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CORRECTION

Original SQL-92 isolation levels were not devised
assuming a 2PL-based DBMS.

: A CRITIQUE OF ANSI SQL ISOLATION LEVELS
SIGMOD 1995
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Abstract: ANSI $SQL-92 [MS, ANSI] defines Isolation The ANSI isolation levels are related (o the behavior of lock
Levels in terms of phenomena: Dirty Reads, Non-Re- schedulers. Some lock schedulers allow transactions (0
peatable Reads, and Phantoms. This paper shows that these vary the scope and duration of their lock requests, thus de-
phenomena and the ANSI SQL. definitions fail t0 properly ing from pure two-phase locking. This idea was intro-
characterize several popular jsolation levels, including the duced by [GLPT], which defined Degrees of Consistency in
standard locking implementations of the levels covered. three ways: locking, data-flow graphs, and anomalies.
Ambiguity in the statement of the phenomena is investi- Defining isolation levels by phenomena (anomalics) was
gated and "a more formal statement is amrived at; in addition intended to allow non-lock-based implementations of the
new phenomena that better characterize isolation types are SQL standard.
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MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:

— When a txn writes to an object, the DBMS creates a new
version of that object.

— When a txn reads an object, it reads the newest version
that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.
First implementation was InterBase (Firebird).

Used in almost every new DBMS in last 10 years.
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MULTI-VERSION CONCURRENCY CONTROL

Main benefits:

— Woriters don't block readers.

— Read-only txns can read a consistent snapshot without
acquiring locks.

— Easily support time-travel queries.

MVCC is more than just a “concurrency control
protocol”. It completely affects how the DBMS
manages transactions and the database.
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SNAPSHOT ISOLATION

When a txn starts, it sees a consistent snapshot of
the database that existed at the moment that the

txn started.
— No torn writes from active txns.
— If two txns update the same object, then first writer wins.

We get SI automatically for "free" with MVCC.

— If we want serializable isolation, then the DBMS has to
do extra stuff...
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MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage

Garbage Collection

Index Management

=~ | AN EMPIRICAL EVALUATION OF IN-MEMORY
\I\//IL%IBTZIE)\{ERSION CONCURRENCY CONTROL
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ABSTRACT

Multi-version concurrency control (MVCQ) is currently the most
popular transaction management scheme in modern database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970s, it is used in almost every major relational DBMS
released in the last decade. Maintaining multiple versions of data
potentially increases paralielism without sacrificing serializability
when processing transactions. But scaling MVCC in a multi-core
and in-memory setting is non-trivial: when there are a large number
F threads running in parallel, the synchronization overhead can
outweigh the benefits of multi-versioning.

Lo understand how MVCC perform when processing wansactions
in modern hardware settings, we conduet an extensive study of the
scheme’s four key design decisions: concurrency control protocol, . o A a >
e orae, garbage collection, and indes management. We standard” implementation. “There arc several design choices that
implemented state-of-the-art vasiants of al of these in an in-memory have differcnt trade-offs and performance behaviors Until now,
DBMS and cvaluated them using OLTP workloads. Our analysis there has not been a comprehensive evaluation of MVCC in a mod-

dentifics the fundamental botdenecks of cach design choice. ern DBMS operating environment. The last extensive study was
o be 1980s T13], but it used simulated workloads runing in &

disk-oriented DBMS with a single CPU core. The design choices
of legacy disk-oriented DBMSs are inappropriate for in-memory
DBMSs running on a machine with a large number of CPU cores.
As such, this previous work does not reflect recent trends in latch-
free [27] and serializable [20] concurrency control, as well as in-
memory storage [36] and hybrid workloads [40].

In this paper, we pexform such a study for key transaction man-
agement design decisions in of MVCC DBMSs: (1) concurrency
control protocol, (2) version storage, (3) garbage collection, and
(4) index management. For each of these topics, we describe the
state-of-the-art imp ions for i ry DBMSs and discuss
their trade.offs. We also hightight the issues that prevent them from
scaling to support larger thread counts and more complex workloads.
As part of this investigation, we implemented all of the approaches
in the Peloton [5] in-memory MVCC DBMS. This provides us
with & uniform platform to compare implementations that is not
encumbered by other architecture facets. We deployed Peloton on a
imachine with 40 cores and evaluate it using two OLTP benchmarks.
Qur analysis identifics the scenarios that stress the jmplementations

What is interesting about this trend of recent DBMSs using
MVCC is that the scheme is 1ot new. The first mention of it appeared
in a 1979 dissertation [38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today, including Oracle (since 1984 [4]), Postgres
(since 1985 {41]), and MySQL's InnoDB engine (since 2001)- But
while there are plenty of contemporaries to these older systems
{hat use a single-version scheme (e.g., IBM DB2, Sybase). almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g.. Microsoft Heka-
ton [16], SAP HANA [40), MemSQL 1], NuoDB [3]) and academic
(e.g., HYRISE 211, HyPer [36]) systems.

Despite all these newer systems using MVCC, there is no one

1. INTRODUCTION

Computer architecture advancements has Jed to the rise of multi-
core, in-memory DBMSs that employ fficient sransaction man-
agement mechanisms to maximize parallelism without sacrificing
<erializability. The most popular scheme sed in DBMSs developed
in the last decade is mudti-version concurrency control (MVCC). The
basic idea of MVCC is that the DBMS maintains multiple physical
versions of each logical object in the database to allow operations on
the same objcet to proceed in parallel. These objects can be at any
granulasity, but almost every MVCC DBMS uses tuples because it
provides a good balance between parallelism versus the overhead
of version tracking. Multi-versioning atlows read-only transactions
to access older versions of tuples without preventing read-write
(ransactions from simultaneously generating newer versions. Con-
trast this with a single-version system where transactions always
overwrite a tuple with new information whenever they update it

and discuss ways to mitigate them (if it all possible).
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ABSTRACT

Multi-version concurrency control (MVCC) is currently the most
popular transaction management scheme in modern database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970s, it is used in almost every major relational DBMS
released in the last decade. Maintaining multiple versions of data
potentially increases parallelism without sacrificing serializability
when processing transactions. But scaling MVCC ina multi-core
and in-memory setting is non-trivial: when there arc a large nuniber
of threads running in parallel, the synchronization overhead can
outweigh the benefits of multi-versioning.

To understand how MVCC perform when processing transactions
in modern hardware settings, we conduct an extensive study of the
scheme’s four key design decisions: concurrency control protocol,
version storage. garbage collection, and index management. We
implemented state-of the-art variants of all of these in an in-memory
DBMS and evaluated them using OLTP workloads. Our analysis
identifies the fundamental bottlenecks of cach design choice.

1. INTRODUCTION

Computer architecture advancements has led to the rise of multi-
core, in-memory DBMSs that employ efficient transaction man-
agement mechanisms to maximize parallelism without sacrificing
serializability. The most popular scheme used in DBMSs developed
in the last decade is multi-version concurrency control (MVCC). The
basic idea of MVCC is that the DBMS maintains multiple physical
versions of cach logical object in the database to allow operations on
the same object to proceed in parallel. These objects can be at any
granularity, but almost every MVCC DBMS uses tples because it
provides a sood balance between parallelism versus the overhead
of version tracking. Multi-versioning allows read-only transactions
to access older versions of tuples without preventing read-write

BT PR

What is interesting about this trend of recent DBMSs using
MVCC is that the scheme is not new. The first mention of it appeared
in a 1979 dissertation [38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today, including Oracle (since 1984 [4]). Postgres
(since 1985 [41]), and MySQL’s InnoDB engine {since 2001). But
while there arc plenty of contemporaries to these older systems
that use a single-version scheme (e.g., IBM DB2, Sybase), almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g., Microsoft Heka-
ton [16], SAP HANA [40], MemSQL [1}, NuoDB [3]) and academic
(e.g.. HYRISE [21], HyPer [36]) systems.

Despite all these newer systems using MVCC, there is no one
“standard” implementation. There are several design choices that
have different trade-offs and performance behaviors. Until now,
there has not been a comprehensive evaluation of MVCC in a mod-
ern DBMS operating environment. The last extensive study was
in the 1980s [13], but it used simulated workloads running in a
disk-oriented DBMS with a single CPU core. The design choices
of legacy disk-oriented DBMSs are inappropriate for in-memeory
DBMSs running on a machine with a large number of CPU cores.
As such, this previous work does not reflect recent trends in latch-
free [27) and serializable [20] concurrency control, as well as in-
memory storage [36] and hybrid workloads [40].

In this paper, we perform such a study for key transaction man-
agement design decisions in of MVCC DBMSs: (1) concurrency

control protocol, (2) version storage, (3) garbage collection, and
(4) index management. For each of these topics, we describe the
state-of-the-art implementations for in-memory DBMSs and discuss
their trade-offs. We also highlight the issues that prevent them from
sealing to support larger thread counts and more complex workloads.
As part of this investigation, we impl d all of the approach
in the Peloton [5] in-memory MVCC DBMS. This provides us
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ABSTRACT

Multi-version concurrency control (MVCC) is currently the most
popular transaction management scheme in modern database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970, it is used in almost every major relational DBMS
released in the last decade, Maintaining multiple versions of data
potentially increases parallelism without sactificing serializability
when processing transactions. But scaling MVCC in a multi-core
and in-memory setting is non-trivial: when there are large number
of threads running in parallel, the synchronization overhead can
outweigh the benefits of multi-ve; oning.

To understand how MVCC perform when processing transactions
in modern hardware seutings, we conduct an extensive study of the
scheme’s four key design decisions: concurrency control protocol,
version storage, garbage collection, and index management. We
implemenied state-of-the-art variants of all of these in an in-memory
DBMS and evaluated them using OLTP workloads. Our analysis
identifies the fundamental bottlenecks of each design choice.

1. INTRODUCTION

Compuier architecture advancements has led to the rise of multi-
core, in-memory DBMSs that employ efficient transaction man-
agement mechanisms to maximize parallelism without sacrificing
serializability. The most popular scheme used in DBMSs developed
in the last decade is neudti-version coneurrency control (MYCC). The
basic idea of MVCC is that the DBMS maint:
versions of each logical object in the database o0 allow operations on
the same object to proceed in parallel. These objects can be at any
granularity, but almost every MVCC DBMS uses tuples because it
provides a good balance between parallclism versus the overhoad
of version tracking. Multi-versioning allows read-only transactions
to access older versions of tuples without preventing read-write
transactions from simultaneously generating newer versions. Con-
trast this with a single-version system where transactions always

overwrite a tuple with new information whenever they update it.
What is interesting about this trend of recent DBMSs using
MVCCis that the scheme is not new. The first mention of it appeared

ains multiple physical
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in a 1979 dissertation (38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today, including Oracle (since 1984 [4)). Postgres
(since 1985 [41]), and MySQL’s InnoDB engine (since 2001). But
while there are plenty of contemporaries to these older systems
that use a single-version scheme (e.g.,IBM DB2, Sybase), almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g., Microsoft Heka-
ton [16]. SAP HANA [40], MemS QL {1}, NuoDB [3]) and academic
(e.g., HYRISE 21, HyPer [36]) s;

Despite all these newer system: 2 MVCC, there is no one
“standard” implementation. There are several design choices that
have different trade-offs and performance behaviors. Until now,
there has not been acomprehensive evaluation of MVCC in a mod..
e DBMS operating cavironment. The last extensive study was
in the 1980s [13], but it used simulated workloads running in a
disk-oricated DBMS with a single CPU core. The design choices
of legacy disk-oriented DBMSSs are inappropriate for in-memory
DBMSs running on a machine with a large number of CPU cores.
As such, this previous work docs not reflect recent trends in latch-
free [27] and serializable [20] concurrency control, as weil
memory storage [36] and hybrid workloads [40].

in this paper, we perform such a study for key transaction man-
agement design decisions in of MVCC DBMSs: (1) concarrency
control protocol, (2) version storage, (3) garbage collection, and
(4) index management. For cach of these topics, we describe the
state-of-the-art implementations for in-mermory DBMSs and discuss
their trade-offs, We also highlight the issues that Prevent them from
scaling to support larger thread counts and more complex workloads.
As part of this | igation, we impl d all of the t
in the Peloton [5] in-memory MVCC DBMS. This provides us
with a uniform platform to compare implementations that is not
encumbered by other architecture facets. We deployed Peloton on 4
machine with 40 cores and cvaluate itusing two OLTP benchmarks,
Our analysis identifies the scenarios that stress the implementations
and discuss ways 1o mitigate them (if it all possible),

2. BACKGROUND

We first provide an overview of the high-level concepts of MVCC.
We then discuss the meta-data that the DBMS uses (o track transac-
tions and maintain versioning information,

2.1 MVCC Overview

A frein s

ms.
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CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering

— Assign txns timestamps that determine serial order.
— Considered to be original MV CC protocol.

Approach #2: Optimistic Concurrency Control
— Three-phase protocol from last class.
— Use private workspace for new versions.

Approach #3: Two-Phase Locking

— Txns acquire appropriate lock on physical version before
they can read/write a logical tuple.
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=2 DATABASE GROUP
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TUPLE FORMAT

BEGIN-TS END-TS POINTER

Unique Txn Version Next/Prev Additional
Identifier Lifetime Version Meta-data
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TIMESTAMP ORDERING (MVTO)

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.
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=2 DATABASE GROUP

VERSION TXN-ID READ-TS BEGIN-TS END-TS

10
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TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1
T. =10

1

WRITE(B)

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.
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TIMESTAMP ORDERING (MVTO)

6.6 VERSION TXN- READ-TS BEGIN-TS END-TS
Thread #1 READ ( u
T.~10
E,i‘ B, 1 0o
WRITE(B)
Use read-ts field in the Txn is allowed to read
header to keep track of the  version if the latch is unset
timestamp of the last txn and its T,4 is between
that read it. begin-ts and end-ts.

C? CARNEGIE MELLON
=2 DATABASE GROUP
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TIMESTAMP ORDERING (MVTO)

6.6 VERSION TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
READ(A) 1 00
] ——
WRITE(B)
Use read-ts field in the Txn is allowed to read
header to keep track of the  version if the latch is unset
timestamp of the last txn and its T,4 is between

that read it. begin-ts and end-ts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TIMESTAMP ORDERING (MVTO)

6.6 VERSION TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
READ(A) 1 00
] ——
WRITE(B)
Use read-ts field in the Txn is allowed to read
header to keep track of the  version if the latch is unset
timestamp of the last txn and its T,4 is between

that read it. begin-ts and end-ts.
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TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the latch is unset  if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.
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TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the latch is unset  if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.
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TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the latch is unset  if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.
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TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1
A 7] 10 1 (00
a B, 10 0 1 00
WRITE(B) a B, 10 7] 10 00
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the latch is unset  if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.
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TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
0 oo
'+ I T N
WRITE(B) a B, 10 7] 10 00
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the latch is unset  if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.
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TIMESTAMP ORDERING (MVTO)

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

WRITE(B)
Use read-ts field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the latch is unset  if no other txn holds latch
timestamp of the last txn and its T,4 is between and T, is greater than

that read it. begin-ts and end-ts. read-ts.
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TWO-PHASE LOCKING (MV2PL)

Thread #1

WRITE(B)

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

11
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TWO-PHASE LOCKING (MV2PL)

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

Thread #1

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock.  txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.
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TWO-PHASE LOCKING (MV2PL)

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

Thread #1

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock.  txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.
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TWO-PHASE LOCKING (MV2PL)

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

Thread #1

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the If both txn-id and read-cnt
cnt field as SHARED lock.  txn acquires the SHARED  are zero, then txn acquires
Use txn-id and read-cnt lock by incrementing the the EXCLUSIVE lock by
together as EXCLUSIVE read-cnt field. setting both of them.

lock.
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TWO-PHASE LOCKING (MV2PL)

Thread #1

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock.  txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

If both txn-id and read-cnt

are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.
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1

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE

lock.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

WRITE(B)

VERSION

TXN-ID

TWO-PHASE LOCKING (MV2PL)

Thread #1

T. =10

READ-CNT BEGIN-TS END-TS

A %, 1 1 00
B, 10 1 1 00
B, 10 0 10 00

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt

are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

11
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TWO-PHASE LOCKING (MV2PL)

Thread #1

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

T —10 o 0 o0
’ Qe [ [ [
WRITE(B) B, 10 7] 10 00

Txns use the tuple's read- If txn-id is zero, then the If both txn-id and read-cnt
cnt field as SHARED lock.  txn acquires the SHARED  are zero, then txn acquires
Use txn-id and read-cnt lock by incrementing the the EXCLUSIVE lock by
together as EXCLUSIVE read-cnt field. setting both of them.
lock.
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TWO-PHASE LOCKING (MV2PL)

Thread #1

VERSION TXN-ID READ-CNT BEGIN-TS END-TS

WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock.  txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.
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=2 DATABASE GROUP

If both txn-id and read-cnt

are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

11


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Thread #1
T. =21

1

& @ CARNEGIE MELLON
=2 DATABASE GROUP

OBSERVATION

VERSION TXN-ID READ-TS BEGIN-TS

A, 0 - 99999

END-TS

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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OBSERVATION

Thread #1
T 231 1 VERSION TXN-ID READ-TS BEGIN-TS END-TS
a A, | 231-1 - | 99999 | 231-1
Az 231 '1 = 231 '1 OO

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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OBSERVATION

Thread #1
T 231 1 VERSION TXN-ID READ-TS BEGIN-TS END-TS
i - B 31
A, ) - 99999 | 231-1
A, %} - 231-1 (0.0

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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Thread #1
T. =21

1

Thread #2
T. .=

1

& @ CARNEGIE MELLON
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OBSERVATION

VERSION TXN-ID READ-TS BEGIN-TS END-TS
A, 0 - | 99999 | 231-1
A, 7 - 231-1 (0e)

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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Thread #1
T. =21

1

Thread #2
T. .=

1
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=2 DATABASE GROUP

OBSERVATION

VERSION TXN-ID READ-TS BEGIN-TS END-TS
A, 0 - 99999 | 231-1
A, 1 - 231.1 1
A, 1 - 1 0o

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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OBSERVATION

Thread #1
T. =21

1

VERSION TXN-ID READ-TS BEGIN-TS END-TS

Thread #2
T. .=

1

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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POSTGRES TXN ID WRAPAROUND

Set a flag in each tuple header that says that it is
"frozen" in the past. Any new txn id will always be
newer than a frozen version.

Runs the vacuum before the system gets close to
this upper limit.

Otherwise it has to stop accepting new commands
when the system gets close to the max txn id.
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VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a

latch-free version chain per logical tuple.

— This allows the DBMS to find the version that is visible
to a particular txn at runtime.

— Indexes always point to the “head” of the chain.

Threads store versions in “local” memory regions
to avoid contention on centralized data structures.

Different storage schemes determine where/what
to store for each version.
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VERSION STORAGE

Approach #1: Append-Only Storage

— New versions are appended to the same table space.

Approach #2: Time-Travel Storage
— Old versions are copied to separate table space.

Approach #3: Delta Storage

— The original values of the modified attributes are copied
into a separate delta record space.
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APPEND-ONLY STORAGE

Main Table
All of the physical versions of a
logical tuple are stored in the same B | VAEUE T
table space. The versions are A, $7117 ®
mixed together. » A, $222 0
B, $10 0
On every update, append a new

version of the tuple into an empty
space in the table.
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APPEND-ONLY STORAGE

Main Table
All of the physical versions of a
logical tuple are stored in the same

VERSION VALUE POINTER

table space. The versions are =
mixed together. D g |
5 : : B, $10

n every update, append a new A, 727

version of the tuple into an empty
space in the table.
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APPEND-ONLY STORAGE

Main Table
All of the physical versions of a
logical tuple are stored in the same R e
table space. The versions are A, | #7717 o
mixed together. » A, | s222 | —F
B, $10 0
On every update, append a new n | 5333 PR

version of the tuple into an empty
space in the table.
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=2 DATABASE GROUP

16


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Just append new version to end of the chain.
— Have to traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N20)

— Have to update index pointers for every new version.
— Don’t have to traverse chain on look ups.

The ordering of the chain has different
performance trade-offs.
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TIME-TRAVEL STORAGE

Time-Travel Table

Main Table

VERSION VALUE POINTER

VERSION

» A, | $222| e

B, $70

On every update, copy the
current version to the time-

travel table. Update pointers.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

A

VALUE

$17117

POINTER

]
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TIME-TRAVEL STORAGE
Main Table Time-Travel Table

VERSION VALUE POINTER

» A, $222 O

VERSION VALUE POINTER

N 772 A

n | 5202 | e—

B, $70

On every update, copy the
current version to the time-
travel table. Update pointers.
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=2 DATABASE GROUP
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TIME-TRAVEL STORAGE

Main Table

VERSION VALUE POINTER

n

Time-Travel Table

VERSION VALUE POINTER

On every update, copy the
current version to the time-

travel table. Update pointers.

G'._? CARNEGIE MELLON
DATABASE GROUP

A, $711 0 |
A, | $222| e

Overwrite master version in
the main table.
Update pointers.

18
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TIME-TRAVEL STORAGE

Main Table

VERSION VALUE POINTER

On every update, copy the
current version to the time-

travel table. Update pointers.
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Time-Travel Table

VERSION VALUE POINTER
A, $711 0 |
>| A, | $222| e

Overwrite master version in
the main table.
Update pointers.

18
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DELTA STORAGE

Main Table Delta Storage Segment

VERSION VALUE POINTER

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.
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DELTA STORAGE

Main Table

VERSION VALUE POINTER

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.
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Delta Storage Segment

DELTA POINTER

A, (VALUE»$111) 0
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DELTA STORAGE

Main Table

VERSION VALUE POINTER

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.
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Delta Storage Segment

DELTA POINTER

A, (VALUE»$111) 0
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DELTA STORAGE

Main Table Delta Storage Segment

5222 < (VALUE»$111) 0

1
A, | (vALUE»3222)| @

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.
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DELTA STORAGE

Main Table

VERSION VALUE POINTER

Delta Storage Segment

A (VALUE»$111)| @

1

On every update, copy only the
values that were modified to the
delta storage and overwrite the
master version.

& @ CARNEGIE MELLON
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N A, | (VALUE»$222)| ®

Txns can recreate old
versions by applying the delta
in reverse order.
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NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

VERSION INT_VAL STR_VAL >| MY _LONG_STRING
A, $100 ®
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NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

A, | $100 | @ )| MY_LONG_STRING
A, 390 ®

Reuse pointers to variable-
length pool for values that do
not change between versions.
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NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

A, | 100 | @

A, | %90
Reuse pointers to variable- Requires reference counters
length pool for values that do to know when it is safe to
not change between versions. free memory. Unable to

relocate memory easily.
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20

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

A, | $100 | e
A, | 890 o

Reuse pointers to variable- Requires reference counters
length pool for values that do to know when it is safe to
not change between versions. free memory. Unable to

relocate memory easily.
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GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can “see” that version (SI).
— The version was created by an aborted txn.

Three additional design decisions:

— How to look for expired versions?

ow to decide when it 1s safe to reclaim memory?
— Where to look for expired versions?
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GARBAGE COLLECTION

Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level

— Txns keep track of their old versions so the DBMS does
not have to scan tuples to determine visibility.
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TUPLE-LEVEL GC

Thread #1
Vacuum VERSION BEGIN-TS  END-TS

T. =12
id \ A ; 9

Thread #2 ‘ — B, oo 7 9
T, =25 —¥ O B,,; 70 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.
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TUPLE-LEVEL GC

Thread #1
Vacuum VERSION BEGIN-TS  END-TS

T, =12
id \ » A ; 9

Thread #2 ‘ — B, oo 7 9
T, =25 —¥ O B,,; 70 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.
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TUPLE-LEVEL GC

Thread #1 Vacuum
Ti =12 \
Thread #2 ‘ <
T,=25 = O »
Background Vacuuming:
Separate thread(s) periodically
scan the table and look for

reclaimable versions. Works
with any storage.
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VERSION BEGIN-TS END-TS
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TUPLE-LEVEL GC

Thread #1 Vacuum

Tid=12 \

VERSION BEGIN-TS END-TS

Thread #2 ‘ — -
T, =25 — O » B, 70 20

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.
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TUPLE-LEVEL GC

Thread #1 Vacuum

T : d=1 2 \
Thread #Z ‘
T, =2 — O

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.
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=2 DATABASE GROUP

»
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dopng yoig A1aq

VERSION

BEGIN-TS

END-TS

B101

19

20

23
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TUPLE-LEVEL GC

Thread #1 Vacuum

T'd=12 \

VERSION

BEGIN-TS

END-TS

(AN BN BN B
doprng 3o01g A140q

Thread #Z ‘
T, =2 — O

B1®1

19

20

¥

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.
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23


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1
T, =12
4 INDEX
Thread #2
T, =25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.
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Aq

A

A,

B,

B,

B,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only

works with O2N.

23
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TUPLE-LEVEL GC

Thread #1 ‘

T, =12 GET(A) A P A P
4 INDEX
Thread #2 s, | 5, bl &, b
T, =25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.
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TUPLE-LEVEL GC

Thread #1 ‘

T, <12 GET(A) »'8'—» A, P oA, P
Thread #2

Bo ™ B ™ B, ™

Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.
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TUPLE-LEVEL GC

Thread #1 ‘

T.=12 GET(A) _,|X|..X|.. s,
Thread #2

Bo ™ B ™ B, ™

Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.
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TUPLE-LEVEL GC

Thread #1 ‘

Tid=12 \%/ A,
Thread #2

Bo ™ B ™ B, ™

Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.
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TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

May still require multiple threads to reclaim the
memory fast enough for the workload.
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INDEX MANAGEMENT

PKey indexes always point to version chain head.

— How often the DBMS has to update the pkey index
depends on whether the system creates new versions
when a tuple is updated.

— If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated...
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JOIN THE TEAM MEET THE PEOPLE

ARCHITECTURE

WHY UBER ENGINEERING
SWITCHED FROM
POSTGRES TO MYSQL

BY EVAN KLITZKE

Secondary Index | A ‘ B ' C D

Primary Index

A
N

@)
§-N

L

Disk [ __ H_ WH [ ]

76 103 107 21
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SECONDARY INDEXES

Approach #1: Logical Pointers

— Use a fixed identifier per tuple that does not change.
— Requires an extra indirection layer.
— Primary Key vs. Tuple Id

Approach #2: Physical Pointers

— Use the physical address to the version chain head.
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INDEX POINTERS

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

A, bl A Pl A bl A }Append-()nly
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INDEX POINTERS

GET(A) @
A PRIMARY INDEX A SECONDARY INDEX
Physical
Address

Append-Only
4" A LA LA LA }Newest-to-Oldest
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INDEX POINTERS

¥ GET(A)
A PRIMARY INDEX A SECONDARY INDEX
Physical
Address

Newest-to-Oldest

"l A, bl A Pl A bl A }Append-()nly
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INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

A SECONDARY INDEX

A SECONDARY INDEX
A SECONDARY INDEX

"l A, bl A Pl A bl A }Append-()nly

Newest-to-Oldest

& & CARNEGIE MELLON


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

A SECONDARY INDEX
A SECONDARY INDEX
A SECONDARY INDEX

- Append-Only
I"’ A A LA }Newest—to-Oldest

_,l

— > ¢
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INDEX POINTERS
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MVCC EVALUATION PAPER

We implemented all of the design decisions in the
Peloton DBMS as part of 15-721 in Spring 2016.

Two categories of experiments:

— Evaluate each of the design decisions in isolation to
determine their trade-offs.

— Compare configurations of real-world MVCC system:s.

~=" AN EMPIRICAL EVALUATION OF IN-MEMORY
\I\//IL%IETZIE)YERSION CONCURRENCY CONTROL
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MVCC DESIGN DECISIONS

CC Protocol: Inconclusive results...
Version Storage: Deltas
Garbage Collection: Tuple-Level Vacuuming

Indexes: Logical Pointers
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MVCC CONFIGURATION EVALUATION

Protocol Version Storage  Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-0CC Append-Only - Physical
Hekaton MV-0CC Append-Only Cooperative Physical
MemSQL MV-0CC Append-Only Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical
HyPer MV-0CC Delta Txn-level Logical
CMU's TBD MV-0CC Delta Txn-level Logical
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MVCC CONFIGURATION EVALUATION

Database: TPC-C Benchmark (40 W arehouses)
Processor: 4 sockets, 10 cores per socket

100 -®- Oracle/MySQL
f\
S -« NuoDB
N 75
S —+-HyPer
Nad
8] 50 <¢<HYRISE
Y
Eo =*=MemSQL
25
£ -»- HANA
~
0 -+HEKATON
0 8 16 24 32 40 o= Postgres
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Robert Haas

VP, Chief Architect, Database Server @ EnterpriseDB, PostgreSQL Major Contributor and Committer

Tuesday, January 30, 2018

DO or UNDO - there is no VACUUM

What if PostgreSQL didn’t need VACUUM at all? This seems hard to imagine. After all,
PostgreSQL uses multi-version concurrency control (MVCC), and if you create multiple versions of
rows, you have to eventually get rid of the row versions somehow. In PostgreSQL, VACUUM is in
charge of making sure that happens, and the autovacuum process is in charge of making sure
that happens soon enough. Yet, other schemes are possible, as shown by the fact that not all
relational databases handie MVCC in the same way, and there are reasons to believe that
PostgreSQL could benefit significantly from adopting a new approach. In fact, many of my
colleagues at EnterpriseDB are busy implementing a new approach, and today I'd like to teli you a
little bit about what we're doing and why we're doing it.

While it's certainly true that VACUUM has significantly improved over the years, there are some
problems that are very difficult to solve in the current system structure. Because old row versions
and new row versions are stored in the same place - the table, also known as the heap - updating
a large number of rows must, at least temporarily, make the heap bigger. Depending on the
pattern of updates, it may be impossible to easily shrink the heap again afterwards. For example,
imagine loading a large number of rows into a table and then updating half of the rows in each
block. The table size must grow by 50% to accommodate the new row versions. When VACUUM
removes the old versions of those rows, the original table blocks are now all 50% full. That space
is available for new row versions, but there is no easy way to move the rows from the new newly-
added blocks back to the old half-full blocks: you can use VACUUM FULL or you can use third-
party tools like pg_repack, but either way you end up rewriting the whole table. Proposals have
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PARTING THOUGHTS

MVCC is the best approach for supporting txns in
mixed workloads.

We only discussed MVCC for OLTP.
— Design decisions may be different for HT AP
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NEXT CLASS

Modern MVCC Implementations
— TUM HyPer

— CMU Cicada

— Microsoft Hekaton
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