Lecture #02

Carnegie Mellon University

ADVANCED
DATABASE
SYSTEMS

Transaction Models &
Concurrency Control

@Andy Pavlo // 15-721 // Spring 2019

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TODAY'S AGENDA

Background

Transaction Models
Concurrency Control Protocols
[solation Levels

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

COURSE OVERVIEW

This course is on database systems for modern
transaction processing and analytical workloads.

The first three weeks are focused on how to ingest
new data quickly.

We will then discuss how to analyze that data and
ask complex questions about it.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)

— Fast operations that only read/update a small amount of
data each time.

On-Line Analytical Processing (OLAP)

— Complex queries that read a lot of data to compute
aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

BIFURCATED ENVIRONMENT

£%% Transactions

OLTP Data Silos

EEEEEEEEEEEEEE

OLAP Data W arehouse

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

BIFURCATED ENVIRONMENT

£%% Transactions

OLAP Data W arehouse

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

BIFURCATED ENVIRONMENT

£%% Transactions [«Q Analytical Queries

OLAP Data W arehouse

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

BIFURCATED ENVIRONMENT

%%% Transactions
[«Q Analytical Queries

OLAP Data W arehouse

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORKLOAD CHARACTERIZATION

Complex

Operation Complexity

OLTP
Simple \\)

Writes Reads
Workload Focus

Source: Michael Stonebraker

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cacm.acm.org/magazines/2011/6/108651

CMU 15-721 (Spring 2019)

TRANSACTION DEFINITION

A txn is a sequence of actions that are executed on
a shared database to perform some higher-level
function.

Txns are the basic unit of change in the DBMS. No
partial txns are allowed.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ACTION CLASSIFICATION

Unprotected Actions

— These lack all of the ACID properties except for
consistency. Their effects cannot be depended upon.

Protected Actions

— These do not externalize their results before they are
completely done. Fully ACID.

Real Actions

— These affect the physical world in a way that is hard or
impossible to reverse.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRANSACTION MODELS

Flat Txns

Flat Txns + Savepoints
Chained Txns

Nested Txns

Saga Txns
Compensating Txns

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

FLAT TRANSACTIONS

Standard txn model that starts with BEGIN,

followed by one or more actions, and then
completed with either COMMIT or ROLLBACK.

Txn #1 Txn #2

READ(A) READ(A)

WRITE(B) WRITE(B)

COMMIT

ROLLBACK

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019) 1 1

LIMITATIONS OF FLAT TRANSACTIONS

The application can only rollback the entire txn
(i.e., no partial rollbacks).

All of a txn's work is lost is the DBMS fails before
that txn finishes.

Each txn takes place at a single point in time.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LIMITATIONS OF FLAT TRANSACTIONS

Example #1: Multi-Stage Planning

— An application needs to make multiple reservations.
— All the reservations need to occur or none of them.

Example #2: Bulk Updates

— An application needs to update one billion records.

— This txn could take hours to complete and therefore the
DBMS is exposed to losing all of its work for any failure
or conflict.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Save the current state of processing for the txn and
provide a handle for the application to refer to that
savepoint.

The application can control the state of the txn

through these savepoints:

— ROLLBACK - Revert all changes back to the state of the
DB at the savepoint.

— RELEASE - Destroys a savepoint previously defined in
the txn.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
14

TRANSACTION SAVEPOINTS

Txn #1 New Savepoint

WRITE(A)
SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

i

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 New Savepoint

SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

New Savepoint

WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

i

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

New Savepoint

ROLLBACK TO 1
WRITE(C)
COMMIT

i1

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1

New Savepoint

New Savepoint

WRITE(C)
COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1

New Savepoint

New Savepoint

i

COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

___BEGIN
__WRITE(A)
|_SAVEPOINT 1
__WRITE(B)
|_WRITE(C)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Savepoint#1

New Savepoint

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

i

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)

ROLLBACK TO 3

& @ CARNEGIE MELLON
=2 DATABASE GROUP

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 New Savepoint

SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

New Savepoint

i

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

New Savepoint

SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)

ROLLBACK TO 3

i

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE(B) B

WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

Savepoint#2

New Savepoint

i

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE(B) B

SAVEPOINT 2

Savepoint#2

New Savepoint

SAVEPOINT 3
RELEASE 2
WRITE (D)

ROLLBACK TO 3

T

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2

WRITE(C)

RELEASE 2
WRITE (D)
ROLLBACK TO 3

i

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Savepoint#1

Savepoint#2

Savepoint#3

15

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2

WRITE(C)
SAVEPOINT 3

WRITE (D)
ROLLBACK TO 3

L

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Savepoint#1

15

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2

K

ROLLBACK TO 3

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Savepoint#1

15

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

15

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE(B) B

SAVEPOINT 2
WRITE(C)

SAVEPOINT 3 New Savepoint

RELEASE 2

WRITE(D) “

ROLLBACK TO 3

)
)
)

e

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

15

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

| BEGIN

A

B,

i

New Savepoint

ot D
00

owme

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

NESTED TRANSACTIONS

Savepoints organize a transaction as a sequence of
actions that can be rolled back individually.

Nested txns form a hierarchy of work.
— The outcome of a child txn depends on the outcome of its
parent txn.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NESTED TRANSACTIONS
Txn #1
WRITE(A)
WRITE(B)
WRITE(C)
COMMIT

WRITE(D)
ROLLBACK

& @ CARNEGIE MELLON
=2 DATABASE GROUP

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

17

NESTED TRANSACTIONS

Txn #1

s 4

WRITE(A)

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

17

NESTED TRANSACTIONS

Txn #1

WRITE(A)

\ 4

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NESTED TRANSACTIONS

Txn #1

WRITE (A) Sub'Txn #1.1

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1

l

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)

ROLLBACK

COMMIT

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

NESTED TRANSACTIONS

Txn #1

| BEGIN |
Sub-Txn #1.1
| BEGIN |

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)

ROLLBACK

COMMIT

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1

WRITE(B)

Sub-Txn #1.1.1

WRITE(C)
COMMIT
WRITE(D)

ROLLBACK

i

COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
m—»m

" WRITE(B) Sub-Txn #1.1.1

m»m

. WRITE(C) |

COMMIT

WRITE(D)

ROLLBACK

COMMIT

G'._? CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

& @ CARNEGIE MELLON
=2 DATABASE GROUP

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
| BEGIN ool BEGIN |

Sub-Txn #1.1.1
B BT
B K=

WRITE(D)

ROLLBACK

COMMIT

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1

_ BEGIN ol BEGIN
Sub-Txn #1.1.1
| BEGIN Sl BEGIN |
‘ WRITE (D)

ROLLBACK

COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1

_ BEGIN ol BEGIN
Sub-Txn #1.1.1
| BEGIN Sl BEGIN |
WRITE (D)

»

ROLLBACK

COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
B — T
Sub-Txn #1.1.1

| BEGIN —oe BEGIN

WRITE(D)
ROLLBACK
II.>IIIEHMM!EII.*’////AIIIIIIIIIIII

& @ CARNEGIE MELLON
=2 DATABASE GROUP

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

Multiple txns executed one after another.
Combined COMMIT / BEGIN operation is atomic.

— No other txn can change the state of the database as seen
by the second txn from the time that the first txn
commits and the second txn begins.

Differences with savepoints:
— COMMIT allows the DBMS to free locks.
— Cannot rollback previous txns in chain.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

Txn #1
.
iRt
" BEGIN |
Ueipes

WRITE(C)

ROLLBACK

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
19

TRANSACTION CHAINS

Txn #1
" UBEGIN |
BNEREGIN
Ueipes

A WRITE (C)

ROLLBACK

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

Txn #1
| BEGIN |
__WRITE(A)

WRITE(A)

Txn #2

READ(A)
WRITE(B)
COMMIT

Txn #3

m;

WRITE(C)

ROLLBACK

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

Txn #1
" BEGIN
iRt
BN GIN
» —
- ETE T
N N

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

TRANSACTION CHAINS

Txn #1
" BEGIN
iRt
BN GIN
—
Al h

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRANSACTION CHAINS

Txn #1

WRITE(A)

Txn #2

v v X
@ﬂﬂ

& @ CARNEGIE MELLON
=2 DATABASE GROUP

— IS

Ton #3
| COMMIT _ couy

WRITE(C)

» ROLLBACK

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BULK UPDATE PROBLEM

These other txn models are nice, but they still do
not solve our bulk update problem.

Chained txns seems like the right idea but they
require the application to handle failures and

maintain its own state.
— Has to be able to reverse changes when things fail.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

COMPENSATING TRANSACTIONS

A special type of txn that is designed to
semantically reverse the effects of another already
committed txn.

Reversal has to be logical instead of physical.

— Example: Decrement a counter by one instead of
reverting to the original value.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

SAGA TRANSACTIONS

A sequence of chained txns T,-T, and
compensating txns C,-C__, where one of the
following is guaranteed:

— The txns will commit in the order
T,.T5,C;..C (where j < n)

This allows the DBMS to support long-running,
multi-step txns without application-managed logic

- =« SAGAS
| 51GMOD 1987

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=38742
http://dl.acm.org/citation.cfm?id=38742

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

23

SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3

WRITE(C+1)

COMMIT

WRITE(A+1) WRITE(B+1)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SAGA TRANSACTIONS
Txn #1 Txn #2 Txn #3
| BEGIN [EENeem BEGIN WEENeem: BEGIN |
| CoMMIT el COMMIT o

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3

| BEGIN [N BEGIN [t BEGIN |
| COMMIT semnl COMMIT o .’
1 2.

Comp Txn #2

WRITE(B-1)

i

COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3
| BEGIN [N BEGIN [t BEGIN |
| COMMIT semnl COMMIT o .’

s [*

Comp Txn #1 Comp Txn #2

— EEEEE—

WRITE(A-1)
COMMIT

& @ CARNEGIE MELLON
=2 DATABASE GROUP

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL

The protocol to allow txns to access a database in a
multi-programmed fashion while preserving the
illusion that each of them is executing alone on a

dedicated system.

— The goal is to have the effect of a group of txns on the
database’s state is equivalent to any serial execution of all
txns.

Provides Atomicity + Isolation in ACID

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TXN INTERNAL STATE

Status
— The current execution state of the txn.

Undo Log Entries

— Stored in an in-memory data structure.
— Dropped on commit.

Redo Log Entries

— Append to the in-memory tail of WAL.
— Flushed to disk on commit.

Read/WTrite Set

— Depends on the concurrency control scheme.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)

— Assume txns will conflict so they must acquire locks on
database objects before they are allowed to access them.

Timestamp Ordering (T/0)

— Assume that conflicts are rare so txns do not need to first
acquire locks on database objects and instead check for
conflicts at commit time.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TWO-PHASE LOCKING

Txn #1

E

Growing Phase

& @ CARNEGIE MELLON
=2 DATABASE GROUP

WRITE(B)

Shrinking Phase

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Txn #1

TWO-PHASE LOCKING
||%|||||!ii|||||||||||||||||||iiii||| lEEE] |||liiii|||||||iiii|||
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)
Txn #2

N N
MR
Lock(B) | WRITE(B) | LOCK(A) | WRITE(A)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

UNLOCK(A) | UNLOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

N
| o O
WRITE(B) | UNLOCK(A) | UNLOCK(B)

60

READ(A)

N N
| 8| @
WRITE(B) LOCK(A) WRITE(A)

LOCK(B)

UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

Txn #1
O
B 60 A @ | a6
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)

Txn #2

N N
MR
Lock(B) | WRITE(B) | LOCK(A) | WRITE(A)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

UNLOCK(A) | UNLOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

O @ | oo
UNLOCK(A) | UNLOCK(B)

#
LOCK(B)

WRITE(B)

Txn #1

E LOCK(A)

Txn #2

60

READ(A)

N

Lock(B) | WRITE(B) | LOCK(A) | WRITE(A)

UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

LOCK(B)

TWO-PHASE LOCKING

N

WRITE(B)

UNLOCK(B)

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

TWO-PHASE LOCKING

Qi\

WRITE(B)

UNLOCK(A)

UNLOCK(B)

UNLOCK(B)

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

Deadlock Detection

— Each txn maintains a queue of the txns that hold the locks
that it waiting for.

— A separate thread checks these queues for deadlocks.

— If deadlock found, use a heuristic to decide what txn to

kill in order to break deadlock.

Deadlock Prevention
— Check whether another txn already holds a lock when

another txn requests it.
— Iflock is not available, the txn will either (1) wait, (2)
commit suicide, or (3) kill the other txn.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING

Basic T/O

— Check for conflicts on each read/write.
— Copy tuples on each access to ensure repeatable reads.

Optimistic Currency Control (OCC)

— Store all changes in private workspace.
— Check for conflicts at commit time and then merge.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

#1

& @ CARNEGIE MELLON
=2 DATABASE GROUP

WRITE(B)

BASIC T/0

WRITE(A)

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

10001 |,

& @ CARNEGIE MELLON
=2 DATABASE GROUP

WRITE(B)

BASIC T/0

WRITE(A)

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/0

10001 |,

I:EEji e 6 o o I:EEji

WRITE(A)

WRITE(B)

Read Write

Record Timestamp Timestamp

A 10000 10000
B 10000 10000

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/0

READ(A) | WRITE(B)

WRITE(A)

. Reud Write
Timesta.p Timestamp

A 10000 10000
B 10000 10000

Record

& @ CARNEGIE MELLON
=2 DATABASE GROUP

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/0

READ(A) | WRITE(B)

WRITE(A)

_ Read
Timestamp

Write
Timestamp

A | 10001 | 10000
B 10000 | 10000

Recora

& @ CARNEGIE MELLON
=2 DATABASE GROUP

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/0

WRITE(A)

READ(A)

0001 10000
10000 10000

w | >

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/0

WRITE(A)

READ(A)

0001 10000
10000 10001

w | >

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/0

10001 |,

O

WRITE(B)

WRITE(A)

. Read Write
Timestamp Timestamp

A 10001 10005
B 10000 10001

Record

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/0

= B W&
WRITE(B) WRITE(A)
oy

. Read Write
Timestamp Timestams

10001 |,

Record

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Timestamp-ordering scheme where txns copy data
read/write into a private workspace that is not
visible to other active txns.

When a txn commits, the DBMS verifies that
there are no conflicts.

First proposed in 1981 at CMU by H.T. Kung.

~— |ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung
http://dl.acm.org/citation.cfm?id=319567
http://dl.acm.org/citation.cfm?id=319567

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

N N
& E | @
READ(A) | WRITE(A) | WRITE(B)

Write

Record Value Timestamp

A 123 10000
B 456 10000

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A) | WRITE(A) | WRITE(B)

e

Read Phase

Record Value

Write

Timestamp

A 123 10000

B 456 10000

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

65| @ | @

READ(A) | WRITE(A) | WRITE(B)

MWrite
Timestamp

Record Value

A 123 10000
B 456 10000

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

65| @ | @

READ(A) | WRITE(A) | WRITE(B)

Workspace

MWrite
Timestamp

Write

Timestamp Record Value

Record Value

B 456 10000

& & CARNEGIE MELLUN
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

||!!!!!I|

Workspace

WRITE(A)

Write
Timestamp

Record value

& & CARNEGIE MELLUN
%2 DATABASE GROUP

WRITE(B)

Record

Value

Write

Timestamp
A 123 10000
B 456 10000

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

||!!!!!I|

Workspace

WRITE(A)

Write
Timestamp

Record value

& & CARNEGIE MELLUN
%2 DATABASE GROUP

WRITE(B)

Record Value

Write

Timestamp
A 123 10000
B 456 10000

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

WRITE(A) | WRITE(B)

Workspace

write Write

| imestamp Record Value

Record Value

Timestamp

A 123 10000

A
B 456 10000

B 456 10000

& & CARNEGIE MELLUN
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

WRITE(A) | WRITE(B)

Workspace

write Write

| imestamp Record Value

Record Value

Timestamp

A 123 10000

A
B 999 o0

B 456 10000

& & CARNEGIE MELLUN
%2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

||!!!!!I|

WRITE(A)

WRITE(B)

W orkspace
Record Value Timé%gmp
A 888 o0
B 999 o0

Record Value

2 | &

VALIDATE PHASE WRITE PHASE

Write

& @ CARNEGIE MELLUN
&2 DATABASE GROUP

Timestamp
A 123 10000
B 456 10000

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

32

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

Workspace

G @] 2 | &

WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Write Write

Timestamp

A 888 (00 A 123 10000
B (0 0] B 456 10000

Record Value Record Value

Timestamp

& @ CARNEGIE MELLUN
&2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

32

OPTIMISTIC CONCURRENCY CONT

Txn #1

p

WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

MWrite
Timestamp

Write
Timestamp

A 888 (00 A 123 10000
B (0 0] B 456 10000

Record Value Record Value

& @ CARNEGIE MELLUN
&2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

32

OPTIMISTIC CONCURRENCY CONT

Txn #1

p

WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

MWrite
Timestamp

Write
Timestamp

A 888 A 888 10001
B B 999 10001

Record Value Record Value

& @ CARNEGIE MELLUN
&2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTR

Txn #1

O >
ol | @
READ(A) WRITE(A) | WRITE(B) | VALIDATE PHASE WRITE PHASE

MWrite
Timestamp

A 888 10001
B 999 10001

Record Value

& @ CARNEGIE MELLON
=2 DATABASE GROUP

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

When there is low contention, optimistic
protocols perform better because the DBMS
spends less time checking for conflicts.

At high contention, the both classes of protocols
degenerate to essentially the same serial execution.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL EVALUATION

Compare in-memory concurrency control

protocols at high levels of parallelism.

— Single test-bed system.

— Evaluate protocols using core counts beyond what is
available on today's CPUs.

Running in extreme environments exposes what
are the main bottlenecks in the DBMS.

= |STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY
\(/:L(I)DII;IE%aL WITH ONE THOUSAND CORES

& @ CARNEGIE MELLON
=2 DATABASE GROUP

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/02-transactions/p209-yu.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/02-transactions/p209-yu.pdf

CMU 15-721 (Spring 2019)

1000-CORE CPU SIMULATOR

DBx1000 Database System

— In-memory DBMS with pluggable lock manager.
— No network access, logging, or concurrent indexes

MIT Graphite CPU Simulator

— Single-socket, tile-based CPU.

— Shared L2 cache for groups of cores.

— Tiles communicate over 2D-mesh network.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111

CMU 15-721 (Spring 2019)

TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)

— 20 million tuples
— Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.
Varying skew in transaction access patterns.

Serializable isolation level.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CONCURRENCY CONTROL SCHEMES

DL_DETECT
NO_WAIT
WAIT_DIE

2P
2P
2P

_ w/ Deadlock Detection
_ w/ Non-waiting Prevention

[, w/ Wait-and-Die Prevention

TIMESTAMP Basic T/O Algorithm
Multi-Version T/O

Optimistic Concurrency Control

MVCC
OCC

& & CARNEGIE MELLON

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CONCURRENCY CONTROL SCHEMES

DL_DETECT
NO_WAIT

2P
2P

_ w/ Deadlock Detection
_ w/ Non-waiting Prevention

WAIT_DIE

=35 DB2 m

MySaolL:

& & CARNEGIE MELLON

2P

[, w/ Wait-and-Die Prevention

) - %i_ Server 7 8
Q ﬁgrv ® SQLite ‘1' |

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CONCURRENCY CONTROL SCHEMES

TIMESTAMP Basic T/O Algorithm
MVCC Multi-Version T/O

OCC Optimistic Concurrency Control
PostgreSQL. OORACLE' Inform Z’; \ /o
NUODB ka

YN MEMsoLﬂ)\HyPer SAR

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

READ-ONLY WORKLOAD

_— 14 I I 1 1

Q o—e DL DETECT a—a TIMESTAMP

g 12F |oo NOWAIT e e MvCC

c 10} o-a WAIT DIE 0oCC

: 9 :]
A

o 4r 8 A]

S "

S 2r .

lE O ol g 1 1 1 1

0 200 400 600 800 1000

Number of Cores

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE-INTENSIVE / MEDIUM-CONTENTION

4.5r{e—e DL DETECT a—aA TIMESTAMP| T ; ;
4 0k|o— NO wAIT o- 0 MVCC o

oo WAIT_DIE ++ 0CC
3.5F = T

3.0} -
2.5F -
2.0t -
1.5¢ / -
1.0~ -
0.5} -
0.0

Throughput (Million txn/s)

0 200 400 600 800 1000
Number of Cores

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE-INTENSIVE / HIGH-CONTENTION

= 0.25 ; ; o—e DL_DETECT a—a TIMESTAMP
= ©-¢ NO_WAIT o- 0 MVCC
5 0.20F ° ¢ o |B® WATDE ++ OCC
C
9
g
)
-]
o
L
(@)
>
(@]
c
I_ 1
N

0 200 400 600 800 1060
Number of Cores

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE-INTENSIVE / HIGH-CONTENTION

= 0.25 ; ; o—e DL_DETECT a—a TIMESTAMP
= o0 NO_WAIT o- 0 MVCC
X 0. oo WAIT DIE 4=+ 0OCC
S °
= 0. -
=
50
3 0.
c -_— -_— -_—
g -----
3 0. ~=—= _
| - -
=

0.00 1 1 e ——— 1

0 200 400 600

Number of Cores

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

WRITE-INTENSIVE / HIGH-CONTENTION

EE Useful Work
E=1 Abort

B4 Ts Alloc.
1 Index

B Wait

Bl Manager

EEEEEEEEEEEEEE

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

BOTTLENECKS

Lock Thrashing
— DL_DETECT, WAIT_DIE

Timestamp Allocation
— All T/O algorithms + WAIT_DIE

Memory Allocations
— OCC + MVCC

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOCK THRASHING

Each txn waits longer to acquire locks, causing
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing

deadlock detection/prevention overhead.
— Force txns to acquire locks in primary key order.
— Deadlocks are not possible.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOCK THRASHING

O-O0 theta=0
= theta=0.6
0=0 theta=0.8

Throughput (Million txn/s)

Number of Cores

& @ CARNEGIE MELLON
=2 DATABASE GROUP

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

]
-

CAI
DA

CMU 15-721 (Spring 2019)

.
6.4 Performance 155

convens e wpdate Jock 1o @ wile fock. This lack conversian can’t lead to @ Jock conversian deadloek, hecalse
at mest one prapsacticn can fhave an updaie jock on the dara e, {Twe fransactions mpst iy 19 convert the tock
a the same vme 1© create 1 lock CumVErsien deadlock) Q0 (he ather tand, the penefit of s approach s thap an
uphate Jock does 1108 block oiher (ranEetions iyt vead without expecting 10 wpdate later on. The weakness ¥ hat
e request 19 convert the updste Yook 1@ write jock may he delayed by ather read locks. 1 large numbe of data
items are read and anly a few of them are updated, the wradestf i worthwhite. THis approach is used in Mierasaft

0L Server SQL Serves alo allows wpdate ks o Be obined in W GELECT (i
case, it will not downgrade the wpdate focks 1o vead lncks, sinee it Agesn’t know when it is safe 1@ do 50

Lock Thrashing

pead) staneinent. but in this

By reducing the frequency of lock conversion Qeadlocks, we have dispensed with deadlock a5 @ majer perfors
manee eensider i, S0 We are jeft with blocking situations. Blocking affects pesforrance in a rather dramatic
way. Unt {nck usage reaches 8 gaturation paitt it introduees anly modest dcl:zys——signilicnnl, bt ot & ser-

ons problein. AL some potnl, when too ey 1

fons Tequest Jocks. a large aumber of \parsactions sul-

denly becomie blocked, and few transactions can make progress. Thus, {ransaclion dhroughput s10ps growing.
Surprisinglys i enough ransaclions 4 initiated, throw ghput actunlly decreases. This is catled lack thrashing
(see Figurs 6.7, The main issuc in locking ;u:r}'mm‘.zncc is to maximize thronghpit without reaching the point

where hrushing DoEwTs.

Dme woy W understand Jock thrashing 16 1o consider e effect of slowly incrensing the fransaction Toad,
which is measured bY fhe pumbes of active transactions. when (he system is idle, the first ransaction 16 U0

cannpt Block due 10 tncks, becaust it's the only one requesting {ocks. As the surher of activ

EIOWE, ach successve LransRTkioTt has a higher pmhub’lh\}- of
nning- When the umber of 2 e fransaelions

hecaming blacked due 2 \runsactions sabred

hefore encountering One that blocks it and these locks contribute 1o e Jikelihood that ather active ran
Jipns will heeomie blocked. S0, not only does iL oot contribute 1 increased \hroughput, but by geiting SO0

transactions

y

High eno ugh, the next (ransaetion © e started Bas virmally
o chanee of running 1@ completion without plocking for some lack. Worse. it probnbly will get some flocks

-

e

she worklo: | decreases

ut

Throughph®

- -
* Thrashing
 Region

Nutmber of Active
Transaction®

Lack Thrashing. \When thi number of active lransas tions gels e high, 7
and few pransactions c20 maks IORress.

Ty rransacions suddenty hecomE blacked,

moe GruulP

Jocks that Block other (ransuelions. it netuadly reduces roughput: This leads & thrashing, where nerensing
5 e throeal

10°
Number of Cores

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ALLOCATION

Mutex
— Worst option.

Atomic Addition
— Requires cache invalidation on write.

Batched Atomic Addition
— Needs a back-off mechanism to prevent fast burn.

Hardware Clock

— Not sure if it will exist in future CPUs.
Hardware Counter
— Not implemented in existing CPUs.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ALLOCATION

10000 °° Clock
o—¢ Hardware
Atomic batch=16
1000 Atomic batch=8
Atomic
100 Mutex

10

Throughput (Million ts/s)

1 10 100 1000
Number of Cores

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MEMORY ALLOCATIONS

Copying data on every read/write access slows
down the DBMS because of contention on the

memory controller.
— In-place updates and non-copying reads are not affected
as much.

Default libc malloc is slow. Never use it.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Serializability is useful because it allows
programmers to ignore concurrency issues but
enforcing it may allow too little parallelism and
limit performance.

We may want to use a weaker level of consistency
to improve scalability.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of

exposing txns to uncommitted changes:
— Dirty Read Anomaly

— Unrepeatable Reads Anomaly

— Phantom Reads Anomaly

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ANSI ISOLATION LEVELS

SERIALIZABLE

— No phantoms, all reads repeatable, no dirty reads.

REPEATABLE READS

— Phantoms may happen.

READ COMMITTED

— Phantoms and unrepeatable reads may happen.

READ UNCOMMITTED
— All of them may happen.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

ISOLATION LEVEL HIERARCHY

SERIALIZABLE

REPEATABLE READS

READ COMMITTED

READ UNCOMMITTED

50

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

REAL-WORLD ISOLATION LEVELS

Default Maximum
Actian Ingres SERIALIZABLE SERIALIZABLE
Greenplum READ COMMITTED SERIALIZABLE
IBM DB2 SERIALIZABLE
MySQL REPEATABLE READS SERIALIZABLE
MemSQL READ COMMITTED READ COMMITTED
MS SQL Server READ COMMITTED SERIALIZABLE
Oracle READ COMMITTED
Postgres READ COMMITTED SERIALIZABLE
SAP HANA READ COMMITTED SERIALIZABLE
VoltDB SERIALIZABLE SERIALIZABLE

Source: Peter Bailis

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

CMU 15-721 (Spring 2019)

= ACRITI

CRITICISM OF ISOLATION LEVELS

The isolation levels defined as part of SQL-92
standard only focused on anomalies that can occur
in a 2PL-based DBMS.

Two additional isolation levels:
— CURSOR STABILITY
— SNAPSHOT ISOLATION

UE OF ANSI SQL ISOLATION LEVELS

SIGMOD 1995

& @ CARNEGIE MELLON
=2 DATABASE GROUP

52

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785

CURSOR STABILITY (CS)

The DBMS’s internal cursor maintains a lock on a
item in the database until it moves on to the next
1tem.

CS is a stronger isolation level in between
REPEATABLE READS and READ COMMITTED
that can (sometimes) prevent the Lost Update
Anomaly.

Source: Jepsen

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://jepsen.io/consistency/models/cursor-stability

CMU 15-721 (Spring 2019)
54

LOST UPDATE ANOMALY

WRITE(A)

e o o E\\ e 6 06 o o

-
[
=
=
o
O

WRITE(A)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
54

LOST UPDATE ANOMALY

Txn #1
N
66 ®o o 0o D
READ(A) WRITE(A)
Txn #2

-
[
=
=
o
O

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOST UPDATE ANOMALY

Txn #1

READ(A)

Txn #2

e o o E\\ e 6 06 o o

-
-]
=
=
o
WRITE(A) O

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Txn #1

READ(A)

Txn #2

& @ CARNEGIE MELLON
=2 DATABASE GROUP

LOST UPDATE ANOMALY

N\
#
WRITE(A)

WRITE(A)

-
[
=
=
o
O

54

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOST UPDATE ANOMALY

Txn #1
Txn #2’s write to A will

E/i be lost even though it

commits after Txn #1.
READ(A) WRITE(A)

Txn #2 A cursor lock on A

would prevent this
o
e o o E e 6 6 o o

problem.

WRITE(A)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

54

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SNAPSHOT ISOLATION (SI)

Guarantees that all reads made in a txn see a
consistent snapshot of the database that existed at

the time the txn started.

— A txn will commit under SI only if its writes do not
conflict with any concurrent updates made since that
snapshot.

SI is susceptible to the Write Skew Anomaly

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

o0
OO

Txn #2

Change black marbles
to white.

56

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

Txn #1
Change white marbles
to black. ‘ ‘

OO
.~ 00

Txn #

Change black marbles Q Q
to white.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

C‘a CARNEGIE MELLON
"2 DATABASE GROUP

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

00

OO
Txn# “

Change black marbles
to white.

56

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

C‘a CARNEGIE MELLON
"2 DATABASE GROUP

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

00

OO
Txn# OO

Change black marbles
to white.

56

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

88/ ~
.~ Qg —

Txn #
Change black marbles
to white.

OO
o0

56

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

"7 Y | JERee
00 " mgele

Change black marbles
to white.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ISOLATION LEVEL HIERARCHY

SERIALIZABLE

REPEATABLE READS SNAPSHOT ISOLATION

CURSOR STABILITY
READ COMMITTED
READ UNCOMMITTED

& @ CARNEGIE MELLON
=2 DATABASE GROUP

57

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

I S C Strict Serializability (PL-SS)

// Full Serializability (PL-3)

Snapshot Isolation (PL-SI)

T

Update Serializability (PL-3U)

Forward Consistent View (PL-FCV)

Repeatable Read (PL-2.99)

Consistcm View (PL-2+)
Monotonic Snapshot

Reads (P'L MSR)

CURSOR ¢ |

E___h__h

Cursor Stablllty (PL- CS} Monotomc View (PL-2L)

B PL 2

T

PL-1

Figure 4-1: A partial order to relate various isolation levels.

Source: Atul Adya

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Y

57

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

PARTING THOUGHTS

Transactions are hard.
Transactions are awesome.

Things get even more wild when we add more

internal components to the DBMS:
— Indexes

— Triggers

— Catalogs

— Sequences

— Materialized Views

58

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

NEXT CLASS

Multi-Version Concurrency Control

59

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

