

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

DATA ORGANIZATION

Fixed-Length Variable-Length
Index Data Blocks Data Blocks
| E— |
g ! _ —]
— —

[

= C=
] I T
Block Id + il \

Offset

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATA ORGANIZATION

One can think of an in-memory database as just a

large array of bytes.

— The schema tells the DBMS how to convert the bytes
into the appropriate type.

— Each tuple is prefixed with a header that contains its
meta-data.

Storing tuples with as fixed-length data makes it
easy to compute the starting point of any tuple.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TODAY'S AGENDA

Type Representation
Data Layout / Alignment
Storage Models

System Catalogs

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals

TIME/DATE/TIMESTAMP

— 32/64-bit int of (micro/milli)seconds since Unix epoch

VARCHAR/VARBINARY/TEXT/BLOB

— Pointer to other location if type is >64-bits
— Header with length and address to next location (if
segmented), followed by data bytes.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the “native” C/C++ types.

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers.
— Example: FLOAT, REAL/DOUBLE

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/IEEE-754

CMU 15-721 (Spring 2019)

VARIABLE PRECISION NUMBERS

Rounding Example

#include <stdio.h>

Output int main(int argc, char* argv[]) {
X+y = 0.30000001192092895508 float x = 0.1;
9.3 = 0.29999999999999998890 float y = 0.2;

printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FIXED PRECISION NUMBERS

Numeric data types with arbitrary precision and

scale. Used when round errors are unacceptable.
— Example: NUMERIC, DECIMAL

Typically stored in a exact, variable-length binary

representation with additional meta-data.
— Like a VARCHAR but not stored as a string

Postgres Demo

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

POSTGRES: NUMERIC

of Digits

Weight of 1°t Digit

Scale Factor Qe o
Positive/Negative/ NaN €= b

Digit Storage

& @ CARNEGIE MELLON
=2 DATABASE GROUP

typedef unsigned char NumericDigit;

typedef struct {
int ndigits;

*digits;

NumericDigit

} numeric;

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

1
Weight of
Sca

Positive/Negat

Digil

& @ CARNEGIE MELLON
=2 DATABASE GROUP

add_var() -

*

ES

* Full version of add functionality on variable level (handling signs).
* result might point to one of the operands too without danger.

EGTYPESnumeric_add(numeric *varl, numeric *var2, numeric *result)

*®
* Decide on the signs of the twe variables what to do
*®

if {varl->sign == NUMERIC PO0S)
it (var2-»sign == NUMERIC PO0S)
{

-
* Both are positive result = +(ABS(varl) + ABS(var2))
-
1f (add_abs(varl, var2, result) l= 0)
return -1;
result->sign = NUMERIC PO5S;
else

/ﬂr
* varl is positive, var2? is negative Must compare absolute values
L3

iw;tck (cmp_abs(varl, war2))

#

ABS({varl) == ABS{var2)
result = ZERD

*®

*f
zero_var(result);

result-=rscale = Max(varl-=rscale, var2-»rscale);
result->dscale = Max(varl->dscale, var2->dscale);
break;

* ABS(varl) = ABS(var2)
* result = +(ABS(varl) - ABS(var2))
k3

*

1f (sub _abs(varl, var2, result) != @)
return -1;
result->sign = NUMERIC POS;
break;
case -1:

* ABS{varl) = ABS(var2)
* result = -(ABS(var2) - ABS{varl})
-

umericDigit;

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

CMU 15-721 (Spring 2019)

10

DATA LAYOUT

¥ char[]

CREATE TABLE AndySux (
»id INT PRIMARY KEY,
value BIGINT

)2

header id

reinterpret_cast<int32 t*>(address)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VARIABLE-LENGTH FIELDS

CREATE TABLE AndySux (
»value VARCHAR (1024)

) e

INSERT INTO AndySux

VALUES ("Andy has the worst
hygiene that I have ever
seen. I hate him so much.");

& @ CARNEGIE MELLON
=2 DATABASE GROUP

¥ char[]

11

header 64-BIT POINTER

Varjable-Length Data Blocks

Andy has the worst

hygiene that ave ever seen. I hate

him so much.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

11

VARIABLE-LENGTH FIELDS

CREATE TABLE AndySux (

& char[]
»value VARCHAR (1024)

header |64-BIT POINTER
);

Varjable-Length Data Blocks

INSERT INTO AndySux
VALUES ("Andy has the worst Andy has the worst

hygiene that I have ever hygiene that ave ever seen. I hate

seen. I hate him so much.");

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NULL DATA TYPES

Choice #1: Special Values

— Designate a value to represent NULL for a particular data
type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header

— Store a bitmap in the tuple header that specifies what
attributes are null.

Choice #3: Per Attribute Null Flag

— Store a flag that marks that a value is null.
— Have to use more space than just a single bit because this
messes up with word alignment.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NULL DATA TYPES

Integer Numbers

& @ CARNEGIE MELLON
=2 DATABASE GROUP

messes up with word alignment.

Data Type ‘I Size I Size (Not Null) Synonyms ‘ Min Value | Max Value
BOOL 2 bytes 1 byte BOOLEAN 0] 1
BIT 9 bytes 8 bytes
TINYINT 2 bytes 1 byte -128 127
SMALLINT 4 bytes 2 bytes -32768 32767
MEDIUMINT 4 bytes 3 bytes -8388608 8388607
INT 8 bytes 4 bytes INTEGER -2147483648 2147483647
BIGINT 12 bytes 8 bytes -2** 63 (2**63)-1

7 o)

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://docs.memsql.com/sql-reference/v6.0/datatypes/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

DISCLAIMER

The truth is that you only need to worry about
word-alignment for cache lines (e.g., 64 bytes).

['m going to show you the basic idea using 64-bit
words since it’s easier to see...

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

14

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

)5

CREATE TABLE AndySux (char[]

id INT PRIMARY KEY,
cdate TIMESTAMP,

color CHAR(2), ~—
zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

14

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

CREATE TABLE AndySux (
- char[]
2114 id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),
zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

)5

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
14

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

CREATE TABLE AndySux (
- char[]
2114 id INT PRIMARY KEY,
(ZBA cdate TIMESTAMP, id cdate
color CHAR(2), ——

zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

)5

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
14

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

CREATE TABLE AndySux (
- char[]
2114 id INT PRIMARY KEY,
(ZBA cdate TIMESTAMP, id cdate C
ilgiiy color CHAR(2), ~— —

zipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

)5

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

14

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

CREATE TABLE AndySux (
727110 id INT PRIMARY KEY,
(81 cdate TIMESTAMP,
ilgiiy color CHAR(2),
y21 zipcode INT

)5

& @ CARNEGIE MELLON
=2 DATABASE GROUP

char[]

id cdate ¢ zipc

~—
64-bit Word 64-bit Word 64-bit Word 64-bit Word

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

14

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

CREATE TABLE AndySux (
727110 id INT PRIMARY KEY,
(81 cdate TIMESTAMP,
ilgiiy color CHAR(2),
y21 zipcode INT

)5

& @ CARNEGIE MELLON
=2 DATABASE GROUP

L char[]

id cdate ¢ zipc

~—
64-bit Word 64-bit Word 64-bit Word 64-bit Word

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

WORD-ALIGNED TUPLES

Approach #1: Perform Extra Reads

— Execute two reads to load the appropriate parts
of the data word and reassemble them.

Approach #2: Random Reads

— Read some unexpected combination of bytes
assembled into a 64-bit word.

Approach #3: Reject

Source: Levente Kurusa —> ThI'OW an exception

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://medium.com/@iLevex/the-curious-case-of-unaligned-access-on-arm-5dd0ebe24965

CMU 15-721 (Spring 2019)

16

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple
is word aligned.

CREATE TABLE AndySux (
- char[]
Ey271:3id INT PRIMARY KEY,

. . 00000000 . 0000
(27133 cdate TIMESTAMP, id goeaases cdate ¢ zipc g
Ilgii3color CHAR(2), —_——
SyZixyzipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

)5

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

17

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples'

physical layout to make sure they are aligned.
— May still have to use padding.

CREATE TABLE AndySux (
by char[]
Ey271:3id INT PRIMARY KEY,
- . . 000000000000
(27133 cdate TIMESTAMP, id zipc cdate C 50000000000
000000000000
ilg7iicolor CHAR(2), —_—
SyZixyzipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word
K

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU-DB ALIGNMENT EXPERIMENT

Processor: 1 socket, 4 cores w/ 2xHT
Workload: Insert Microbenchmark

Avg. Throughput
No Alignment 0.523 MB/sec
Optimization #1 11.7 MB/sec

Optimization #2 814.8 MB/sec

Source: Tianyu Li
& & CARNEGIE MELLON

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/tianyu-li-28608366/

CMU 15-721 (Spring 2019)

STORAGE MODELS

N-ary Storage Model (NSM)
Decomposition Storage Model (DSM)
Hybrid Storage Model

=== COLUMN-STORES VS. ROW-STORES: HOW
DIFFERENT ARE THEY REALLY?
SIGMOD 2008

& @ CARNEGIE MELLON
=2 DATABASE GROUP

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf

CMU 15-721 (Spring 2019)

STORAGE

N-ary Storage Model (NSM
Decomposition Storage Moc
Hybrid Storage Model

-STORES: HOW
MN-STORES VS. ROW-S

SI(IDZIIEILEJRENT ARE THEY REALLY?

SIGMOD 2008

CARNEGIE MELLON
E‘g DATABASE GROUP

Column-Stores vs. Row-

ores: How Different Are They

Really?2

Daniel J. Abadi
Yale University
New Haven, CT, UsA

dna@cs.yale.edu

ABSTRACT

There has been a significant amoun of excitement and recent work
on column-oriented database Systems (“column- Stores”). These
dtabase systeas have been shown t pesforn ro than an or-
der of magnitude better than traditiona] gy
s {"tow-siores) on anafytical workloads s

This simplisic view leads to the assumption that ane can ob

{ain the performance benefits of 4 column o using & row-siore:
cither by vertically paritioning the schenrg, o by indexing every
column so that columns can be accessed independently. in this pq

per. e demonstrate thit this assumption i false, we compare the
performance of a commenrcial row-store under vatiety of differ-
ent configurations with a colmn-store and show that the row-siore
perfomance s significanily stower opp 5 recently proposed data
warehouse beniehmark. We then analyze the performnce differ.
ence and show that there are spme imporiant differences between
e two systems ai the query executor fovel {in addition to the abyi.
ous differences at the siorage layer fevel) Using the column-store.

we then tease apart these differences, demonsirating the impact on
performznce of a variety of colunn-orienteq query execution tech.
iques, including vectorized query pro essing, compression, and
e join algorithm we introduce fn this Paper. We conclude thar
while it s not impossible for a row-story (o achieve some of the
performance sdvantages of 4 columin store, changes must be made
10 both the storage layer an the query executor 1o fy lly ebtain the
benefits of a colunm-orienied appraach.

Categories and Subject Descriptors

H.24 {Database Management): Systems—Giery processing, Re-
lational databases

Pemnission t make digital or bard copics of af o part of this work for

Dotsomal o chustonm use is graned withou fee proviged oy <opies ure

#Epublish, to puston servers ar to red,
permission andor a fee

CAGMOD U June 912, 2008, Vaumconrver, BC, Cama,

Coryright 2008 ACH 97%-1.60555- 102 086 o 1

uel R. Madie,
MIT
Cambridgs, MA, UsA
madden@csail.mit.edy

967

Nabil Hachem
AvantGarde Consulting, LLC
Shrewsbury, MA, USA

nhachem@agdba.cum

General Terms

E: P M.

Keywords

C-Store, colum-store. column-oriented DBMS, iy i e Join, com.

pression. wple reconstruction, tuple mater i ion,

L INTRODUCTION

Recent years have seen the introduction of 4 number of column
oriented database sy.
‘The avthors of these

stenns elaim that their approach offers order.

of magnitude gains on certain workloads, punt icularly on tead-intensive

anatytical processing worklpads such as those encountered in data
warehouses

Indeed, papers describing column- oriented database sysiems usy-
ally include performance resul. showing such gains against -
tonal, row-oriemted databases (either commercial or open source),

These evaluations. however, typicalty benehmk against row-orient.

ed systems that use & “conventional” physical design consisting of
a coliection of 1ow-oriented tables with a Mote-or-less one-to-one
EBPDINE 10 the tables in the logical schena. Thop, 120 sueh resuits

clearly d the potential of & column.orf d approach,
they leave open & key question: Are fhose Performance gains dug
i something fi about the way col red DEMSs

are internally architected, or would such gains afyy e Ppossible in
oementional systam that sed o more colunno oy physieal
design?

Often, designers of columi-based systems claim there is funda-
mental difference between from-scrateh column-store and a row-
store using cohum-oriented physical design without actually ex-
Ploring alteniate physical designs for the rony-stoge sysiem. Henge,
ane goal of this paper is 10 answer s question 1y & sy stematic
Way. One of the authors of this paper is 4 professional DBA spe-
cializing ina popular commerciaf row-oriented daiabase. He hag
cutefully implemented a number of diffren; Physical database de-
signs for a recen Iy proposed data wareh ousin, 2 benchmark, ihe Sap
Schema Benchmuk (SSBM) (18, 191, exploring designs that are as
column-oriented” as possible (in addition ro mote taditional de.-
signs}, including:

Vertically pariitioning the tables in the system [nto a coflec-
tion of two-column pables consisting of {iable key, aitribuiey
palrs. so that onty the hiecessary columns need to be read 10
answer aquery,

Using index-only plans: by creating collection of indices

thit cover all of the columns sed 1 o query, it is possible

stems. including MonetDE {9, 10 and C-Store [22),

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf

N-ARY STORAGE MODEL (NSM)

The DBMS stores all of the attributes for a single
tuple contiguously.

Ideal for OLTP workloads where txns tend to
operate only on an individual entity and insert-
heavy workloads.

Use the tuple-at-a-time iterator model.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NSM: PHYSICAL STORAGE

Choice #1: Heap-Organized Tables

— Tuples are stored in blocks called a heap.
— The heap does not necessarily define an order.

Choice #2: Index-Organized Tables

— Tuples are stored in the primary key index itself.
— Not quite the same as a clustered index.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

N-ARY STORAGE MODEL (NSM)

Advantages

— Fast inserts, updates, and deletes.
— Good for queries that need the entire tuple.
— Can use index-oriented physical storage.

Disadvantages

— Not good for scanning large portions of the table and/or
a subset of the attributes.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples
contiguously in a block of data.

I[deal for OLAP workloads where read-only

queries perform large scans over a subset of the
table’s attributes.

Use the vector-at-a-time iterator model.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DECOMPOSITION STORAGE MODEL (DSM)

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaselQ (in-memory only)
2000s: Vertica, Vectorwise, MonetDB

2010s: “The Big Three”
Cloudera Impala, Amazon Redshift,

SAP HANA, MemSQL, Clickhouse,
LinkedIn Pinot, and most OLAP systems

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=655555

CMU 15-721 (Spring 2019)

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids

— Each value is stored with its tuple id in a column.

Offsets Embedded Ids
e gcfo A

WIN |- Q‘
WIN |- ®‘
WIN |- G)‘

w NN
WIN[FR|®

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

DSM: QUERY PROCESSING

Late Materialization
Columnar Compression
Block/Vectorized Processing Model

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages

— Reduces the amount wasted work because the DBMS
only reads the data that it needs.
— Better compression.

Disadvantages

— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Data is “hot” when first entered into database
— A newly inserted tuple is more likely to be updated again
the near future.

As a tuple ages, it is updated less frequently.
— At some point, a tuple is only accessed in read-only
queries along with other tuples.

What if we want to use this data to make decisions
that affect new txns?

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

HYBRID STORAGE MODEL

Single logical database instance that uses different
storage models for hot and cold data.

Store new data in NSM for fast OLTP
Migrate data to DSM for more efficient OLAP

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HYBRID STORAGE MODEL

Choice #1: Separate Execution Engines

— Use separate execution engines that are optimized for
either NSM or DSM databases.

Choice #2: Single, Flexible Architecture

— Use single execution engine that is able to efficiently
operate on both NSM and DSM databases.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SEPARATE EXECUTION ENGINES

Run separate “internal” DBMSs that each only
operate on DSM or NSM data.

— Need to combine query results from both engines to
appear as a single logical database to the application.

— Have to use a synchronization method (e.g., 2PC) if a txn
spans execution engines.

Two approaches to do this:
— Fractured Mirrors (Oracle, IBM)
— Delta Store (SAP HANA)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FRACTURED MIRRORS

Store a second copy of the database in a DSM

layout that is automatically updated.

— All updates are first entered in NSM then eventually
copied into DSM mirror.

Analytzcal
LaC Queries

25 | A CASE FOR FRACTURED MIRRORS
7|VLDB 2002

C? CARNEGIE MELLON
"2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2019)

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta
store and applies them to DSM data.

DSM
NSM Historical Data

Delta Store

£%% Transactions »

&

& @ CARNEGIE MELLON
=2 DATABASE GROUP

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CATEGORIZING DATA

Choice #1: Manual Approach
— DBA specifies what tables should be stored as DSM.

Choice #2: Off-line Approach

— DBMS monitors access logs offline and then makes
decision about what data to move to DSM.

Choice #3: On-line Approach

— DBMS tracks access patterns at runtime and then makes
decision about what data to move to DSM.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

35

PELOTON ADAPTIVE STORAGE

Employ a single execution engine architecture that
is able to operate on both NSM and DSM data.

— Don’t need to store two copies of the database.
— Don’t need to sync multiple database segments.

Note that a DBMS can still use the delta-store
approach with this single-engine architecture.

— |BRIDGING THE ARCHIPELAGO BETWEEN ROW-STORES AND
2 ggblél\éll;lalngRES FOR HYBRID WORKLOADS

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.cs.cmu.edu/papers/2016/arulraj-sigmod2016.pdf
http://db.cs.cmu.edu/papers/2016/arulraj-sigmod2016.pdf

CMU 15-721 (Spring 2019)

PELOTON ADAPTIVE STORAGE

Original Data Adapted Data

A B C D

UPDATE AndySux A B C D
SET 123,

Al =
B|= 456, LE | | ‘ | |
Cl= 789
WHERE |[D| = “xxx”
SELECT AVG(B) ‘
FROM AndySux
WHERE |[C|= “yyy”

LIl [I

& @ CARNEGIE MELLON
=2 DATABASE GROUP

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

W }Tile Group A

Tile Group B e o3

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

o

o} e

+ |+ |+]+

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

37

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

SELECT AVG(B)
FROM AndySux

+
Y
1
o)
i
AS

+ |+ |+ ||+

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

SELECT AVG(B)
FROM AndySux

+
Y
1
o)
i
AS

+ |+ |+ ||+
Al A A Al A

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

PELOTON ADAPTIVE STORAGE

—Row Layout =—Column Layout =—Adaptive Layout

~
S 1600 A S S i
< | | |
§ ! !
1200 ' |

.S —a]
~ 1 1 ol ;
.§ 800

LY

S 400

ﬁ] | | [] | g | [T—

O _

Sep-15 Sep-16 Sep-17 Sep-18 Sep-19 Sep-20

& @ CARNEGIE MELLON
=2 DATABASE GROUP

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SYSTEM CATALOGS

Almost every DBMS stores their a database's

catalog in itself.
— Wrap object abstraction around tuples.
— Specialized code for "bootstrapping" catalog tables.

The entire DBMS should be aware of transactions
in order to automatically provide ACID guarantees
for DDL commands and concurrent txns.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SCHEMA CHANGES

ADD COLUMN:

— NSM: Copy tuples into new region in memory.
— DSM: Just create the new column segment

DROP COLUMN:

— NSM #1: Copy tuples into new region of memory.
— NSM #2: Mark column as "deprecated”, clean up later.
— DSM: Just drop the column and free memory.

CHANGE COLUMN:

— Check whether the conversion is allowed to happen.
Depends on default values.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INDEXES

CREATE INDEX:

— Scan the entire table and populate the index.

— Have to record changes made by txns that modified the
table while another txn was building the index.

— When the scan completes, lock the table and resolve
changes that were missed after the scan started.

DROP INDEX:

— Just drop the index logically from the catalog.
— [t only becomes "invisible" when the txn that dropped it
commits. All existing txns will still have to update it.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SEQUENCES

Typically stored in the catalog. Used for

maintaining a global counter
— Also called "auto-increment" or "serial" keys

Sequences are not maintained with the same

isolation protection as regular catalog entries.

— Rolling back a txn that incremented a sequence does not
rollback the change to that sequence.

— All INSERT queries would incur write-write conflicts.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

PARTING THOUGHTS

We abandoned the hybrid storage model

— Significant engineering overhead.

— Delta version storage + column store is almost
equivalent.

Catalogs are hard.

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

