Greedy Approximation Algorithms for Finding
Dense Components in a Graph

Moses Charikar™

Stanford University, Stanford, CA 94305, USA.
moses@cs.stanford.edu

Abstract. We study the problem of finding highly connected subgraphs
of undirected and directed graphs. For undirected graphs, the notion of
density of a subgraph we use is the average degree of the subgraph.
For directed graphs, a corresponding notion of density was introduced
recently by Kannan and Vinay. This is designed to quantify highly con-
nectedness of substructures in a sparse directed graph such as the web
graph. We study the optimization problems of finding subgraphs maxi-
mizing these notions of density for undirected and directed graphs. This
paper gives simple greedy approximation algorithms for these optimiza-
tion problems. We also answer an open question about the complexity
of the optimization problem for directed graphs.

1 Introduction

The problem of finding dense components in a graph has been extensively stud-
ied [1,2,4,5,9]. Researchers have explored different definitions of density and
examined the optimization problems corresponding to finding substructures that
maximize a given notion of density. The complexity of such optimization prob-
lems varies widely with the specific choice of a definition. In this paper, the
notion of density we will be interested in is, loosely speaking, the average de-
gree of a subgraph. Precise definitions for both undirected and directed graphs
appear in Section 1.1.

Recently, the problem of finding relatively highly connected sub-structures
in the web graph has received a lot of attention [8,10-12]. Experiments suggest
that such substructures correspond to communities on the web, i.e. collections of
pages related to the same topic. Further, the presence of a large density of links
within a particular set of pages is considered an indication of the importance of
these pages. The algorithm of Kleinberg [10] identifies hubs (resource lists) and
authorities (authoritative pages) amongst the set of potential pages relevant to
a query. The hubs are characterized by the presence of a large number of links to
the authorities and the authorities are characterized by the presence of a large
number of links from the hubs.

* Research supported by the Pierre and Christine Lamond Fellowship, an ARO MURI
Grant DAAHO04-96-1-0007 and NSF Grant 115-9811904. Part of this work was done
while the author was visiting IBM Almaden Research Center.

Kannan and Vinay [9] introduce a notion of density for directed graphs that
quantifies relatively highly connected and is suitable for sparse directed graphs
such as the web graph. This 1s motivated by trying to formalize the notion of
finding sets of hubs and authorities that are highly connected relative to the
rest of the graph. In this paper, we study the optimization problem of finding
a subgraph of maximum density according to this notion. We now proceed to
formally define the notions of density that we will use in this paper. These are
identical to the definitions in [9].

1.1 Definitions and Notation

Let G(V, E) be an undirected graph and S C V. We define F(S) to be the edges
induced by S, i.e.

ES)={ije E:i€S5,je S}
Definition 1. Let S C V. We define the density f(S) of the subset S to be

_ 1B

We define the density f(G) of the undirected graph G(V, E) to be
H6) = pasl 7))

Note that 2f(S) is simply the average degree of the subgraph induced by
S and 2f(G) is the maximum average degree over all induced subgraphs. The
problem of computing f(G) is also known as the Densest Subgraph problem and
can be solved using flow techniques. (See Chapter 4 in Lawler’s book [13]. The
algorithm, due to Gallo, Grigoriadis and Tarjan [7] uses parametric maximum
flow which can be done in the time required to do a single maximum flow com-
putation using the push-relabel algorithm).

A related problem that was been extensively studied 1s the Densest k-Subgraph
Problem, where the goal is to find an induced subgraph of & vertices of maximum
average degree [1,2,4,5]. Relatively little is known about the approximability of
this problem and resolving this remains a very interesting open question.

We now define density for directed graphs. Let G(V, E') be a directed graph
and S, T C V. We define E(S,T') to be the set of edges going from S to T, i.e.

E(S,T)={ijeE:i€S,jeT}

Definition 2. Let S,T C V. We define the density d(S,T) of the pair of sets
S, T to be

|£(S, T

VISIT

We define the density d(G) of the directed graph G(V, E) to be
d(G) = max {d(5,T)}

d(S,T) =

The above notion of density for directed graphs was introduced by Kannan
and Vinay [9]. The set S corresponds to the hubs and the set T' corresponds
to the authorities in [10]. Note that for |S| = |7, d(S,T) is simply the average
number of edges going from a vertex in S to T' (or the average number of edges
going into a vertex in 7' from S). Kannan and Vinay explain why this definition
of density makes sense in the context of sparse directed graphs such as the web
graph. Note that in the above definition, the sets S and 7' are not required to
be disjoint.

The problem of computing d(G) was considered in [9]. They obtain an O(logn)
approximation by relating d(G) to the singular value of the adjacency matrix
of G and using the recently developed Monte Carlo algorithm for the Singular
Value Decomposition of a matrix [3,6]. They also show how the SVD techniques
can be used to get an O(logn) approximation for f(G). They leave open the
question of resolving the complexity of computing d(G) exactly.

In this paper, we prove that the quantity d(G) can be computed exactly using
linear programming techniques. We also give a simple greedy 2-approximation
algorithm for this problem. As a warmup, we first explain how f(G) can be com-
puted exactly using linear programming techniques. We then present a simple
greedy 2-approximation algorithm for this problem. This proceeds by repeatedly
deleting the lowest degree vertex. Our algorithm and analysis for computing the
density d(G) for directed graphs builds on the techniques for computing f(G)
for undirected graphs.

2 Exact Algorithm for f(G)

We show that the problem of computing f(G) can be expressed as a linear pro-
gram. We will show that the optimal solution to this LP is a convex combination
of integral solutions. This result by itself is probably not that interesting given
the flow based exact algorithm for computing f(G)[7]. However, the proof tech-
nique will lay the foundation for the more complicated proofs in the algorithm
for computing d(G) later.

We use the following LP:

maxz i (1)
1%

Vij € E x5 < Y (2)
Vij e i <Y (3)
Zyi <1 (4)

Lemma 1. For any S CV, the value of the LP (1)-(5) is at least f(S).

Proof. We will give a feasible solution for the LP with value f(S). Let # = ﬁ
For each i € S, set y; = =. For each ij € E(S), set Z;; = x. All the remaining

variables are set to 0. Now,). 9 = |S|- 2 = 1. Thus, (%, y) is a feasible solution
to the LP. The value of this solution is

This proves the lemma.

Lemma 2. Given a feasible solution of the LP (1)-(5) with value v we can
construct S C'V such that f(S) > v.

Proof. Consider a feasible solution (z,y) to the LP (1)-(5). Without loss of
generality, we can assume that for all ij, Z;; = min(g;, g;).

We define a collection of sets S indexed by a parameter r > 0. Let S(r) =
{i:y; > r}and E(r) = {ij : ;; > r}. Since &;; < g; and &;; < g;, ij € E(r) =
i€ S(r),j € S(r). Also, since 2;; = min(y;, y;), i € S(r),j € S(r) = ij € E(r).
Thus E(r) is precisely the set of edges induced by S(r).

Now, [5% |S(r)|dr =3, 5 < 1. Note that [~ |E(r)|dr = 2 _i; Zij- This is the
objective function value of the LP solution. Let this value be v.

We claim that there exists r such that |E(r)|/|S(r)| > v. Suppose there were
no such r. Then

/OOO |B(r)|dr < v/ooo 1S(r)|dr < v.

This gives a contradiction. To find such an 7, notice that we can check all combi-
natorially distinct sets S(r) by simply checking the sets S(r) obtained by setting
r=y; for every 1 € V.

Putting Lemmas 1 and 2 together, we get the following theorem.

Theorem 1.

ma(()} = OPT(LP))

where OPT(LP) denotes the value of the optimal solution to the LP (1)-(5).
Further, a set S mazimizing f(S) can be computed from the optimal solution to
the LP.

Proof. First we establish the equality (6). From Lemma 1, the RHS > the LHS.
(Consider the S that maximizes f(S)). From Lemma 2, the LHS > the RHS.
The proof of Lemma 6 gives a construction of a set S that maximizes f(.5) from
the optimal LP solution.

3 Greedy 2-approximation for f(G)

We want to produce a subgraph of GG of large average degree. Intuitively, we
should throw away low degree vertices in order to produce such a subgraph.
This suggests a fairly natural greedy algorithm. In fact, the performance of such

an algorithm has been analyzed by Asahiro, ITwama, Tamaki and Tokuyama [2]
for a slightly different problem, that of obtaining a large average degree subgraph
on a given number k of vertices.

The algorithm maintains a subset S of vertices. Initially S < V. In each
iteration, the algorithm identifies ,,j,, the vertex of minimum degree in the
subgraph induced by S. The algorithm removes #,,j, from the set S and moves
on to the next iteration. The algorithm stops when the set S is empty. Of all the
sets S constructed during the execution of the algorithm, the set S maximizing
F(S) (i-e. the set of maximum average degree) is returned as the output of the
algorithm.

We will prove that the algorithm produces a 2 approximation for f(G). There
are various ways of proving this. We present a proof which may seem complicated
at first. This will set the stage for the algorithm for d(G) later. Moreover, we
believe the proof is interesting because it makes connections between the greedy
algorithm and the dual of the LP formulation we used in the previous section.

In order to analyze the algorithm, we produce an upper bound on the optimal
solution. The upper bound has the following form: We assign each edge ¢j to
either ¢ or j. For a vertex ¢, d(¢) is the number of edges ij or ji assigned to i. Let
d™®* = max;{d(?)}. (Another way to view this is that we will orient the edges
of the graph and d™** is the maximum number of edges oriented towards any
vertex). The following lemma shows that f(S) is bounded by d™*.

Lemma 3.
max{f(S)} < d"™

SCV

Proof. Consider the set S that maximizes f(5). Now, each edge in E(S) must
be assigned to a vertex in S. Thus

This concludes the proof.

Now, the assignment of edges to one of the end points is constructed as
the algorithm executes. Initially, all edges are unassigned. When the minimum
degree vertex is deleted from S, the vertex is assigned all edges that go from the
vertex to the rest of the vertices in S. We maintain the invariant that all edges
between two vertices in the current set S are unassigned; all other edges are
assigned. At the end of the execution of the algorithm, all edges are assigned.

Let d™®* be defined as before for the specific assignment constructed corre-
sponding to the execution of the greedy algorithm. The following lemma relates
the value of the solution constructed by the greedy algorithm to d™2*.

Lemma 4. Let v be the marimum value of f(S) for all sets S obtained during
the execution of the greedy algorithm. Then d™®* < 2v.

Proof. Consider a single iteration of the greedy algorithm. Since #ni, is selected
to be the minimum degree vertex in S, its degree is at most 2|F(S)|/]S] < 2v.
Note that a particular vertex gets assigned edges to it only at the point when 1t
is removed from S. This proves that d™** < 2v.

Putting Lemmas 3 and 4 together, we get the following.

Theorem 2. The greedy algorithm gives a 2 approzimation for f(G).

Running Time It is easy to see that the greedy algorithm can be implemented
to run in O(n?) time for a graph with n vertices and m edges. We can maintain
the degrees of the vertices in the subgraph induced by S. Each iteration involves
identifying and removing the minimum degree vertex as well as updating the
degrees of the remaining vertices both of which can be done in O(n) time. In
fact, we can implement the algorithm to run in linear time. Since the degree
of a vertex is an integer € {0,n}, we can maintain lists of vertices with the
same degree, 1.e. a list of vertices of degree 0,1,2 and so on. In each iteration,
the minimum degree vertex is removed and degrees of the neighboring vertices
updated, requiring them to be moved to new lists. The total work done in these
updates is O(m). Note that the minimum degree drops by at most 1 in each
iteration. If the minimum degree in a particular iteration was d, the minimum
degree vertex for the next iteration is obtained by scanning the lists for degrees
d—1,d, d+ 1 and so on. The total work done in scanning these lists is O(n).
Thus, the algorithm runs in time O(m + n).

3.1 Intuition behind the upper bound

The reader may wonder about the origin of the upper bound on the optimal
solution used in the previous section. In fact, there is nothing magical about
this. It is closely related to the dual of the LP formulation used in Section 2. In
fact, the dual of LP (1)-(5) is the following:

min -~y (7)

Vije E i+ Bij > 1 (8)

Vi oy 2> Z i + Zﬁji 9)
J J

@ij,y 2 0 (10)

The upper bound constructed corresponds to a dual solution where «;;, 3;; are
0-1 variables. a;; = 1 corresponds to the edge ij being assigned to ¢ and 8;; = 1
corresponds to the edge ij being assigned to j. Then = corresponds to d™®*.
In effect, our proof constructs a dual solution as the greedy algorithm executes.
The value of the dual solution is d™**, the upper bound in Lemma 3.

We now proceed to the problem of computing d(G) for directed graphs G.
Here, the ideas developed in the algorithms for f(G) for undirected graphs G
will turn out to be very useful.

4 Exact Algorithm for d(G)

Recall that d(G) is the maximum value of d(S, T') over all subsets S, T of vertices.
We first present a linear programming relaxation for d(G). Our LP relaxation
depends on the value of |S|/|T]| for the pair S, T that maximizes d(S,T). Of
course, we do not know this ratio a priori, so we write a separate LP for ev-
ery possible value of this ratio. Note that there are O(n?) possible values. For
|S]/I1T| = ¢, we use the following LP relaxation LP(c).

maxz i (11)
1%

Vl_] Lij S tj (13)

1
Zj:tj < 7 (15)
l‘ij,si,t]’ Z 0 (16)
We now prove the analogue of Lemma 1 earlier.

Lemma 5. Consider S,T C V. Let ¢ = |S|/|T|. then the optimal value of LP(c)
is at least d(S,T).

Proof. We will give a feasible solution (z,5,1) for LP(c) (11)-(16) with value

d(S,T). Let = I\/Tcl = ﬁ For each i € S, set §; = «. For each j € T, set
t; = x. For each ij € E(S,T), set z;; = x. All the remaining variables are set to
0.Now, 37,5 = [S|-x = \/cand 3, t; = |T| -« = 1/ /c. Thus, this is a feasible

solution to LP(c). The value of this solution is

_IESD BT _

Ve T /ST

|E(S,T)| -« d(S,T)

This proves the lemma.

The following lemma is the analogue of Lemma 2.

Lemma 6. Given a feasible solution of LP(c) with value v we can construct

S, T CV such that d(S,T) > v.

Proof. Consider a feasible solution (Z,s,t) to LP(c) (11)-(16). Without loss of
generality, we can assume that for all ij, Z;; = min(s;, t;).

We define a collection of sets S, T indexed by a parameter r > 0. Let S(r) =
{i:5>r},T(r)={j:t; > r}and E(r) = {ij : Z;; > r}. Since Z;; < §; and
r;; <t;,ij € E(r) = i€ S(r),j € T(r). Also since z;; = min(s;, ;). Thus E(r)
is precisely the set of edges that go from S(r) to T'(r).

Now, [i7[S(r)ldr = 3 si < e Also, [(" |T(r)ldr = 32 < = By the

Schwarz inequality,

| VEOITmlr < ﬂ/w solar) ([reiar) <1

Note that [~ |E(r)|dr = > _i; ij- This is the objective function value of the
solution. Let this value be v.
We claim that there exists » such that |E(r)|/+/|S(#)||T(r)| > v. Suppose

there were no such r. Then

/OOO| (r |dr<v/ VISOIT(r)|dr < v.

This gives a contradiction. To find such an r, notice that we can check all com-
binatorially distinct sets S(r),T'(r) by simply checking S(r), T(r) obtained by
setting r = 5; and r = ¢; for every i € V, j € V.

Note that the pair of sets .S, T" guaranteed by the above proof need not satisfy
|S|/|T| = ¢. Putting Lemmas 5 and 6 together, we obtain the following theorem.

Theorem 3.

S{I%z&)%/{d(S, T)} = mcax{OPT(LP(c))} (17)

where OPT(LP(c)) denotes the value of the optimal solution to LP(c). Further,
sets S, T mazimizing d(S,T) can be computed from the optimal solutions to the
set of linear programs LP(c).

Proof. First we establish the equality (17). From Lemma 5, the RHS > the
LHS. (Consider the S, T that maximize d(S,T)). From Lemma 6, the LHS >
the RHS. (Set ¢ to be the value that maximizes OPT(LP(¢)) and consider the
optimal solution to LP(c).) The proof of Lemma 6 gives a construction of sets
S, T maximizing d(S, T') from the LP solution that maximizes OPT(LP(c)).

Remark 1. Note that the proposed algorithm involves solving O(n?) LPs, one
for each possible value of the ratio ¢ = |S|/|T|. In fact, this ratio can be guessed
to within a (1 4 ¢) factor by using only O(lﬂfﬂ) values. It is not very difficult to
show that this would yield a (1 4 €) approximation. Lemma 5 can be modified
to incorporate the (1 4 €) factor.

5 Approximation algorithm for d(G)

5.1 Intuition behind algorithm

Drawing from the insights gained in analyzing the greedy algorithm for approx-
imating f(G), examining the dual of the LP formulation for d(G) should give

us some pointers about how a greedy algorithm for d(G) should be constructed
and analyzed.
The dual of LP(c) is the following linear program:

min+/c -y + %
Vij Q5 —1—@']' >1 (19)

Viooy =) (20)
J
Vi 6> ay (21)

@ij,7,6 >0 (22)

Any feasible solution to the dual 1s an upper bound on the integral solution.
This naturally suggests an upper bound corresponding to a dual solution where
aij, Bi; are 0-1 variables. a;; = 1 corresponds to the edge ij being assigned to
¢ and @;; = 1 corresponds to the edge ij being assigned to j. Then v is the
maximum number of edges ij assigned to any vertex ¢ (maximum out-degree). §
is the maximum number of edges ij assigned to a vertex j (maximum in-degree).
Then the value of the dual solution /¢y + % is an upper bound on the d(S,T)

for all pairs of sets S, T such that |S|/|T| = c.

5.2 Greedy approximation algorithm

We will now use the insights gained from examining the dual of LP(c) to con-
struct and analyze a greedy approximation algorithm. As in the exact algorithm,
we need to guess the value of ¢ = |S|/|T|. For each such value of ¢, we run a
greedy algorithm. The best pair S, T (i.e. one that maximizes d(5, T')) produced
by all such greedy algorithms is the output of our algorithm.

We now describe the greedy algorithm for a specific value of ¢. The algorithm
maintains two sets S'and T" and at each stage removes either the minimum degree
vertex in S or the minimum degree vertex in 7' according to a certain rule. (Here
the degree of a vertex ¢ in S is the number of edges from ¢ to T'. The degree of
a vertex j in T is similarly defined).

. Tnitially, S « V, T « V.

N N

. If\/EdSS %dT then
set S ¢« .S — {imin}
else set T < T — {jmin }-

5. If both S and T" are non-empty, go back to Step 2.

Of all the sets S, T produced during the execution of the above algorithm,
the pair maximizing d(S,T) is returned as the output of the algorithm.

. Let imin be the vertex i € S that minimizes |E({i}, T)|. Let ds < |F({#min},T)|-
. Let jmin be the vertex j € T that minimizes |E (S, {j})|. Let dp < |E(S, {jmin})|-

In order to analyze the algorithm, we produce an upper bound on the optimal
solution. The upper bound has the following form suggested by the dual of LP(¢):
We assign each (directed) edge ij to either i or j. For a vertex 4, doy:(%) is the
number of edges ¢j' assigned to i. For a vertex j, d;,(j) is the number of edges
i'j assigned to j. Let d0%° = max;{dou(¢)} and d%** = max;{din(j)}. The

following lemma gives the upper bound on d(S,T) for all pairs S, 7T such that
|S]/IT] = ¢ in terms of d12* and d**.

out

Lemma 7.

1
max d(s, 1} <~e-dyF + — d?;lax

Proof. This follows directly from the fact that the assignment of edges to vertices
corresponds to a 0-1 solution of the dual to LP(e) Note that the value of the
corresponding dual solution is exactly \/c-dm3* 4 2 7 -di>¥* . We give an alternate,
combinatorial proof of this fact.

Consider the pair of sets S, T that maximizes d(S, T') over all pairs S, T such
that |S|/|T| = ¢. Now, each edge in E(S,T) must be assigned to a vertex in S
or a vertex in 7. Thus

|E | < |S| dmax _|_ |T| dmax

out

|E(S, T)| Is1 |T|
d S T IOT’luaX_i_ dmax
(57) = \/|S||T =\ e |5

\/ dr(;r;atx_i_7 dmax

Now, the assignment of edges to one of the end points is constructed as
the algorithm executes. Note that a separate assignment is obtained for each
different value of ¢. Initially, all edges are unassigned. When a vertex is deleted
from either S or 7" in Step 4, the vertex is assigned all edges that go from the
vertex to the other set (i.e. if iy is deleted, it gets assigned all edges from émin
to 7" and similarly if juin is deleted). We maintain the invariant that all edges
that go from the current set S to the current set 7' are unassigned; all other
edges are assigned. At the end of the execution of the algorithm, all edges are
assigned.

Let d723° and d:>* be defined as before for the specific assignment constructed
corresponding to the execution of the greedy algorithm. The following lemma

relates the value of the solution constructed by the greedy algorithm to d5,3
and din®*.

Lemma 8. Let v be the marimum value of d(S,T) for all pairs of sets S,T
obtained during the execution of the greedy algorithm for a particular value of c.

Then \/c - d2* < v and \}— dimax <y,

Proof. Consider an execution of Steps 2 to 5 at any point in the algorithm.
Since iy, 1s selected to be the minimum degree vertex in 5, its degree is at

most |E(S,T)|/]5], i.e. dg < |E(S,T)|/|S|. Similarly dpr < |E(S,T)|/|T|. Now,

. 1 |E(S,T)]
. — < < —= <.
min(y/ec - ds, \/EdT) < Vdgdp < ST S v

If \/e-ds < %dT, then 2y, 1s deleted and assigned the edges going from 7y, to

T.In this case, \/c-ds < v. If this were not the case, jmin is deleted and assigned
edges going from .S to juyin. In this case, %dT < v. Note that a particular vertex
gets assigned edges to it only if it is removed from either S or T"in Step 4. This
proves that y/c - d22* < v and %dﬁf" < .

Putting Lemmas 7 and 8 together, we get the following.

Lemma 9. Let v be the marimum value of d(S,T) for all pairs of sets S,T
obtained during the execution of the greedy algorithm for a particular value of c.
Then,

v > max {d(S,T)}.

1

2151/|T|=c

Observe that the maximizing pair S,7 in the above lemma need not satisfy
IS1/1T| = e.

The output of the algorithm is the best pair S,7T produced by the greedy
algorithm over all executions (for different values of ¢). Let S*,7* be the sets
that maximize d(S, T') over all pairs S, T. Applying the previous lemma for the
specific value ¢ = |S*|/|T*|, we get the following bound on the approximation
ratio of the algorithm.

Theorem 4. The greedy algorithm gives a 2 approzimation for d(G).

Remark 2. Asin the exact LP based algorithm, instead of running the algorithm
for all £2(n?) values of ¢, we can guess the value of ¢ in the optimal solution to
within a (1 + €) factor by using only O(lﬂfﬂ) values. It is not very difficult to
show that this would lose only a (1 + ¢) factor in the approximation ratio. We
need to modify Lemma 7 to incorporate the (1 + €) factor.

Running Time Similar to the implementation of the greedy algorithm for f(G),
the greedy algorithm for d(G) for a particular value of ¢ can be implemented to
run in O(m+n) time. By the above remark, we need to run the greedy algorithm
for O(lﬂéﬂ) values of ¢ in order to get a 2 4+ € approximation.

6 Conclusion

All the algorithms presented in this paper generalize to the setting where edges
have weights. In the weighted setting, the linear time implementation does not
carry over, since it depends on the fact that vertex degrees are integers bounded

by n. However, the algorithms can be implemented using Fibonacci heaps to
determine the minimum degree vertex in every iteration. Both the greedy algo-
rithm for f(G) as well as the greedy algorithm for d(G) (for a single value of ¢)
run in O(m + nlogn) time in this case.

In conclusion, we mention some interesting directions for future work. In the
definition of density d(G) for directed graphs, the sets S,T" were not required
to be disjoint. What is the complexity of computing a slightly modified no-
tion of density d'(G) where we maximize d(S, T) over disjoint sets S,T 7 Note
that any a-approximation algorithm for d(G) can be used to obtain an O(«a)-
approximation for d'((). Finally, it would be interesting to obtain a flow based
algorithm for computing d(G) exactly, along the same lines as the flow based
algorithm for computing f(G).

7 Acknowledgments

I would like to thank Ravi Kannan for introducing me to the problem and giving
me a preliminary version of [9]. T would also like to thank Baruch Schieber for
suggesting an improvement to the algorithm in Section 5. The previous inelegant
version had a worse approximation guarantee. I thank Samir Khuller for sug-
gesting the linear time implementation of the greedy algorithm for unweighted
graphs.

References

1. Y. Asahiro and K. Iwama. Finding Dense Subgraphs. Proc. 6th International Sym-
posium on Algorithms and Computation (ISAAC), LNCS 1004, 102-111 (1995).

2. Y. Asahiro, K. Iwama, H. Tamaki and T.Tokuyama. Greedily Finding a Dense
Subgraph. Journal of Algorithms, 34(2):203-221 (2000).

3. P. Drineas, A. Frieze, R. Kannan, S. Vempala and V. Vinay. Clustering in Large
Graphs and Matrices. Proc. 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, 291-299 (1999).

4. U. Feige, G. Kortsarz and D. Peleg. The Dense k-Subgraph Problem. Algorith-
mica, to appear. Preliminary version in Proc. 34th Annual IEEE Symposium on
Foundations of Computer Science, 692-701 (1993).

5. U. Feige and M. Seltser. On the Densest k-Subgraph Problem. Weizmann Institute
Technical Report CS 97-16 (1997).

6. A. Frieze, R. Kannan and S. Vempala. Fast Monte-Carlo Algorithms for Finding
Low Rank Approximations. Proc. 39th Annual IEEE Symposium on Foundations
of Computer Science, 370-378 (1998).

7. G. Gallo, M. D. Grigoriadis, and R. Tarjan. A Fast Parametric Maximum Flow
Algorithm and Applications. STAM J. on Comput., 18:30-55 (1989).

8. D. Gibson, J. Kleinberg and P. Raghavan. Inferring web communities from Web
topology. Proc. HYPERTEXT, 225-234 (1998).

9. R. Kannan and V. Vinay. Analyzing the Structure of Large Graphs. manuscript,
August 1999.

10. J. Kleinberg. Authoritative sources in hypertext linked environments. Proc. 9th
Annual ACM-SIAM Symposium on Discrete Algorithms, 668677 (1998).

11.

12.

13.

J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. The web
as a graph : measurements, models, and methods. Proc. 5th Annual International
Conference on Computing and Combinatorics (COCOON), 1-17 (1999).

S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. Trawling Emerg-
ing Cyber-Communities Automatically. Proc. 8th WWW Conference, Computer
Networks, 31(11-16):1481-1493, (1999).

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart

and Winston (1976).

