
Transaction Models &
Concurrency Control

@Andy_Pavlo // 15-721 // Spring 2019

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

0
2

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Background

Transaction Models

Concurrency Control Protocols

Isolation Levels

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

COURSE OVERVIEW

This course is on database systems for modern
transaction processing and analytical workloads.

The first three weeks are focused on how to ingest
new data quickly.

We will then discuss how to analyze that data and
ask complex questions about it.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)
→ Fast operations that only read/update a small amount of

data each time.

On-Line Analytical Processing (OLAP)
→ Complex queries that read a lot of data to compute

aggregates.

Hybrid Transaction + Analytical Processing
→ OLTP + OLAP together on the same database instance

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BIFURCATED ENVIRONMENT

5

OLAP Data WarehouseOLTP Data Silos

Transactions

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BIFURCATED ENVIRONMENT

5

Extract
Transform

Load

OLAP Data WarehouseOLTP Data Silos

Transactions

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BIFURCATED ENVIRONMENT

5

Extract
Transform

Load

OLAP Data WarehouseOLTP Data Silos

Analytical QueriesTransactions

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BIFURCATED ENVIRONMENT

5

Extract
Transform

Load

OLAP Data Warehouse

Analytical Queries
Transactions

HTAP Database

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORKLOAD CHARACTERIZATION

6

Writes Reads

Simple

Complex

Workload Focus

O
pe

ra
ti

on
 C

om
pl

ex
it

y

OLTP

OLAP

Source: Michael Stonebraker

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cacm.acm.org/magazines/2011/6/108651

CMU 15-721 (Spring 2019)

TRANSACTION DEFINITION

A txn is a sequence of actions that are executed on
a shared database to perform some higher-level
function.

Txns are the basic unit of change in the DBMS. No
partial txns are allowed.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ACTION CL ASSIFICATION

Unprotected Actions
→ These lack all of the ACID properties except for

consistency. Their effects cannot be depended upon.

Protected Actions
→ These do not externalize their results before they are

completely done. Fully ACID.

Real Actions
→ These affect the physical world in a way that is hard or

impossible to reverse.

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION MODELS

Flat Txns

Flat Txns + Savepoints

Chained Txns

Nested Txns

Saga Txns

Compensating Txns

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FL AT TRANSACTIONS

Standard txn model that starts with BEGIN,
followed by one or more actions, and then
completed with either COMMIT or ROLLBACK.

10

Txn #1

BEGIN

READ(A)

COMMIT

WRITE(B)

Txn #2

BEGIN

READ(A)

WRITE(B)

ROLLBACK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LIMITATIONS OF FL AT TRANSACTIONS

The application can only rollback the entire txn
(i.e., no partial rollbacks).

All of a txn's work is lost is the DBMS fails before
that txn finishes.

Each txn takes place at a single point in time.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LIMITATIONS OF FL AT TRANSACTIONS

Example #1: Multi-Stage Planning
→ An application needs to make multiple reservations.
→ All the reservations need to occur or none of them.

Example #2: Bulk Updates
→ An application needs to update one billion records.
→ This txn could take hours to complete and therefore the

DBMS is exposed to losing all of its work for any failure
or conflict.

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

Save the current state of processing for the txn and
provide a handle for the application to refer to that
savepoint.

The application can control the state of the txn
through these savepoints:
→ ROLLBACK – Revert all changes back to the state of the

DB at the savepoint.
→ RELEASE – Destroys a savepoint previously defined in

the txn.

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

14

Txn #1

BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)

ROLLBACK TO 1

WRITE(C)

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

14

Txn #1

BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)

ROLLBACK TO 1

WRITE(C)

A

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

14

Txn #1

BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)

ROLLBACK TO 1

WRITE(C)

A
New Savepoint

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

14

Txn #1

BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)

ROLLBACK TO 1

WRITE(C)

A
New Savepoint

B

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

14

Txn #1

BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)

ROLLBACK TO 1

WRITE(C)

A
New Savepoint

B
New SavepointX

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

14

Txn #1

BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)

ROLLBACK TO 1

WRITE(C)

A
New Savepoint

B
New Savepoint

C
X

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

14

Txn #1

BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)

ROLLBACK TO 1

WRITE(C)

A
New Savepoint

B
New Savepoint

C
X

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

ROLLBACK TO 3

RELEASE 2

WRITE(D)

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#1

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#1

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#1

Savepoint#2

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#1

Savepoint#2

New Savepoint

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

New Savepoint

Savepoint#1

Savepoint#2

Savepoint#3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

New Savepoint

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

New Savepoint

D

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

New Savepoint

D

???

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION SAVEPOINTS

15

Txn #1

BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)

SAVEPOINT 2

WRITE(C)

A

B

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

New Savepoint

D

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NESTED TRANSACTIONS

Savepoints organize a transaction as a sequence of
actions that can be rolled back individually.

Nested txns form a hierarchy of work.
→ The outcome of a child txn depends on the outcome of its

parent txn.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NESTED TRANSACTIONS

17

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NESTED TRANSACTIONS

17

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NESTED TRANSACTIONS

17

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Sub-Txn #1.1.1

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Sub-Txn #1.1.1

BEGIN

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Sub-Txn #1.1.1

BEGIN

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Sub-Txn #1.1.1

BEGIN

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Sub-Txn #1.1.1

BEGIN

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

X

X

X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Sub-Txn #1.1

NESTED TRANSACTIONS

17

Sub-Txn #1.1.1

BEGIN

Txn #1

BEGIN

WRITE(A)

BEGIN

BEGIN

WRITE(C)

COMMIT

COMMIT

WRITE(B)

ROLLBACK

WRITE(D)

BEGIN

X

X

X

✓

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

Multiple txns executed one after another.

Combined COMMIT / BEGIN operation is atomic.
→ No other txn can change the state of the database as seen

by the second txn from the time that the first txn
commits and the second txn begins.

Differences with savepoints:
→ COMMIT allows the DBMS to free locks.
→ Cannot rollback previous txns in chain.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

19

Txn #1

BEGIN

WRITE(A)

COMMIT
Txn #2

BEGIN

READ(A)

COMMIT
Txn #3

BEGIN

WRITE(C)

ROLLBACK

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

19

Txn #1

BEGIN

WRITE(A)

COMMIT
Txn #2

BEGIN

READ(A)

COMMIT
Txn #3

BEGIN

WRITE(C)

ROLLBACK

A

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

19

Txn #1

BEGIN

WRITE(A)

COMMIT
Txn #2

BEGIN

READ(A)

COMMIT
Txn #3

BEGIN

WRITE(C)

ROLLBACK

A

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

19

Txn #1

BEGIN

WRITE(A)

COMMIT
Txn #2

BEGIN

READ(A)

COMMIT
Txn #3

BEGIN

WRITE(C)

ROLLBACK

A B

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

19

Txn #1

BEGIN

WRITE(A)

COMMIT
Txn #2

BEGIN

READ(A)

COMMIT
Txn #3

BEGIN

WRITE(C)

ROLLBACK

A B

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TRANSACTION CHAINS

19

Txn #1

BEGIN

WRITE(A)

COMMIT
Txn #2

BEGIN

READ(A)

COMMIT
Txn #3

BEGIN

WRITE(C)

ROLLBACK

A B C

X✓ ✓

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BULK UPDATE PROBLEM

These other txn models are nice, but they still do
not solve our bulk update problem.

Chained txns seems like the right idea but they
require the application to handle failures and
maintain its own state.
→ Has to be able to reverse changes when things fail.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

COMPENSATING TRANSACTIONS

A special type of txn that is designed to
semantically reverse the effects of another already
committed txn.

Reversal has to be logical instead of physical.
→ Example: Decrement a counter by one instead of

reverting to the original value.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SAGA TRANSACTIONS

A sequence of chained txns T1–Tn and
compensating txns C1–Cn-1 where one of the
following is guaranteed:

→The txns will commit in the order
T1…Tj,Cj…C1 (where j < n)

This allows the DBMS to support long-running,
multi-step txns without application-managed logic

22

SAGAS
SIGMOD 1987

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=38742
http://dl.acm.org/citation.cfm?id=38742

CMU 15-721 (Spring 2019)

SAGA TRANSACTIONS

23

Txn #1

BEGIN

WRITE(A+1)

COMMIT

Txn #2

BEGIN

WRITE(B+1)

COMMIT

Txn #3

BEGIN

WRITE(C+1)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SAGA TRANSACTIONS

23

Txn #1

BEGIN

WRITE(A+1)

COMMIT

Txn #2

BEGIN

WRITE(B+1)

COMMIT

Txn #3

BEGIN

WRITE(C+1)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SAGA TRANSACTIONS

23

Txn #1

BEGIN

WRITE(A+1)

COMMIT

Txn #2

BEGIN

WRITE(B+1)

COMMIT

Txn #3

BEGIN

WRITE(C+1)

Comp Txn #2

BEGIN

WRITE(B-1)

COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SAGA TRANSACTIONS

23

Txn #1

BEGIN

WRITE(A+1)

COMMIT

Txn #2

BEGIN

WRITE(B+1)

COMMIT

Txn #3

BEGIN

WRITE(C+1)

Comp Txn #1

BEGIN

WRITE(A-1)

COMMIT

Comp Txn #2

BEGIN

WRITE(B-1)

COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL

The protocol to allow txns to access a database in a
multi-programmed fashion while preserving the
illusion that each of them is executing alone on a
dedicated system.
→ The goal is to have the effect of a group of txns on the

database’s state is equivalent to any serial execution of all
txns.

Provides Atomicity + Isolation in ACID

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TXN INTERNAL STATE

Status
→ The current execution state of the txn.

Undo Log Entries
→ Stored in an in-memory data structure.
→ Dropped on commit.

Redo Log Entries
→ Append to the in-memory tail of WAL.
→ Flushed to disk on commit.

Read/Write Set
→ Depends on the concurrency control scheme.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)
→ Assume txns will conflict so they must acquire locks on

database objects before they are allowed to access them.

Timestamp Ordering (T/O)
→ Assume that conflicts are rare so txns do not need to first

acquire locks on database objects and instead check for
conflicts at commit time.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

27

Txn #1

B
E
G
I
N

C
O
M
M
I
T

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)

Shrinking Phase

LOCK(A) LOCK(B)

Growing Phase

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

27

Txn #2

B
E
G
I
N

C
O
M
M
I
T

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

27

Txn #2

B
E
G
I
N

C
O
M
M
I
T

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

27

Txn #2

B
E
G
I
N

C
O
M
M
I
T

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

27

Txn #2

B
E
G
I
N

C
O
M
M
I
T

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

27

Txn #2

B
E
G
I
N

C
O
M
M
I
T

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

27

Txn #2

B
E
G
I
N

C
O
M
M
I
T

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING

Deadlock Detection
→ Each txn maintains a queue of the txns that hold the locks

that it waiting for.
→ A separate thread checks these queues for deadlocks.
→ If deadlock found, use a heuristic to decide what txn to

kill in order to break deadlock.

Deadlock Prevention
→ Check whether another txn already holds a lock when

another txn requests it.
→ If lock is not available, the txn will either (1) wait, (2)

commit suicide, or (3) kill the other txn.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING

Basic T/O
→ Check for conflicts on each read/write.
→ Copy tuples on each access to ensure repeatable reads.

Optimistic Currency Control (OCC)
→ Store all changes in private workspace.
→ Check for conflicts at commit time and then merge.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10000

10000

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10000

10000

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10001

10000

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10001

10000

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10001

10001

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10001

10001

10005

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BASIC T/O

30

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(B) WRITE(A)

10001

10001

10005

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

Timestamp-ordering scheme where txns copy data
read/write into a private workspace that is not
visible to other active txns.

When a txn commits, the DBMS verifies that
there are no conflicts.

First proposed in 1981 at CMU by H.T. Kung.

31

ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung
http://dl.acm.org/citation.cfm?id=319567
http://dl.acm.org/citation.cfm?id=319567

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Read Phase
Record Value Write

Timestamp

B 456 10000

123A 10000

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

C
O
M
M
I
T

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

C
O
M
M
I
T

888

999 10001

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMISTIC CONCURRENCY CONTROL

32

Txn #1

B
E
G
I
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Record Value Write
Timestamp

B 456 10000

123A 10000

C
O
M
M
I
T

888

999 10001

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

When there is low contention, optimistic
protocols perform better because the DBMS
spends less time checking for conflicts.

At high contention, the both classes of protocols
degenerate to essentially the same serial execution.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL EVALUATION

Compare in-memory concurrency control
protocols at high levels of parallelism.
→ Single test-bed system.
→ Evaluate protocols using core counts beyond what is

available on today's CPUs.

Running in extreme environments exposes what
are the main bottlenecks in the DBMS.

34

STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY
CONTROL WITH ONE THOUSAND CORES
VLDB 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/02-transactions/p209-yu.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/02-transactions/p209-yu.pdf

CMU 15-721 (Spring 2019)

1000-CORE CPU SIMUL ATOR

DBx1000 Database System
→ In-memory DBMS with pluggable lock manager.
→ No network access, logging, or concurrent indexes

MIT Graphite CPU Simulator
→ Single-socket, tile-based CPU.
→ Shared L2 cache for groups of cores.
→ Tiles communicate over 2D-mesh network.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111

CMU 15-721 (Spring 2019)

TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)
→ 20 million tuples
→ Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.

Varying skew in transaction access patterns.

Serializable isolation level.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL SCHEMES

37

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL SCHEMES

37

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL SCHEMES

37

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

READ-ONLY WORKLOAD

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE-INTENSIVE / MEDIUM -CONTENTION

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE-INTENSIVE / HIGH -CONTENTION

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE-INTENSIVE / HIGH -CONTENTION

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE-INTENSIVE / HIGH -CONTENTION

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BOT TLENECKS

Lock Thrashing
→ DL_DETECT, WAIT_DIE

Timestamp Allocation
→ All T/O algorithms + WAIT_DIE

Memory Allocations
→ OCC + MVCC

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOCK THRASHING

Each txn waits longer to acquire locks, causing
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing
deadlock detection/prevention overhead.
→ Force txns to acquire locks in primary key order.
→ Deadlocks are not possible.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOCK THRASHING

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOCK THRASHING

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ALLOCATION

Mutex
→ Worst option.

Atomic Addition
→ Requires cache invalidation on write.

Batched Atomic Addition
→ Needs a back-off mechanism to prevent fast burn.

Hardware Clock
→ Not sure if it will exist in future CPUs.

Hardware Counter
→ Not implemented in existing CPUs.

44

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ALLOCATION

45

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MEMORY ALLOCATIONS

Copying data on every read/write access slows
down the DBMS because of contention on the
memory controller.
→ In-place updates and non-copying reads are not affected

as much.

Default libc malloc is slow. Never use it.

46

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Serializability is useful because it allows
programmers to ignore concurrency issues but
enforcing it may allow too little parallelism and
limit performance.

We may want to use a weaker level of consistency
to improve scalability.

47

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ISOL ATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of
exposing txns to uncommitted changes:
→ Dirty Read Anomaly
→ Unrepeatable Reads Anomaly
→ Phantom Reads Anomaly

48

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ANSI ISOL ATION LEVELS

SERIALIZABLE
→ No phantoms, all reads repeatable, no dirty reads.

REPEATABLE READS
→ Phantoms may happen.

READ COMMITTED
→ Phantoms and unrepeatable reads may happen.

READ UNCOMMITTED
→ All of them may happen.

49

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ISOL ATION LEVEL HIERARCHY

50

REPEATABLE READS

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

REAL-WORLD ISOL ATION LEVELS

51

Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

Greenplum READ COMMITTED SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

MemSQL READ COMMITTED READ COMMITTED

MS SQL Server READ COMMITTED SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

Postgres READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE
Source: Peter Bailis

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

CMU 15-721 (Spring 2019)

CRITICISM OF ISOL ATION LEVELS

The isolation levels defined as part of SQL-92
standard only focused on anomalies that can occur
in a 2PL-based DBMS.

Two additional isolation levels:
→ CURSOR STABILITY
→ SNAPSHOT ISOLATION

52

A CRITIQUE OF ANSI SQL ISOLATION LEVELS
SIGMOD 1995

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785

CMU 15-721 (Spring 2019)

CURSOR STABILIT Y (CS)

The DBMS’s internal cursor maintains a lock on a
item in the database until it moves on to the next
item.

CS is a stronger isolation level in between
REPEATABLE READS and READ COMMITTED
that can (sometimes) prevent the Lost Update
Anomaly.

53

Source: Jepsen

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://jepsen.io/consistency/models/cursor-stability

CMU 15-721 (Spring 2019)

LOST UPDATE ANOMALY

54

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOST UPDATE ANOMALY

54

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOST UPDATE ANOMALY

54

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOST UPDATE ANOMALY

54

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOST UPDATE ANOMALY

54

Txn #2’s write to A will
be lost even though it
commits after Txn #1.

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

A cursor lock on A
would prevent this
problem.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SNAPSHOT ISOL ATION (SI)

Guarantees that all reads made in a txn see a
consistent snapshot of the database that existed at
the time the txn started.
→ A txn will commit under SI only if its writes do not

conflict with any concurrent updates made since that
snapshot.

SI is susceptible to the Write Skew Anomaly

55

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

56

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

56

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

56

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

56

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

56

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WRITE SKEW ANOMALY

56

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ISOL ATION LEVEL HIERARCHY

57

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ISOL ATION LEVEL HIERARCHY

57

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

Transactions are hard.
Transactions are awesome.

Things get even more wild when we add more
internal components to the DBMS:
→ Indexes
→ Triggers
→ Catalogs
→ Sequences
→ Materialized Views

58

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NEXT CL ASS

Multi-Version Concurrency Control

59

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

