

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CORRECTION

Original SQL-92 isolation levels were not devised
assuming a 2PL-based DBMS.

: A CRITIQUE OF ANSI SQL ISOLATION LEVELS
SIGMOD 1995

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785

CMU 15-721 (Spring 2019)

Cursor Stability, sn

File aps|
Edit View Message apshot Isolation, Dis

Settings

< Drive performance - cs Cmu.ec
k Drive perfy d
I /

A Critique of ANSI SQL Isolation Levels Serine. | Rnepy Help P—
A 5 Fol £

Hal Berenson Microsoft Corp. ‘haroldb@microsoft.com mward |, | il Trash =

Phil Bernstein Microsoft Corp. philbéglmiuosoﬂ.eom C <! Create To-do

Jim Gray U.C. Berkeley ' | com

Jim Mel’;on Sybase Corp- jim.melton@sybase.com u rs O r St a “pe

Elizabeth O'Neil UMass/Boston coneil @cs, umb.edu | lt

Patrick O'Neil ‘UMass/Boston poneil@udmlb.edll

Abstract: ANSI $SQL-92 [MS, ANSI] defines Isolation The ANSI isolation levels are related (o the behavior of lock
Levels in terms of phenomena: Dirty Reads, Non-Re- schedulers. Some lock schedulers allow transactions (0
peatable Reads, and Phantoms. This paper shows that these vary the scope and duration of their lock requests, thus de-
phenomena and the ANSI SQL. definitions fail t0 properly ing from pure two-phase locking. This idea was intro-
characterize several popular jsolation levels, including the duced by [GLPT], which defined Degrees of Consistency in
standard locking implementations of the levels covered. three ways: locking, data-flow graphs, and anomalies.
Ambiguity in the statement of the phenomena is investi- Defining isolation levels by phenomena (anomalics) was
gated and "a more formal statement is amrived at; in addition intended to allow non-lock-based implementations of the
new phenomena that better characterize isolation types are SQL standard.

performanc Y, Shapshot Isolation, Disk Driv
7» , e

From: H
* Hal Bere
To: nson

Andy p
Date: Y Pavlo <pavie@cs.cmu.edy>

introduced. Finally, an important multiversion isolation . - ber of weaknesses in the apomal 10 1722/

type, called S ot Isolation, is defined. “This paper shows a num of wi sses in the ly .

e iga et o defining isolation levels. The three ANS! phe- 19 4:43 PM
1. Introduction nnm:namambiguous.mdcvmin their loosest interpreta-

tions do not exclude some anomalous behavior that may
Running concurrent transactions at different isolation levels arise in execution histories. This leads to som® counter-in-
R o on designers o trade ol concurrency "% witive results. In particular, Tock-based isolation levels
throughput for correctness. LoWer isolation levels increase have different characteristics than their ANSI equivalents
\ransaction concurrency at the risk of allowing transactions Thisis disconcerting because commercial database SYSIETS
{0 observe a fuzzy or incorrect database state. Surprisingly. typically use locking implementations. Additionally, the
Some transactions can execute at the highest iiatatioalevel; < ANSLphonomERs do not distinguish between & number of
(perfect serializability) while concurrently executing transac types of isolation level behavior that are popular in com-
s running at a lower isolation level can 30¢ete states mercial systems. Additional phenomena to charactenze
(hat are not yet committed or that postate states the trans- {hese isolation levels are suggested here-

DEC Rd
b (aka Rdb/\vMs aka Oracle Rdb)

'evel as Bl” Qche t“e (o], gl al plOlect
(
tOOk Over Rdb/VMS] 'Et Customer 1eed

originally just offered Ser;|
eader) was 3 purist. At
back outweigh m

ializable isolation
some point after |

action read earlier (GLPT]. Of course, transactions running " o ; 2 . .

o Jower isolation levels can produce invalid daa. Secton 2 introduces the basic terminology of isolation lev-
Application designers must guard against a later (ransaction els. It defines the ANS! SQL and locking isolation levels.
rupming at a higher isolation level accessing this invalid Section 3 examines some drawbacks of the ANSI isolation
data and propagating such errors. Jevels and proposes a new phenomenon. Other popular iso-

Jation levels are also defined. The various definitions map

The ANSIISO SQL-92 specifications [MS, ANSI) define four between ANSI SQL isolation levels and the degrees of con- me ntati
inojation levels: (1) READ UNCOMMITIED, (2) READ Sistency defined in 1977 in (GLPT]. They also encompass The reaso onis
ROMMITTED, (3) REPEATABLE READ. (4) SERIALIZABLE. Chrs Date’s definitions of Cursor Stability and Repeatable n the SQL-9 2

These levels are defined with the classical N ializability def- Read DATL Discussing the isolation levels in a uniform DIDN'T standard e

inition, plus three prohibited operation subseq called fmwwa!(reduccsmls\mdmsmldmgsmyngfm indepen- want to use 2 nded up the

p iy Read, Non-repeatable Read,and dent 1 term € 2PL langua way it did i

B hantom. The concept of a p s not explicitly o o S 0N anomal ge to descrip s because Jj

P e ANSI specifications, but the specifications Section 4 introduces & ency control allies. He walk e isolation | m Melton
et that phenomena are operaiion subsed o0 mechanism, called Snapshot Isolation, that avoids the ANS! and belng b ed into m . evels. So J

Ty lead to anomalous (perhaps non- ializable) behavior. SQLP) na, but is not serializable. Snapshot Isolation usy I didn't y office and a Im wrote jt j
We refer to anomalies in what follows when making sug- is interesting in its own right, since it provides a reduced- S n

gested additions to the set of ANSI phenomena. As shown isolation level approach that lies between READ COM-
Tater, there s a technical distinction betwees aomaliesand MITTED and REPEATABLE READ. A new formalism
phenomena, but this distinction is not crucial for a general (available in the longer version of this conference paper

-3 ‘connect i i s for multiver- H “
ket D oata e cos e sltion when it all ft kept claimin ty. In 1994 1 was
dommd dus owed lost upd g what they we really annoyed th
permission to copy without foe alor partof this materal i were doin ates, and was writi re bLllldmg wa gt
et L L g was wen 2> Wrong. Pat 0 writing an email t B
St o the PUNCEr oo s dato appear and notice is given o Jed ANS! SQL. phenomena proposed here lack the power as working on ; Neil happened elling them wh
thatcopying s b periesr oo Nescclslon ol Coa v om0 e A etize Stapshot isolation and Cursor SUbilty. prob while | was ed to walk int y what the
i s oblem in the standard madly pounding on the keyhonr office and asked wh :
1095 ACM 0-89791-731-6/95/0005..$3.50 cement w; and wh e keyboa What
all. In enlre-read j rd. He th ;
A CRI stead Pat and | decig ad it | wanted to ba ought it was a
SIGMO ided to write the SIGMO. NE My head against
D pape . a
o r. Asking Ji
§2 CARNEGIE Mewom Asking Jim Melton to e 11— Y
%2 DATABASE GROUP n to join in as

— |

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785

CMU 15-721 (Spring 2019)

Cursor Stability, sn

Fi
fle Edit View Massa,
ge

lapshot Isolation, Dis)

Settings

< Drive performance - cs mu.ed:
v fi S.c)
K S.cmu.edu/

A Critique of ANSI SQL Isolation Levels S print.. | 1K ey - Help P—
v 5 Fol _

Hal Berenson Microsoft Corp. ‘haroldb@microsoft.com mward |, | il Trash =

Phil Bernstein Microsoft Corp. phllbéglmluosoﬂeom C <! Create To-do

Jim Gray U.C. Berkeley Y | com

Jim Mel’;on Sybase Corp- jim.melton@sybase.com u rs O r St a “pe

Blizabeth O'Neil UbMass/Boston ‘coneil @cs umb.edu | , It

Patrick O'Neil ‘UMass/Boston pondl@admlb.edll

Abstract: ANSI $SQL-92 [MS, ANSI] defines Isolation The ANSI isolation levels are related (o the behavior of lock
Levels in terms of phenomena: Dirty Reads, Non-Re- schedulers. Some lock schedulers allow transactions (0
peatable Reads, and Phantoms. This paper shows that these vary the scope and duration of their lock requests, thus de-
phenomena and the ANSI SQL. definitions fail t0 properly ing from pure two-phase locking. This idea was intro-
characterize several popular jsolation levels, including the duced by [GLPT], which defined Degrees of Consistency in
standard locking implementations of the levels covered. three ways: locking, data-flow graphs. and anomalies.

performance Y. Snapshot Isolation, Disk Driv ‘
E ' e

From:
m: Hal Berenson

Ambiguity in the statement of the phenomena is investi- Defining isolation levels by phenomena (anomalics) was TO 0

gated and "a more formal statement is amrived at; in addition intended to allow non-lock-based implementations of the ° - An d y P

e henomena that beter characterize isolation YPeS e SQLstandard. L avio < pavi

introduced. Finally, an impoﬂm;;\lhivcnion isolation o el - h_10 Date: 1722/ 0@cs.cmu ed

type, called Snapshot Isolation, is defined. s paper shows a number of weaknesses 0 (10 anomaly

e o o defining isolation levels. The three ANSI phe- 1 9 4-43 P M u=
1. Introduction nomena are ambiguous, and even in their loosest interpreta-

tions do not exclude some anomalous behavior that may
Running concurrent transactions at different isolation levels arise in execution histories. This leads to som® counter-in-
R o eation designers o trade off concurreney ad titive results. In particular, lock-based isolation levels
throughput for correctness. LoWer isolation levels increase have different characteristics than their ANSI equivalents
\ransaction concurrency at the risk of allowing transactions. Thisis disconcerting because commercial database SYStEHS
{0 observe a fuzzy or incorrect database state. Surprisingly. typically use locking implementations. Additionally, the
some transactions can execute at the highest isolation v ANS phenomena do not distinguish between a number of
(perfect serializability) while concurrently executing transac- types. of isolation lcvcl'b_ehzvlor that are popular in com-
s running at a lower isolation level ean Scouss states Iercial systemn. Additional phenomena to charactenze
(hat are not yet committed or that postate states the trans- {hese isolation levels are suggested here-

DEC Rd
b (aka Rdb/\vMs aka Oracle Rdb)

level as Bj
s Bill Noyce (the original project |

vt originally just offered Ser;|
/VMS | Jet customer feed

eader) was 3 purist. At

ializable isolation
back outweigh m

some poj

0
action read carlier [GLPT]. Of course, (ransactions running —) . N point after |
o Jower isolation levels can produce invalid daa. Secton 2 introduces the basic terminology of isolation lev-
Application designers must guard against a later (ransaction els. It defines the ANS! SQL and locking isolation levels.
running at a higher isolation level accessing this invalid Section 3 examines some drawbacks of the ANSI isolation

data and propagating such errors. Jevels and proposes a new phenomenon. Other popular iso-

Jation levels are also defined. T:‘c \:;o\ls definitions map
The ANSIISO SQL92 specifications (S, ANS define f Ittween ANSI SQL isolation levels and the degrees of con- m £
e ion levels: (1) HEAD urfgélmmmer:‘. (o) READ sistency defined in 1977 in (GLPT], They also encompie entation is
ROMMITTED, (3) REPEATABLE READ. (4) SERIALIZABLE. Chrs Date’s definitions of Cursor Stability and Repeatable 92
These levels are defined with the classical eralizability def- Read [DAT]. Discussing the isolation levels in a uniform standard
T - plus three prohibited operation subse) YOl famework reduces misunderstandings arising from indepen- ended up the
p ua: Dirty Read. Son-repeatable Read,and dent 1 way it did is b
‘Phantom. The concept of a p is not explicitly . o descn'b ecause J
P e ANSI specifications, but the specifications Section 4 introduces @ _ cncy control e walk e isolation | im Melton
e it phenomena are operaiion subsed on® mechanism, called Snapshot Isolation, that avoids the ANS! ed into m . evels. So Ji
may lead to anomalous (perhaps non- salizable) behavior. SQLP na, but s not serializable- Snapshot Isolation y office and ask Im wrote jt j
e o omalies in what follows when making sug- isineresting in ts owa igh, nce it provides a reduced- give it as thor sked me to . n
ecied additions to the sctof ANSI phenoment. o e isolation level approach That lies between READ COM- ough a revi review his |
e O techical distinction bevween amomalics 1 WITTED nd REPEATABLE READ. A new (o people insi ates withj L2 ew as | should anguage
phenomena, but this istinetion is not crucial for 8 general (available in the longer version of this conference paper inside Mic n SErlallzabil' haVe and
 destmding. {OOBBGM) conects reduced {solation levels for multiver- when i pt cf . ity. In 1994 missed that
O e dta to the clasical single-version locking serializ- en it allowed lo claiming what the was really ann
ability theory.)
Permission to copy without fee all or part of this material is) i g Y were build Ing wa ved that
e proweod tha tha copls are ot made ot dstriued fof Section explores some new anomalics 10 differcnlioie the g an . s Seitalizab
drect commercal b anLa0% ro ot made of GSIOUIO 0% irolation levels introduced in Seciors 3 and 4. The ex- 5 email tellj able
that copying is by e "gﬂ;:ﬂ:&:&’n"&%’ 18 V‘.’:a‘ tended ANSI SQL phenomena proposed here lack the power d t ng them wh
o copy athomWise, of 1o ropublsh, 0o oy e aracterize Snapshot isolation and Cursor Stability. o walk into Y what the
a fee and/or ic permission. Section 6 presents a Summary and Conclusions. mY Oﬁ'lce 4
2/3MOD " 95,5an Jose , CA USA ngon th and ask
© 1995 ACM 0-89791-731-6/95/0005..$3.50 N keyboard He th ° t
A CRI : ou
nt g
SIGMO 1 s"ét;'v,to bang my head ag d
OD pa a
: per. Asking Ji
§=_2 CARNEGIE Mieeeny Asking Jim Melt ing Jim Gray
w @ DATABASE GROUP on to join in as

7|

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785

CMU 15-721 (Spring 2019)

TODAY'S AGENDA

Overview of In-Memory MVCC

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:

— When a txn writes to an object, the DBMS creates a new
version of that object.

— When a txn reads an object, it reads the newest version
that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.
First implementation was InterBase (Firebird).

Used in almost every new DBMS in last 10 years.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/

CMU 15-721 (Spring 2019)

MULTI-VERSION CONCURRENCY CONTROL

Main benefits:

— Woriters don't block readers.

— Read-only txns can read a consistent snapshot without
acquiring locks.

— Easily support time-travel queries.

MVCC is more than just a “concurrency control
protocol”. It completely affects how the DBMS
manages transactions and the database.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SNAPSHOT ISOLATION

When a txn starts, it sees a consistent snapshot of
the database that existed at the moment that the

txn started.
— No torn writes from active txns.
— If two txns update the same object, then first writer wins.

We get SI automatically for "free" with MVCC.

— If we want serializable isolation, then the DBMS has to
do extra stuff...

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage

Garbage Collection

Index Management

=~ | AN EMPIRICAL EVALUATION OF IN-MEMORY
\I\//IL%IBTZIE)\{ERSION CONCURRENCY CONTROL

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf

This is the Best Paper Ever on
In-Memory Multi-Version Concurrency Control

| Paper 10 N DEC ~
- . 366
National E;Rgelrlsli?y\é\iusingap Tltle Th 5 E I q I NS
yingjun@comp.nus.edu is is the Best Paper Eve

ron In-Memo

ry Multi- i
y Multi-Version Concurrency Control

Jiexilin
Carnegie Mellon University camesi Masked Meta Revi
-Reviewer ID: M
: Meta_Revie
— wer_1

Meta-Reviews:

]iexil@cs.cmu.edu rxiar|

ABSTRACT
ontrol (MVCC) is currently the
ent scheme in modem database
Although MVCC was discovery
major relational D
versions of
ithout sacrificing serializ:
when processing ansactions. But scaling MVCC in a mul
and in-memory setting is non-triviak when there are a large D
o threads running in paralle, the synchronizadon overhe Dear Authors
oatweigh the benefits of multi-versioniniz- ’
To understand how MVCC perform when processing trans
in modern hardware settings, We conduct an extensive stud: Th an k yO u fo
I your submissi
mission to PV
LDB Vol 1
0.

scheme’s four key design decisions: concurfency control pf

Overall Rating Ryl
ise

Jlection, and index managems

sion storage, garbage
iv;r;l:mert\gsileatfzﬂhge-:gvarianls of all of these in an in-| We h
IYMS and cvaluated them wsing OLTP work) ds. O
idcnﬁﬁez|h:f:nhéaa§1emalnbc‘:$eicks uf::c’id‘;:ignch‘:i p a\ie NOW received the revi
Siitis apers" paper from th eviews for your manuscri
ary Comments they have qi € Review Board. Whi uscript as an "Ex :
given a substantial a - While the reviewers ap periments and Analyses

1. INTRODUCTION

Computer architecture advancements has led to the ris

core, in-memory DBMSs that employ efficient transa W
agerent mechanisms to maxisize parallcism without e
e ility. The moxt popular scheme wsed in DEMS - €ncourage you to revise
trol (M] i
nirol nd submit an improved ver

mount of co
mm
ents for your revision (enclosed)

inthe decade is j-version coNCUTTe y Col
J’a‘?.cQZ“Z'aSFMv'cZ‘?i’(.fmﬁhﬁnﬁ”ﬁs}fﬁ.ﬁ;m ealig s)ilgur paper taking into consid
n e
of the manuscript in due ¢

1in the database to allow of

versions of cach logical objec
the same object 1o proceed in parallel. These objects ¢ R
€ga
gards,

granularity, but almost every MVCC DBMS uses tupl
provides a 2ood balance between paraliclism versus 1
of version tracking. Multi-versioning atlows read-only
(o access older versions of tples without i .
wansactions from simultancously genel’aﬁng’newer Vi ASSO C'ate Ed]to r
trast this with a single-version system where transa
i w information whenever the;
What is interesting about this trend of recent 1

MVCCislhaliheschemeisnmnew.Theﬁrslmamio - Remove "This i
is is the B
th ; est Pa "
e experimental nature of thze\;c’)fr\‘/(er from the title and revise it
. a:l to be SCient' .
ific and refl
ect

ration of th :
e rev
ourse. lewer comments,

This work i licensed under the Creative Comm
NanCommerci.'Al»NoDerivuﬁves 40 International License.

of this license, visit ntpecreativecommons.org/icenses’d

O s beyond those covered by this licemses hblain permi
o0t e VLDB Eudennent, Vol. 10.No. T fro :
Cupyﬁyugz'mg e Eodons men 2150-8097/ 1703 m deSlgn issues in the el
ssification t
0 make the t
aXOHOmy m
ore general

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf

W

{
u

This is the Best Paper Ever on

In-Memﬁ

Nat

yin

Jiexi Li
Carnegie Mellon
jiexil@cs.cn

ABSTRACT

Multi-version coneurrency cont;
popular {ransaction managemen;
agement systems (DBMSS). Al
the late 1970s, it is used in alm
released in the last decade- Mai
potentially increases paratletisrt
when processing transactions.
and in-memory setting is non-1ri
of threads running in parallel,
onuweigh the benefits of multi-
To understand how MVCC pel
in modern hardware settings. W
scheme’s four key design decis
version storage, garbage colle
implemented state-of-the-art va
DBMS and evaluated them usi)
identifies the fundamental bott

1. INTRODUCTION

Computer architecture advar
core, in-memory DBMSs thay
agement mechanisms to maxi
senializability. The most popul
in the last decade is multi-versio
basic idea of MVCC is that thej
versions of cach logical object
the same object to proceed in
granularity, but almost every
provides a 2ood balance betw
of version tracking. Multi-vers
(o access older versions of t
wansactions from simultaneou
trast this with a single-versioy
overwrite a tuple with new infi

What is interesting about
MVCC is that the scheine is nol

This work is licensed under
NenCominercial-NoDerivatives 4
of this license, visit hip:#ereative
any use beyond those covered by T
info@vldb.org

roceedings of the VLDB Endow
Copyright 2017 VLDB Endowmg

If You Only Read One Empirical Evaluation Paper on
In-Memory Multi-Version Concurrency Control,
Make It This One!

Yingjun Wu
Ngﬁopal University of Singapore
ynnglun@comp.nus.edu.sg

Joy Arulraj
Carnegie Mellon University
]arulraj@cs.cmu.edu

Jiexi Lin Ran Xian
C@meg'ie Mellon University Camegie Mellon University
jiexil@cs.cmu.edu rxian@cs.cmu.edu

Andrew Pavlo
Carnegie Mellon University
pavlo@cs.cmu.edu

ABSTRACT

Multi-version concurrency control (MVCQ) is currently the most
popular transaction management scheme in modern database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970s, it is used in almost every major relational DBMS
released in the last decade. Maintaining multiple versions of data
potentially increases paralielism without sacrificing serializability
when processing transactions. But scaling MVCC in a multi-core
and in-memory setting is non-trivial: when there are a large number
F threads running in parallel, the synchronization overhead can
outweigh the benefits of multi-versioning.

Lo understand how MVCC perform when processing wansactions
in modern hardware settings, we conduet an extensive study of the
scheme’s four key design decisions: concurrency control protocol, . o A a >
e orae, garbage collection, and indes management. We standard” implementation. “There arc several design choices that
implemented state-of-the-art vasiants of al of these in an in-memory have differcnt trade-offs and performance behaviors Until now,
DBMS and cvaluated them using OLTP workloads. Our analysis there has not been a comprehensive evaluation of MVCC in a mod-

dentifics the fundamental botdenecks of cach design choice. ern DBMS operating environment. The last extensive study was
o be 1980s T13], but it used simulated workloads runing in &

disk-oriented DBMS with a single CPU core. The design choices
of legacy disk-oriented DBMSs are inappropriate for in-memory
DBMSs running on a machine with a large number of CPU cores.
As such, this previous work does not reflect recent trends in latch-
free [27] and serializable [20] concurrency control, as well as in-
memory storage [36] and hybrid workloads [40].

In this paper, we pexform such a study for key transaction man-
agement design decisions in of MVCC DBMSs: (1) concurrency
control protocol, (2) version storage, (3) garbage collection, and
(4) index management. For each of these topics, we describe the
state-of-the-art imp ions for i ry DBMSs and discuss
their trade.offs. We also hightight the issues that prevent them from
scaling to support larger thread counts and more complex workloads.
As part of this investigation, we implemented all of the approaches
in the Peloton [5] in-memory MVCC DBMS. This provides us
with & uniform platform to compare implementations that is not
encumbered by other architecture facets. We deployed Peloton on a
imachine with 40 cores and evaluate it using two OLTP benchmarks.
Qur analysis identifics the scenarios that stress the jmplementations

What is interesting about this trend of recent DBMSs using
MVCC is that the scheme is 1ot new. The first mention of it appeared
in a 1979 dissertation [38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today, including Oracle (since 1984 [4]), Postgres
(since 1985 {41]), and MySQL's InnoDB engine (since 2001)- But
while there are plenty of contemporaries to these older systems
{hat use a single-version scheme (e.g., IBM DB2, Sybase). almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g.. Microsoft Heka-
ton [16], SAP HANA [40), MemSQL 1], NuoDB [3]) and academic
(e.g., HYRISE 211, HyPer [36]) systems.

Despite all these newer systems using MVCC, there is no one

1. INTRODUCTION

Computer architecture advancements has Jed to the rise of multi-
core, in-memory DBMSs that employ fficient sransaction man-
agement mechanisms to maximize parallelism without sacrificing
<erializability. The most popular scheme sed in DBMSs developed
in the last decade is mudti-version concurrency control (MVCC). The
basic idea of MVCC is that the DBMS maintains multiple physical
versions of each logical object in the database to allow operations on
the same objcet to proceed in parallel. These objects can be at any
granulasity, but almost every MVCC DBMS uses tuples because it
provides a good balance between parallelism versus the overhead
of version tracking. Multi-versioning atlows read-only transactions
to access older versions of tuples without preventing read-write
(ransactions from simultaneously generating newer versions. Con-
trast this with a single-version system where transactions always
overwrite a tuple with new information whenever they update it

and discuss ways to mitigate them (if it all possible).

1ISIONS

i v R

ulti-Version Concu rrency Control

LDB Vol 10.

r your manuscript as an

L of comments for your r

1 i
= manuscript in due course

er taking into consideration of the revi

" H
L e e s Exp_erlments and Analyses
appreciate your research result
evision (enclosed). *

ewer comments,

from the tj i
e title and revise it to be scientific and reflect

9
make the taxonomy more general

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf

W

{
u

This is the Best Paper Ever on

In-Memﬁ

Nat
yin

Jiexi Li
Carnegie Mellon
jiexil@cs.cn

ABSTRACT

Multi-version coneurrency cont;
popular fransaction managemen
agement systems LDBMS_;), Al
the late 1970s, it is used in alm
released in the last decade- Mai
potentially increases para}le\isr
when processing transactions. |
and in-memory setting is non-u
of threads running in parallel,
outweigh the benefits of multi-
To ynderstand how MVCC pe
in modern hardware settings. W
scheme’s four key design decis
version storage, garbage colle
implemented state-of-the-art vay
DBMS and evaluated them st
identifies the fundamental bott

1. INTRODUCTION
Computer architecture advar
core, in-memory DBMSs thay
agement mechanisms to maxi
senializability. The most popul
in the last decade is multi-versio
basic idea of MVCC is that thej
versions of cach logical object
the same object to proceed in
granularity, but almost every
provides a 2ood balance betw
of version tracking. Multi-vers
{o access older versions of t
wansactions from simultancod
trast this with a single-versioy
overwrite a tuple with new infi
What is interesting about
MVCC is that the scheme is not

This work is licensed under
NenCominercial-NoDerivatives 4
of this license, visit hip:#ereative
any use beyond those covered by ¥
info@vldb.org
Proceedings of the VLDB Endow
Copyright 2017 VLDB Endowmg

ISIONS

If You Only Read One E
In-Memory Multi-Ver
Make

Yingjun Wu
National Urniversity of Singa
yingjun@comp.nus.ed

Jiexi Lin
Carnegie Mellon University Carne,
jiexil@cs.cmu.edu rxi

ABSTRACT

Multi-version concurrency control (MVCQ) is currently the
popular transaction management scheme in modern database
agement systems (DBMSs). Although MVCC was discove!
the late 1970s, it is used in almost every major relational D]
released in the last decade. Maintaining multiple versions o
potentially increases paralielism without sacrificing serializ A
when processing transactions. But scaling MVCC in a mult
and in-memory setting is non-trivial: when there are a large o
of threads running in parallel, the synchronization everhea
outweigh the benefits of multi-versioning.)

To understand how MVCC perform when processing trans
in modern hardware settings, we conduet an extensive study
seheme’s four key design decisions: concurrency control prd
version storage, garbage collection, and index managemen
implemented state-of-the-art variants of all of these in an in-m:
DBMS and evaluated them using OLTP workloads. Our a
identifies the fundamental bottlenecks of cach design choice|

1. INTRODUCTION

Computer architccture advancements has Jed to the tise o
core, in-memory DBMSs that employ efficient tansactio
agement mechanisms to maximize parallelism without sacr
<eralizability. The most popular scheme used in DBMSs dev
in the last decade is mudti-version concurrency control (MVC
basic idea of MVCC is that the DBMS maintains multiple p
versions of each logical object in the database to allow operati
the same object to proceed in parallel. These objects can be
granularity, but alinost every MVCC DBMS uses tuples bec
provides a good balance between parallelism versus the oV
of version tracking. Multi-versioning allows read-only trans
to access older versions of tuples without preventing reac
(ransactions from simultaneously generating newer Version:
trast this with a single-version system where transactions
overwrite a tuple with new information whenever they upd

We Think That You Will Really Enjoy This
Empirical Evaluation Paper on
In-Memory Multi-Version Concurrency Control

Yingjun Wu
National University of Singapore

Joy Arulraj
Carnegie Mellon University

yingjun@comp.nus.edu.sg jarulraj@cs.cmu.edu
Jiexi Lin Ran Xian Andrew Pavio
Ca_r'negie Mellon University Carnegie Mellon University Carnegie Mellon University
jiexil@cs.cmu.edu rxian@cs.cmu.edu pavio@cs.cmu.edu

ABSTRACT

Multi-version concurrency control (MVCC) is currently the most
popular transaction management scheme in modern database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970s, it is used in almost every major relational DBMS
released in the last decade. Maintaining multiple versions of data
potentially increases parallelism without sacrificing serializability
when processing transactions. But scaling MVCC ina multi-core
and in-memory setting is non-trivial: when there arc a large nuniber
of threads running in parallel, the synchronization overhead can
outweigh the benefits of multi-versioning.

To understand how MVCC perform when processing transactions
in modern hardware settings, we conduct an extensive study of the
scheme’s four key design decisions: concurrency control protocol,
version storage. garbage collection, and index management. We
implemented state-of the-art variants of all of these in an in-memory
DBMS and evaluated them using OLTP workloads. Our analysis
identifies the fundamental bottlenecks of cach design choice.

1. INTRODUCTION

Computer architecture advancements has led to the rise of multi-
core, in-memory DBMSs that employ efficient transaction man-
agement mechanisms to maximize parallelism without sacrificing
serializability. The most popular scheme used in DBMSs developed
in the last decade is multi-version concurrency control (MVCC). The
basic idea of MVCC is that the DBMS maintains multiple physical
versions of cach logical object in the database to allow operations on
the same object to proceed in parallel. These objects can be at any
granularity, but almost every MVCC DBMS uses tples because it
provides a sood balance between parallelism versus the overhead
of version tracking. Multi-versioning allows read-only transactions
to access older versions of tuples without preventing read-write

BT PR

What is interesting about this trend of recent DBMSs using
MVCC is that the scheme is not new. The first mention of it appeared
in a 1979 dissertation [38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today, including Oracle (since 1984 [4]). Postgres
(since 1985 [41]), and MySQL’s InnoDB engine {since 2001). But
while there arc plenty of contemporaries to these older systems
that use a single-version scheme (e.g., IBM DB2, Sybase), almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g., Microsoft Heka-
ton [16], SAP HANA [40], MemSQL [1}, NuoDB [3]) and academic
(e.g.. HYRISE [21], HyPer [36]) systems.

Despite all these newer systems using MVCC, there is no one
“standard” implementation. There are several design choices that
have different trade-offs and performance behaviors. Until now,
there has not been a comprehensive evaluation of MVCC in a mod-
ern DBMS operating environment. The last extensive study was
in the 1980s [13], but it used simulated workloads running in a
disk-oriented DBMS with a single CPU core. The design choices
of legacy disk-oriented DBMSs are inappropriate for in-memeory
DBMSs running on a machine with a large number of CPU cores.
As such, this previous work does not reflect recent trends in latch-
free [27) and serializable [20] concurrency control, as well as in-
memory storage [36] and hybrid workloads [40].

In this paper, we perform such a study for key transaction man-
agement design decisions in of MVCC DBMSs: (1) concurrency

control protocol, (2) version storage, (3) garbage collection, and
(4) index management. For each of these topics, we describe the
state-of-the-art implementations for in-memory DBMSs and discuss
their trade-offs. We also highlight the issues that prevent them from
sealing to support larger thread counts and more complex workloads.
As part of this investigation, we impl d all of the approach
in the Peloton [5] in-memory MVCC DBMS. This provides us

Ly et te ot

ents and Analyses

your research results,
nclosed).

reviewer comments,

scientific and reflect

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf

This is the Best Paper Ever on _

In-Memﬁ

An Empirical Evaluation of |
In-Memory Multi-Version Concurrency Control

W

{
u

Nat

yin

Jiexil Li
Carnegie Mellon
jiexil@cs.cn

ABSTRACT
y It

i-yersion concurrency con
o ction managemen)
agement systems }DBMS_s), ;’:‘1
the late 1970s, itis used in a’I .
ed in the last decade- h ai
s parallelisty

releast e
tentially 10 S el
l:ﬁuen processing trans f“iﬂ:,a
and in-memory :;ell'n-\g is .
of threads running in paral m.‘
outweigh the benefits of n'glc
To understand how MY > p;
in modern hardware ,~:c1\lmg.~,c“i
scheme’s four key design 2119:
version storage, garbage c1 e
implem&nled Slalc-of—lhi:-all .
DBMS and evaluated ncnb l.ﬂ
identifies the fundamental bo

1. INTRODUCTION
Computer architecture ad“[']aal‘
core, in-memur)-DBMSs e
agement mechanisms If: mau\
seralizability. The most _pc:plﬂ
in the Yast decade i mt_ﬂn-\:;l;
basic ideanfMVC? is tha ™
versions of each logical (\bjdesn
the same object to proceed I
granularity, but almost Evil‘iw
provides a good balance bel a
of version tracking. lYIu\Ex-~er:a
to access older ver‘smns of N
transactions from ‘s1mullzm:ia
trast this with a s;m‘gle-ver.vnf,
overwrite a tuple wilh ne:/ i)
What is interesting abou
MVCC is that the scheme is no

Jicensed under
vatives 4

This work is
Na..c‘vmmem.mLN<;De;Hamw
{ this license, visit hth
O eyond those covered by ¢
fo@vldb.org |
;‘::tegzlmg: of the VLDB l:udm"t‘ !
Copyright 2017 VLDB Endow

If You Only Read One E

- ory Multi-Ver|
In-Memory ki

Yingju'? V\luSing
National University O L
yingjun@comp.nus.ed

JiexiLlin
Carnegie Mellon University Ce:‘r;ie
jiexil@cs.cmu.edu

ABSTRACT

Multi-version concurrency L
D (DBAIS0) Allhoush MVCC was discove
e e s wsed in almost cvery major relational ;
the late 700, X evade. Muintaining sulipe versons
feleﬂse_d “: 'mzle:%ei paralielism without sacriﬁclns serial ,;1.'
pcl‘::l:rgz;:l ng transactions. But sca:ing‘::/i:;(i(l:_‘e ing il
e ory setting is non-uivial: when
e e paatel, he synchronization overhes)
ol threads]

is tly the
trol (MVCC) is curren .
ot ltleme in modern database|

ings nduct an extensive study
e o ey desgn dciions: coneuteny control P
e yarhage collection, and index mgnage_r: =
implemn smrci‘%lee;lf-of-lhe-arl variants of all of these ll“l agur "
““P‘e‘“e“‘g e§alua(ed them using OLTP wcrkloa-z‘:lsl.‘ c[:]‘m;‘
Sizxzeznlhe fundamental bottlenecks of each desig)

1. INTRODUCTION e
uter architecture advancements has Je A
Cm?:memury DBMSs that employ lelf?clen“ m.m;" i
caoment imi elism wi E
isms mize paral
t mechanisms to maxi - ot soct
ay“;fzr;bimy The most popular scheme used in 1135, ootrs
i , i-version CORCUFFERCY CO
i S is multi-version CoRCUITERcy Com A
b 13‘: degiflﬁ\"égis that the DBMS mamlmn.s‘;nulllplel}i
ot . i 3 low opel
- xcoim of each logical object in the dalaﬁa%ﬁlzs}mls C[;n .
‘lll?e s'an;e object to proceed in parzﬂélbﬁﬁ; e e
' S ry MV 5ES S
£ rity, but almost every M kg
Elﬁﬂf\;ﬂl?‘zvguod balance between parallelism v;rsu:ly o oY
D vemio i i-versioning allows read-on 5
3t racking. Multi-versi a only trans
o Vﬂl‘»ﬂW“;ll;Cer viriions of tuples without prewenl)negr‘m“
i i i Ver Vers
:Qa:f;cl'm from simultaneously geneml:;%enf:;ngamcns
st i stem W s
i i i -version system
st this with a single-version syste wactions
ot “Fne a tuple with new information whenever they upe
overwri

We Thin
Er
In-Memory

Nationa

yingju

Jiexi Lin
Carnegie Mellon Uni
jiexil@cs.cmu.€

ABSTRACT

Multi-version concurrency control
popular transaction management sch
agement systems (DBMSs). Altho
the late 1970s, it is used in aln‘los(-
released in the last decade. Mamla}
potentially increases parallelism wi
when processing transactio B‘ul
and in-memory setting is non-trivial)
of threads running in paral}{;l, the
eigh the benefits of multi-vers
Ouf['t uﬁdels!and how MVCC perfor
in modern hardware settings, we ¢
scheme’s four key design decision
version storage, garbage collectio
implemented state-of-the-art varian
DBMS and evaluated them using
identifies the fundamental bottlen

1. INTRODUCTION

Computer architecture advance
core, in-memory DBMSs that &
agement mechanisms to maximi.
serializability. The moss popular s
in the last decade is multi-version
basic idea of MVCC is that lhﬁ} 0
versions of each logical ohle.cl in
the same object to proceed in p:
granularity, but almost every M
provides a good balance -helw?e
of version tracking. Multi-versi

to access older versions of tu

Yingjun Wu

Ngtiqnal University of Singapore
ymgjun@comp.nus.edu.sg

Joy Arulraj
Carnegie Mellon University
jarulraj@cs.cmu.edu

Jiexi Lin Ran Xian Andrew Pavilo
Ca(negie Mellon University Carqegie Melion University Carnegie Mellon University
Jiexil@cs.cmu.edu rxian@cs.cmu.edu pavio@cs.cmu.edu

ABSTRACT

Multi-version concurrency control (MVCC) is currently the most
popular transaction management scheme in modern database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970, it is used in almost every major relational DBMS
released in the last decade, Maintaining multiple versions of data
potentially increases parallelism without sactificing serializability
when processing transactions. But scaling MVCC in a multi-core
and in-memory setting is non-trivial: when there are large number
of threads running in parallel, the synchronization overhead can
outweigh the benefits of multi-ve; oning.

To understand how MVCC perform when processing transactions
in modern hardware seutings, we conduct an extensive study of the
scheme’s four key design decisions: concurrency control protocol,
version storage, garbage collection, and index management. We
implemenied state-of-the-art variants of all of these in an in-memory
DBMS and evaluated them using OLTP workloads. Our analysis
identifies the fundamental bottlenecks of each design choice.

1. INTRODUCTION

Compuier architecture advancements has led to the rise of multi-
core, in-memory DBMSs that employ efficient transaction man-
agement mechanisms to maximize parallelism without sacrificing
serializability. The most popular scheme used in DBMSs developed
in the last decade is neudti-version coneurrency control (MYCC). The
basic idea of MVCC is that the DBMS maint:
versions of each logical object in the database o0 allow operations on
the same object to proceed in parallel. These objects can be at any
granularity, but almost every MVCC DBMS uses tuples because it
provides a good balance between parallclism versus the overhoad
of version tracking. Multi-versioning allows read-only transactions
to access older versions of tuples without preventing read-write
transactions from simultaneously generating newer versions. Con-
trast this with a single-version system where transactions always

overwrite a tuple with new information whenever they update it.
What is interesting about this trend of recent DBMSs using
MVCCis that the scheme is not new. The first mention of it appeared

ains multiple physical

This work is licensed under the Creative
NonC ial-NoDerivatives 4.0 I i
of this ficense, visit http: /e 1
any use beyond those covered by
info@vidb.org

Proceedings of the VLDB Endowment Vol 10 No. =

Commons Atribution-
License. "To view a copy

440, For
this license, obtain permission by emailing

in a 1979 dissertation (38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today, including Oracle (since 1984 [4)). Postgres
(since 1985 [41]), and MySQL’s InnoDB engine (since 2001). But
while there are plenty of contemporaries to these older systems
that use a single-version scheme (e.g.,IBM DB2, Sybase), almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g., Microsoft Heka-
ton [16]. SAP HANA [40], MemS QL {1}, NuoDB [3]) and academic
(e.g., HYRISE 21, HyPer [36]) s;

Despite all these newer system: 2 MVCC, there is no one
“standard” implementation. There are several design choices that
have different trade-offs and performance behaviors. Until now,
there has not been acomprehensive evaluation of MVCC in a mod..
e DBMS operating cavironment. The last extensive study was
in the 1980s [13], but it used simulated workloads running in a
disk-oricated DBMS with a single CPU core. The design choices
of legacy disk-oriented DBMSSs are inappropriate for in-memory
DBMSs running on a machine with a large number of CPU cores.
As such, this previous work docs not reflect recent trends in latch-
free [27] and serializable [20] concurrency control, as weil
memory storage [36] and hybrid workloads [40].

in this paper, we perform such a study for key transaction man-
agement design decisions in of MVCC DBMSs: (1) concarrency
control protocol, (2) version storage, (3) garbage collection, and
(4) index management. For cach of these topics, we describe the
state-of-the-art implementations for in-mermory DBMSs and discuss
their trade-offs, We also highlight the issues that Prevent them from
scaling to support larger thread counts and more complex workloads.
As part of this | igation, we impl d all of the t
in the Peloton [5] in-memory MVCC DBMS. This provides us
with a uniform platform to compare implementations that is not
encumbered by other architecture facets. We deployed Peloton on 4
machine with 40 cores and cvaluate itusing two OLTP benchmarks,
Our analysis identifies the scenarios that stress the implementations
and discuss ways 1o mitigate them (if it all possible),

2. BACKGROUND

We first provide an overview of the high-level concepts of MVCC.
We then discuss the meta-data that the DBMS uses (o track transac-
tions and maintain versioning information,

2.1 MVCC Overview

A frein s

ms.

as in-

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf

CMU 15-721 (Spring 2019)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering

— Assign txns timestamps that determine serial order.
— Considered to be original MV CC protocol.

Approach #2: Optimistic Concurrency Control
— Three-phase protocol from last class.
— Use private workspace for new versions.

Approach #3: Two-Phase Locking

— Txns acquire appropriate lock on physical version before
they can read/write a logical tuple.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TUPLE FORMAT

BEGIN-TS END-TS POINTER

Unique Txn Version Next/Prev Additional
Identifier Lifetime Version Meta-data

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING (MVTO)

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

VERSION TXN-ID READ-TS BEGIN-TS END-TS

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1
T. =10

1

WRITE(B)

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING (MVTO)

6.6 VERSION TXN- READ-TS BEGIN-TS END-TS
Thread #1 READ (u
T.~10
E,i‘ B, 1 0o
WRITE(B)
Use read-ts field in the Txn is allowed to read
header to keep track of the version if the latch is unset
timestamp of the last txn and its T,4 is between
that read it. begin-ts and end-ts.

C? CARNEGIE MELLON
=2 DATABASE GROUP

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING (MVTO)

6.6 VERSION TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
READ(A) 1 00
] ——
WRITE(B)
Use read-ts field in the Txn is allowed to read
header to keep track of the version if the latch is unset
timestamp of the last txn and its T,4 is between

that read it. begin-ts and end-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING (MVTO)

6.6 VERSION TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
READ(A) 1 00
] ——
WRITE(B)
Use read-ts field in the Txn is allowed to read
header to keep track of the version if the latch is unset
timestamp of the last txn and its T,4 is between

that read it. begin-ts and end-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
10

TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the latch is unset if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
10

TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the latch is unset if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
10

TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the latch is unset if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
10

TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1
A 7] 10 1 (00
a B, 10 0 1 00
WRITE(B) a B, 10 7] 10 00
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the latch is unset if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
10

TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
0 oo
'+ I T N
WRITE(B) a B, 10 7] 10 00
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the latch is unset if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
10

TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the latch is unset if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING (MV2PL)

Thread #1

WRITE(B)

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING (MV2PL)

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

Thread #1

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock. txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING (MV2PL)

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

Thread #1

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock. txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING (MV2PL)

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

Thread #1

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the If both txn-id and read-cnt
cnt field as SHARED lock. txn acquires the SHARED are zero, then txn acquires
Use txn-id and read-cnt lock by incrementing the the EXCLUSIVE lock by
together as EXCLUSIVE read-cnt field. setting both of them.

lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING (MV2PL)

Thread #1

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock. txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

If both txn-id and read-cnt

are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

1

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE

lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

WRITE(B)

VERSION

TXN-ID

TWO-PHASE LOCKING (MV2PL)

Thread #1

T. =10

READ-CNT BEGIN-TS END-TS

A %, 1 1 00
B, 10 1 1 00
B, 10 0 10 00

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt

are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING (MV2PL)

Thread #1

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

T —10 o 0 o0
’ Qe [[[
WRITE(B) B, 10 7] 10 00

Txns use the tuple's read- If txn-id is zero, then the If both txn-id and read-cnt
cnt field as SHARED lock. txn acquires the SHARED are zero, then txn acquires
Use txn-id and read-cnt lock by incrementing the the EXCLUSIVE lock by
together as EXCLUSIVE read-cnt field. setting both of them.
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TWO-PHASE LOCKING (MV2PL)

Thread #1

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock. txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

If both txn-id and read-cnt

are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Thread #1
T. =21

1

& @ CARNEGIE MELLON
=2 DATABASE GROUP

OBSERVATION

VERSION TXN-ID READ-TS BEGIN-TS

A, 0 - 99999

END-TS

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Thread #1
T 231 1 VERSION TXN-ID READ-TS BEGIN-TS END-TS
a A, | 231-1 - | 99999 | 231-1
Az 231 '1 = 231 '1 OO

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Thread #1
T 231 1 VERSION TXN-ID READ-TS BEGIN-TS END-TS
i - B 31
A,) - 99999 | 231-1
A, %} - 231-1 (0.0

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Thread #1
T. =21

1

Thread #2
T. .=

1

& @ CARNEGIE MELLON
=2 DATABASE GROUP

OBSERVATION

VERSION TXN-ID READ-TS BEGIN-TS END-TS
A, 0 - | 99999 | 231-1
A, 7 - 231-1 (0e)

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Thread #1
T. =21

1

Thread #2
T. .=

1

& @ CARNEGIE MELLON
=2 DATABASE GROUP

OBSERVATION

VERSION TXN-ID READ-TS BEGIN-TS END-TS
A, 0 - 99999 | 231-1
A, 1 - 231.1 1
A, 1 - 1 0o

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Thread #1
T. =21

1

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #2
T. .=

1

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

POSTGRES TXN ID WRAPAROUND

Set a flag in each tuple header that says that it is
"frozen" in the past. Any new txn id will always be
newer than a frozen version.

Runs the vacuum before the system gets close to
this upper limit.

Otherwise it has to stop accepting new commands
when the system gets close to the max txn id.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
14

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a

latch-free version chain per logical tuple.

— This allows the DBMS to find the version that is visible
to a particular txn at runtime.

— Indexes always point to the “head” of the chain.

Threads store versions in “local” memory regions
to avoid contention on centralized data structures.

Different storage schemes determine where/what
to store for each version.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VERSION STORAGE

Approach #1: Append-Only Storage

— New versions are appended to the same table space.

Approach #2: Time-Travel Storage
— Old versions are copied to separate table space.

Approach #3: Delta Storage

— The original values of the modified attributes are copied
into a separate delta record space.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

APPEND-ONLY STORAGE

Main Table
All of the physical versions of a
logical tuple are stored in the same B | VAEUE T
table space. The versions are A, $7117 ®
mixed together. » A, $222 0
B, $10 0
On every update, append a new

version of the tuple into an empty
space in the table.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

APPEND-ONLY STORAGE

Main Table
All of the physical versions of a
logical tuple are stored in the same

VERSION VALUE POINTER

table space. The versions are =
mixed together. D g |
5 : : B, $10

n every update, append a new A, 727

version of the tuple into an empty
space in the table.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

APPEND-ONLY STORAGE

Main Table
All of the physical versions of a
logical tuple are stored in the same R e
table space. The versions are A, | #7717 o
mixed together. » A, | s222 | —F
B, $10 0
On every update, append a new n | 5333 PR

version of the tuple into an empty
space in the table.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Just append new version to end of the chain.
— Have to traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N20)

— Have to update index pointers for every new version.
— Don’t have to traverse chain on look ups.

The ordering of the chain has different
performance trade-offs.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIME-TRAVEL STORAGE

Time-Travel Table

Main Table

VERSION VALUE POINTER

VERSION

» A, | $222| e

B, $70

On every update, copy the
current version to the time-

travel table. Update pointers.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

A

VALUE

$17117

POINTER

]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIME-TRAVEL STORAGE
Main Table Time-Travel Table

VERSION VALUE POINTER

» A, $222 O

VERSION VALUE POINTER

N 772 A

n | 5202 | e—

B, $70

On every update, copy the
current version to the time-
travel table. Update pointers.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIME-TRAVEL STORAGE

Main Table

VERSION VALUE POINTER

n

Time-Travel Table

VERSION VALUE POINTER

On every update, copy the
current version to the time-

travel table. Update pointers.

G'._? CARNEGIE MELLON
DATABASE GROUP

A, $711 0 |
A, | $222| e

Overwrite master version in
the main table.
Update pointers.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIME-TRAVEL STORAGE

Main Table

VERSION VALUE POINTER

On every update, copy the
current version to the time-

travel table. Update pointers.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Time-Travel Table

VERSION VALUE POINTER
A, $711 0 |
>| A, | $222| e

Overwrite master version in
the main table.
Update pointers.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
19

DELTA STORAGE

Main Table Delta Storage Segment

VERSION VALUE POINTER

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DELTA STORAGE

Main Table

VERSION VALUE POINTER

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Delta Storage Segment

DELTA POINTER

A, (VALUE»$111) 0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DELTA STORAGE

Main Table

VERSION VALUE POINTER

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Delta Storage Segment

DELTA POINTER

A, (VALUE»$111) 0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DELTA STORAGE

Main Table Delta Storage Segment

5222 < (VALUE»$111) 0

1
A, | (vALUE»3222)| @

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

19

DELTA STORAGE

Main Table

VERSION VALUE POINTER

Delta Storage Segment

A (VALUE»$111)| @

1

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

N A, | (VALUE»$222)| ®

Txns can recreate old
versions by applying the delta
in reverse order.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

VERSION INT_VAL STR_VAL >| MY _LONG_STRING
A, $100 ®

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

A, | $100 | @)| MY_LONG_STRING
A, 390 ®

Reuse pointers to variable-
length pool for values that do
not change between versions.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

20

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

A, | 100 | @

A, | %90
Reuse pointers to variable- Requires reference counters
length pool for values that do to know when it is safe to
not change between versions. free memory. Unable to

relocate memory easily.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

20

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

A, | $100 | e
A, | 890 o

Reuse pointers to variable- Requires reference counters
length pool for values that do to know when it is safe to
not change between versions. free memory. Unable to

relocate memory easily.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can “see” that version (SI).
— The version was created by an aborted txn.

Three additional design decisions:

— How to look for expired versions?

ow to decide when it 1s safe to reclaim memory?
— Where to look for expired versions?

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

GARBAGE COLLECTION

Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level

— Txns keep track of their old versions so the DBMS does
not have to scan tuples to determine visibility.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1
Vacuum VERSION BEGIN-TS END-TS

T. =12
id \ A ; 9

Thread #2 ‘ — B, oo 7 9
T, =25 —¥ O B,,; 70 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1
Vacuum VERSION BEGIN-TS END-TS

T, =12
id \ » A ; 9

Thread #2 ‘ — B, oo 7 9
T, =25 —¥ O B,,; 70 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

23

TUPLE-LEVEL GC

Thread #1 Vacuum
Ti =12 \
Thread #2 ‘ <
T,=25 = O »
Background Vacuuming:
Separate thread(s) periodically
scan the table and look for

reclaimable versions. Works
with any storage.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

VERSION BEGIN-TS END-TS

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 Vacuum

Tid=12 \

VERSION BEGIN-TS END-TS

Thread #2 ‘ — -
T, =25 — O » B, 70 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 Vacuum

T : d=1 2 \
Thread #Z ‘
T, =2 — O

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

G'._? CARNEGIE MELLON
=2 DATABASE GROUP

»

il R f IR Q
dopng yoig A1aq

VERSION

BEGIN-TS

END-TS

B101

19

20

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 Vacuum

T'd=12 \

VERSION

BEGIN-TS

END-TS

(AN BN BN B
doprng 3o01g A140q

Thread #Z ‘
T, =2 — O

B1®1

19

20

¥

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

G'._? CARNEGIE MELLON
=2 DATABASE GROUP

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1
T, =12
4 INDEX
Thread #2
T, =25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Aq

A

A,

B,

B,

B,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only

works with O2N.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 ‘

T, =12 GET(A) A P A P
4 INDEX
Thread #2 s, | 5, bl &, b
T, =25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 ‘

T, <12 GET(A) »'8'—» A, P oA, P
Thread #2

Bo ™ B ™ B, ™

Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 ‘

T.=12 GET(A) _,|X|..X|.. s,
Thread #2

Bo ™ B ™ B, ™

Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1 ‘

Tid=12 \%/ A,
Thread #2

Bo ™ B ™ B, ™

Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

May still require multiple threads to reclaim the
memory fast enough for the workload.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INDEX MANAGEMENT

PKey indexes always point to version chain head.

— How often the DBMS has to update the pkey index
depends on whether the system creates new versions
when a tuple is updated.

— If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated...

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

JOIN THE TEAM MEET THE PEOPLE

ARCHITECTURE

WHY UBER ENGINEERING
SWITCHED FROM
POSTGRES TO MYSQL

BY EVAN KLITZKE

Secondary Index | A ‘ B ' C D

Primary Index

A
N

@)
§-N

L

Disk [__ H_ WH []

76 103 107 21

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://eng.uber.com/mysql-migration/

CMU 15-721 (Spring 2019)

SECONDARY INDEXES

Approach #1: Logical Pointers

— Use a fixed identifier per tuple that does not change.
— Requires an extra indirection layer.
— Primary Key vs. Tuple Id

Approach #2: Physical Pointers

— Use the physical address to the version chain head.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

INDEX POINTERS

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

A, bl A Pl A bl A }Append-()nly

& & CARNEGIE MELLON

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

INDEX POINTERS

GET(A) @
A PRIMARY INDEX A SECONDARY INDEX
Physical
Address

Append-Only
4" A LA LA LA }Newest-to-Oldest

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

INDEX POINTERS

¥ GET(A)
A PRIMARY INDEX A SECONDARY INDEX
Physical
Address

Newest-to-Oldest

"l A, bl A Pl A bl A }Append-()nly

& @ CARNEGIE MELLON
=2 DATABASE GROUP

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

A SECONDARY INDEX

A SECONDARY INDEX
A SECONDARY INDEX

"l A, bl A Pl A bl A }Append-()nly

Newest-to-Oldest

& & CARNEGIE MELLON

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

A SECONDARY INDEX
A SECONDARY INDEX
A SECONDARY INDEX

- Append-Only
I"’ A A LA }Newest—to-Oldest

_,l

— > ¢

& & CARNEGIE MELLON

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

INDEX POINTERS

¥ GET(A)
A PRIMARY INDEX A SECONDARY INDEX
Primary
Physical Key
Address

Append-Only
4" A LA LA LA }Newest-to-Oldest

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

Tupleld

@ Tupleld—Address

Physical

Address L{
Append-Only
A PLA LA P A }Newest—to-Oldest

& & CARNEGIE MELLON

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MVCC EVALUATION PAPER

We implemented all of the design decisions in the
Peloton DBMS as part of 15-721 in Spring 2016.

Two categories of experiments:

— Evaluate each of the design decisions in isolation to
determine their trade-offs.

— Compare configurations of real-world MVCC system:s.

~=" AN EMPIRICAL EVALUATION OF IN-MEMORY
\I\//IL%IETZIE)YERSION CONCURRENCY CONTROL

& @ CARNEGIE MELLON
=2 DATABASE GROUP

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/peloton
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/03-mvcc1/wu-vldb2017.pdf

MVCC DESIGN DECISIONS

CC Protocol: Inconclusive results...
Version Storage: Deltas
Garbage Collection: Tuple-Level Vacuuming

Indexes: Logical Pointers

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MVCC CONFIGURATION EVALUATION

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-0CC Append-Only - Physical
Hekaton MV-0CC Append-Only Cooperative Physical
MemSQL MV-0CC Append-Only Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical
HyPer MV-0CC Delta Txn-level Logical
CMU's TBD MV-0CC Delta Txn-level Logical

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/terrier

CMU 15-721 (Spring 2019)

MVCC CONFIGURATION EVALUATION

Database: TPC-C Benchmark (40 W arehouses)
Processor: 4 sockets, 10 cores per socket

100 -®- Oracle/MySQL
f\
S -« NuoDB
N 75
S —+-HyPer
Nad
8] 50 <¢<HYRISE
Y
Eo =*=MemSQL
25
£ -»- HANA
~
0 -+HEKATON
0 8 16 24 32 40 o= Postgres

& & CARNEGIE MELLON # Threads

=2 DATABASE GROUP

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

(=
=

CARNEGIE MEL
DATABASE GROUP

Robert Haas

VP, Chief Architect, Database Server @ EnterpriseDB, PostgreSQL Major Contributor and Committer

Tuesday, January 30, 2018

DO or UNDO - there is no VACUUM

What if PostgreSQL didn’t need VACUUM at all? This seems hard to imagine. After all,
PostgreSQL uses multi-version concurrency control (MVCC), and if you create multiple versions of
rows, you have to eventually get rid of the row versions somehow. In PostgreSQL, VACUUM is in
charge of making sure that happens, and the autovacuum process is in charge of making sure
that happens soon enough. Yet, other schemes are possible, as shown by the fact that not all
relational databases handie MVCC in the same way, and there are reasons to believe that
PostgreSQL could benefit significantly from adopting a new approach. In fact, many of my
colleagues at EnterpriseDB are busy implementing a new approach, and today I'd like to teli you a
little bit about what we're doing and why we're doing it.

While it's certainly true that VACUUM has significantly improved over the years, there are some
problems that are very difficult to solve in the current system structure. Because old row versions
and new row versions are stored in the same place - the table, also known as the heap - updating
a large number of rows must, at least temporarily, make the heap bigger. Depending on the
pattern of updates, it may be impossible to easily shrink the heap again afterwards. For example,
imagine loading a large number of rows into a table and then updating half of the rows in each
block. The table size must grow by 50% to accommodate the new row versions. When VACUUM
removes the old versions of those rows, the original table blocks are now all 50% full. That space
is available for new row versions, but there is no easy way to move the rows from the new newly-
added blocks back to the old half-full blocks: you can use VACUUM FULL or you can use third-
party tools like pg_repack, but either way you end up rewriting the whole table. Proposals have

! icke hlnatinr the

About Me
@ Robert Haas
G+ Follow 0
View my complete profile
bW
Blog Archive
v 2018 (2)

¥ January (2)
DO or UNDO - there is no VACUUM

The State of VACUUM

2017 ()
2016 (6)
2015 (4)
2014 (1)
2013 (5)
2012 (14)
2011 (41)

2010 (46)

vy ¥y ¥ ¥y Y ¥y V¥ Y

ySQL]

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://rhaas.blogspot.com/2018/01/do-or-undo-there-is-no-vacuum.html

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

PARTING THOUGHTS

MVCC is the best approach for supporting txns in
mixed workloads.

We only discussed MVCC for OLTP.
— Design decisions may be different for HT AP

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

NEXT CLASS

Modern MVCC Implementations
— TUM HyPer

— CMU Cicada

— Microsoft Hekaton

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

