setsS; T maximizing d(S; T) from the LP solution that maximizes OPT (LP (c)).Remark 1. Note that the proposed algorithm involves solving O(n2) LPs, onefor each possible value of the ratio c = jSj=jT j. In fact, this ratio can be guessedto within a (1+ �) factor by using only O(logn�) values. It is not very di�cult toshow that this would yield a (1 + �) approximation. Lemma 5 can be modi�edto incorporate the (1 + �) factor.5 Approximation algorithm for d(G)5.1 Intuition behind algorithmDrawing from the insights gained in analyzing the greedy algorithm for approx-imating f(G), examining the dual of the LP formulation for d(G) should give

us some pointers about how a greedy algorithm for d(G) should be constructedand analyzed.The dual of LP (c) is the following linear program:minpc �
 + �pc (18)8ij �ij + �ij � 1 (19)8i
 �Xj �ij (20)8j � �Xi �ij (21)�ij;
; � � 0 (22)Any feasible solution to the dual is an upper bound on the integral solution.This naturally suggests an upper bound corresponding to a dual solution where�ij; �ij are 0-1 variables. �ij = 1 corresponds to the edge ij being assigned toi and �ij = 1 corresponds to the edge ij being assigned to j. Then
 is themaximumnumber of edges ij assigned to any vertex i (maximum out-degree). �is the maximumnumber of edges ij assigned to a vertex j (maximum in-degree).Then the value of the dual solution pc �
+ �pc is an upper bound on the d(S; T)for all pairs of sets S; T such that jSj=jT j = c.5.2 Greedy approximation algorithmWe will now use the insights gained from examining the dual of LP (c) to con-struct and analyze a greedy approximation algorithm. As in the exact algorithm,we need to guess the value of c = jSj=jT j. For each such value of c, we run agreedy algorithm. The best pair S; T (i.e. one that maximizes d(S; T)) producedby all such greedy algorithms is the output of our algorithm.We now describe the greedy algorithm for a speci�c value of c. The algorithmmaintains two sets S and T and at each stage removes either the minimumdegreevertex in S or the minimumdegree vertex in T according to a certain rule. (Herethe degree of a vertex i in S is the number of edges from i to T . The degree ofa vertex j in T is similarly de�ned).1. Initially, S V; T V .2. Let imin be the vertex i 2 S that minimizes jE(fig; T)j. Let dS jE(fiming; T)j.3. Let jmin be the vertex j 2 T that minimizes jE(S; fjg)j. Let dT jE(S; fjming)j.4. If pc � dS � 1pc � dT thenset S S � fimingelse set T T � fjming.5. If both S and T are non-empty, go back to Step 2.Of all the sets S; T produced during the execution of the above algorithm,the pair maximizing d(S; T) is returned as the output of the algorithm.

In order to analyze the algorithm,we produce an upper bound on the optimalsolution. The upper bound has the following form suggested by the dual of LP (c):We assign each (directed) edge ij to either i or j. For a vertex i, dout(i) is thenumber of edges ij0 assigned to i. For a vertex j, din(j) is the number of edgesi0j assigned to j. Let dmaxout = maxifdout(i)g and dmaxin = maxjfdin(j)g. Thefollowing lemma gives the upper bound on d(S; T) for all pairs S; T such thatjSj=jT j = c in terms of dmaxout and dmaxin .Lemma 7. maxjSj=jT j=cfd(S; T)g � pc � dmaxout + 1pc � dmaxinProof. This follows directly from the fact that the assignment of edges to verticescorresponds to a 0-1 solution of the dual to LP (c). Note that the value of thecorresponding dual solution is exactly pc �dmaxout + 1pc �dmaxin . We give an alternate,combinatorial proof of this fact.Consider the pair of sets S; T that maximizes d(S; T) over all pairs S; T suchthat jSj=jT j = c. Now, each edge in E(S; T) must be assigned to a vertex in Sor a vertex in T . Thus jE(S; T)j � jSj � dmaxout + jT j � dmaxind(S; T) = jE(S; T)jpjSjjT j �s jSjjT jdmaxout +s jT jjSjdmaxin= pc � dmaxout + 1pc � dmaxinNow, the assignment of edges to one of the end points is constructed asthe algorithm executes. Note that a separate assignment is obtained for eachdi�erent value of c. Initially, all edges are unassigned. When a vertex is deletedfrom either S or T in Step 4, the vertex is assigned all edges that go from thevertex to the other set (i.e. if imin is deleted, it gets assigned all edges from iminto T and similarly if jmin is deleted). We maintain the invariant that all edgesthat go from the current set S to the current set T are unassigned; all otheredges are assigned. At the end of the execution of the algorithm, all edges areassigned.Let dmaxout and dmaxin be de�ned as before for the speci�c assignment constructedcorresponding to the execution of the greedy algorithm. The following lemmarelates the value of the solution constructed by the greedy algorithm to dmaxoutand dmaxin .Lemma 8. Let v be the maximum value of d(S; T) for all pairs of sets S; Tobtained during the execution of the greedy algorithm for a particular value of c.Then pc � dmaxout � v and 1pc � dmaxin � v.

Proof. Consider an execution of Steps 2 to 5 at any point in the algorithm.Since imin is selected to be the minimum degree vertex in S, its degree is atmost jE(S; T)j=jSj, i.e. dS � jE(S; T)j=jSj. Similarly dT � jE(S; T)j=jT j. Now,min(pc � dS ; 1pcdT) �pdSdT � jE(S; T)jpjSjjT j � v:If pc �dS � 1pcdT , then imin is deleted and assigned the edges going from imin toT . In this case, pc �dS � v. If this were not the case, jmin is deleted and assignededges going from S to jmin. In this case, 1pcdT � v. Note that a particular vertexgets assigned edges to it only if it is removed from either S or T in Step 4. Thisproves that pc � dmaxout � v and 1pcdmaxin � v.Putting Lemmas 7 and 8 together, we get the following.Lemma 9. Let v be the maximum value of d(S; T) for all pairs of sets S; Tobtained during the execution of the greedy algorithm for a particular value of c.Then, v � 12 maxjSj=jT j=cfd(S; T)g:Observe that the maximizing pair S; T in the above lemma need not satisfyjSj=jT j = c.The output of the algorithm is the best pair S; T produced by the greedyalgorithm over all executions (for di�erent values of c). Let S�; T � be the setsthat maximize d(S; T) over all pairs S; T . Applying the previous lemma for thespeci�c value c = jS�j=jT �j, we get the following bound on the approximationratio of the algorithm.Theorem 4. The greedy algorithm gives a 2 approximation for d(G).Remark 2. As in the exact LP based algorithm, instead of running the algorithmfor all
(n2) values of c, we can guess the value of c in the optimal solution towithin a (1 + �) factor by using only O(logn�) values. It is not very di�cult toshow that this would lose only a (1 + �) factor in the approximation ratio. Weneed to modify Lemma 7 to incorporate the (1 + �) factor.Running Time Similar to the implementation of the greedy algorithm for f(G),the greedy algorithm for d(G) for a particular value of c can be implemented torun in O(m+n) time. By the above remark, we need to run the greedy algorithmfor O(logn�) values of c in order to get a 2 + � approximation.6 ConclusionAll the algorithms presented in this paper generalize to the setting where edgeshave weights. In the weighted setting, the linear time implementation does notcarry over, since it depends on the fact that vertex degrees are integers bounded

by n. However, the algorithms can be implemented using Fibonacci heaps todetermine the minimum degree vertex in every iteration. Both the greedy algo-rithm for f(G) as well as the greedy algorithm for d(G) (for a single value of c)run in O(m + n logn) time in this case.In conclusion, we mention some interesting directions for future work. In thede�nition of density d(G) for directed graphs, the sets S; T were not requiredto be disjoint. What is the complexity of computing a slightly modi�ed no-tion of density d0(G) where we maximize d(S; T) over disjoint sets S; T ? Notethat any �-approximation algorithm for d(G) can be used to obtain an O(�)-approximation for d0(G). Finally, it would be interesting to obtain a
ow basedalgorithm for computing d(G) exactly, along the same lines as the
ow basedalgorithm for computing f(G).7 AcknowledgmentsI would like to thank Ravi Kannan for introducing me to the problem and givingme a preliminary version of [9]. I would also like to thank Baruch Schieber forsuggesting an improvement to the algorithm in Section 5. The previous inelegantversion had a worse approximation guarantee. I thank Samir Khuller for sug-gesting the linear time implementation of the greedy algorithm for unweightedgraphs.References1. Y. Asahiro and K. Iwama. Finding Dense Subgraphs. Proc. 6th International Sym-posium on Algorithms and Computation (ISAAC), LNCS 1004, 102{111 (1995).2. Y. Asahiro, K. Iwama, H. Tamaki and T.Tokuyama. Greedily Finding a DenseSubgraph. Journal of Algorithms, 34(2):203{221 (2000).3. P. Drineas, A. Frieze, R. Kannan, S. Vempala and V. Vinay. Clustering in LargeGraphs and Matrices. Proc. 10th Annual ACM-SIAM Symposium on DiscreteAlgorithms, 291{299 (1999).4. U. Feige, G. Kortsarz and D. Peleg. The Dense k-Subgraph Problem. Algorith-mica, to appear. Preliminary version in Proc. 34th Annual IEEE Symposium onFoundations of Computer Science, 692{701 (1993).5. U. Feige and M. Seltser. On the Densest k-Subgraph Problem. Weizmann InstituteTechnical Report CS 97-16 (1997).6. A. Frieze, R. Kannan and S. Vempala. Fast Monte-Carlo Algorithms for FindingLow Rank Approximations. Proc. 39th Annual IEEE Symposium on Foundationsof Computer Science, 370{378 (1998).7. G. Gallo, M. D. Grigoriadis, and R. Tarjan. A Fast Parametric Maximum FlowAlgorithm and Applications. SIAM J. on Comput., 18:30{55 (1989).8. D. Gibson, J. Kleinberg and P. Raghavan. Inferring web communities from Webtopology. Proc. HYPERTEXT, 225{234 (1998).9. R. Kannan and V. Vinay. Analyzing the Structure of Large Graphs. manuscript,August 1999.10. J. Kleinberg. Authoritative sources in hypertext linked environments. Proc. 9thAnnual ACM-SIAM Symposium on Discrete Algorithms, 668{677 (1998).

11. J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. The webas a graph : measurements, models, and methods. Proc. 5th Annual InternationalConference on Computing and Combinatorics (COCOON), 1{17 (1999).12. S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. Trawling Emerg-ing Cyber-Communities Automatically. Proc. 8th WWW Conference, ComputerNetworks, 31(11{16):1481{1493, (1999).13. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehartand Winston (1976).

