
Storage Models &
Data Layout

@Andy_Pavlo // 15-721 // Spring 2019

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

0
9

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATA ORGANIZATION

2

Fixed-Length
Data BlocksIndex

Block Id +
Offset

Variable-Length
Data Blocks

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATA ORGANIZATION

One can think of an in-memory database as just a
large array of bytes.
→ The schema tells the DBMS how to convert the bytes

into the appropriate type.
→ Each tuple is prefixed with a header that contains its

meta-data.

Storing tuples with as fixed-length data makes it
easy to compute the starting point of any tuple.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Type Representation

Data Layout / Alignment

Storage Models

System Catalogs

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ C/C++ Representation

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals

TIME/DATE/TIMESTAMP
→ 32/64-bit int of (micro/milli)seconds since Unix epoch

VARCHAR/VARBINARY/TEXT/BLOB
→ Pointer to other location if type is ≥64-bits
→ Header with length and address to next location (if

segmented), followed by data bytes.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the “native” C/C++ types.

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers.
→ Example: FLOAT, REAL/DOUBLE

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/IEEE-754

CMU 15-721 (Spring 2019)

VARIABLE PRECISION NUMBERS

7

#include <stdio.h>

int main(int argc, char* argv[]) {

float x = 0.1;

float y = 0.2;

printf("x+y = %.20f\n", x+y);

printf("0.3 = %.20f\n", 0.3);

}

Rounding Example

x+y = 0.30000001192092895508

0.3 = 0.29999999999999998890

Output

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FIXED PRECISION NUMBERS

Numeric data types with arbitrary precision and
scale. Used when round errors are unacceptable.
→ Example: NUMERIC, DECIMAL

Typically stored in a exact, variable-length binary
representation with additional meta-data.
→ Like a VARCHAR but not stored as a string

Postgres Demo

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

POSTGRES: NUMERIC

9

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

POSTGRES: NUMERIC

9

typedef unsigned char NumericDigit;

typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

CMU 15-721 (Spring 2019)

DATA L AYOUT

10

CREATE TABLE AndySux (

id INT PRIMARY KEY,

value BIGINT

);

header id value

char[]

reinterpret_cast<int32_t*>(address)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

header

VARIABLE-LENGTH FIELDS

11

CREATE TABLE AndySux (

value VARCHAR(1024)

);

64-BIT POINTER

char[]

Variable-Length Data Blocks

Andy has the worst

hygiene that I have ever seen. I hate

LENGTH NEXT

him so much.NEXTLENGTH

INSERT INTO AndySux

VALUES ("Andy has the worst

hygiene that I have ever

seen. I hate him so much.");

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

header id

VARIABLE-LENGTH FIELDS

11

CREATE TABLE AndySux (

value VARCHAR(1024)

);

64-BIT POINTER

char[]

Variable-Length Data Blocks

Andy|64-BIT POINTER

Andy has the worst

hygiene that I have ever seen. I hate

LENGTH NEXT

him so much.NEXTLENGTH

INSERT INTO AndySux

VALUES ("Andy has the worst

hygiene that I have ever

seen. I hate him so much.");

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NULL DATA T YPES

Choice #1: Special Values
→ Designate a value to represent NULL for a particular data

type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in the tuple header that specifies what

attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Have to use more space than just a single bit because this

messes up with word alignment.

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NULL DATA T YPES

Choice #1: Special Values
→ Designate a value to represent NULL for a particular data

type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in the tuple header that specifies what

attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Have to use more space than just a single bit because this

messes up with word alignment.

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://docs.memsql.com/sql-reference/v6.0/datatypes/

CMU 15-721 (Spring 2019)

DISCL AIMER

The truth is that you only need to worry about
word-alignment for cache lines (e.g., 64 bytes).

I’m going to show you the basic idea using 64-bit
words since it’s easier to see…

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

14

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

64-bit Word 64-bit Word 64-bit Word64-bit Word

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

14

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

32-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

14

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

32-bits

64-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

14

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

32-bits

64-bits

16-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

14

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

14

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORD-ALIGNED TUPLES

Approach #1: Perform Extra Reads

→Execute two reads to load the appropriate parts
of the data word and reassemble them.

Approach #2: Random Reads

→Read some unexpected combination of bytes
assembled into a 64-bit word.

Approach #3: Reject

→Throw an exception

15

Source: Levente Kurusa

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://medium.com/@iLevex/the-curious-case-of-unaligned-access-on-arm-5dd0ebe24965

CMU 15-721 (Spring 2019)

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple
is word aligned.

16

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate zipc
00000000
00000000
00000000
00000000

0000
0000
0000
0000

char[]32-bits

64-bits

16-bits

32-bits

c

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CREATE TABLE AndySux (

id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),

zipcode INT

);

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples'
physical layout to make sure they are aligned.
→ May still have to use padding.

17

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdatezipc
000000000000
000000000000
000000000000
000000000000

char[]32-bits

64-bits

16-bits

32-bits

c

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CMU-DB ALIGNMENT EXPERIMENT

18

Avg. Throughput

No Alignment 0.523 MB/sec

Optimization #1 11.7 MB/sec

Optimization #2 814.8 MB/sec

Processor: 1 socket, 4 cores w/ 2×HT
Workload: Insert Microbenchmark

Source: Tianyu Li

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/tianyu-li-28608366/

CMU 15-721 (Spring 2019)

STORAGE MODELS

N-ary Storage Model (NSM)

Decomposition Storage Model (DSM)

Hybrid Storage Model

19

COLUMN-STORES VS. ROW-STORES: HOW
DIFFERENT ARE THEY REALLY?
SIGMOD 2008

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf

CMU 15-721 (Spring 2019)

STORAGE MODELS

N-ary Storage Model (NSM)

Decomposition Storage Model (DSM)

Hybrid Storage Model

19

COLUMN-STORES VS. ROW-STORES: HOW
DIFFERENT ARE THEY REALLY?
SIGMOD 2008

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/09-storage/p967-abadi.pdf

CMU 15-721 (Spring 2019)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all of the attributes for a single
tuple contiguously.

Ideal for OLTP workloads where txns tend to
operate only on an individual entity and insert-
heavy workloads.

Use the tuple-at-a-time iterator model.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NSM: PHYSICAL STORAGE

Choice #1: Heap-Organized Tables
→ Tuples are stored in blocks called a heap.
→ The heap does not necessarily define an order.

Choice #2: Index-Organized Tables
→ Tuples are stored in the primary key index itself.
→ Not quite the same as a clustered index.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

N-ARY STORAGE MODEL (NSM)

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple.
→ Can use index-oriented physical storage.

Disadvantages
→ Not good for scanning large portions of the table and/or

a subset of the attributes.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all tuples
contiguously in a block of data.

Ideal for OLAP workloads where read-only
queries perform large scans over a subset of the
table’s attributes.

Use the vector-at-a-time iterator model.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DECOMPOSITION STORAGE MODEL (DSM)

1970s: Cantor DBMS

1980s: DSM Proposal

1990s: SybaseIQ (in-memory only)

2000s: Vertica, Vectorwise, MonetDB

2010s: “The Big Three”
Cloudera Impala, Amazon Redshift,
SAP HANA, MemSQL, Clickhouse,
LinkedIn Pinot, and most OLAP systems

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=655555

CMU 15-721 (Spring 2019)

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

25

Offsets

0
1
2
3

A B C D

Embedded Ids

A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DSM: QUERY PROCESSING

Late Materialization

Columnar Compression

Block/Vectorized Processing Model

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted work because the DBMS

only reads the data that it needs.
→ Better compression.

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Data is “hot” when first entered into database
→ A newly inserted tuple is more likely to be updated again

the near future.

As a tuple ages, it is updated less frequently.
→ At some point, a tuple is only accessed in read-only

queries along with other tuples.

What if we want to use this data to make decisions
that affect new txns?

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HYBRID STORAGE MODEL

Single logical database instance that uses different
storage models for hot and cold data.

Store new data in NSM for fast OLTP
Migrate data to DSM for more efficient OLAP

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HYBRID STORAGE MODEL

Choice #1: Separate Execution Engines
→ Use separate execution engines that are optimized for

either NSM or DSM databases.

Choice #2: Single, Flexible Architecture
→ Use single execution engine that is able to efficiently

operate on both NSM and DSM databases.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SEPARATE EXECUTION ENGINES

Run separate “internal” DBMSs that each only
operate on DSM or NSM data.
→ Need to combine query results from both engines to

appear as a single logical database to the application.
→ Have to use a synchronization method (e.g., 2PC) if a txn

spans execution engines.

Two approaches to do this:
→ Fractured Mirrors (Oracle, IBM)
→ Delta Store (SAP HANA)

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FRACTURED MIRRORS

Store a second copy of the database in a DSM
layout that is automatically updated.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.

32

A CASE FOR FRACTURED MIRRORS
VLDB 2002

NSM
(Primary)

DSM
(Mirror)

Transactions
Analytical
Queries

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2019)

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta
store and applies them to DSM data.

33

NSM
Delta Store

DSM
Historical Data

Transactions

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CATEGORIZING DATA

Choice #1: Manual Approach
→ DBA specifies what tables should be stored as DSM.

Choice #2: Off-line Approach
→ DBMS monitors access logs offline and then makes

decision about what data to move to DSM.

Choice #3: On-line Approach
→ DBMS tracks access patterns at runtime and then makes

decision about what data to move to DSM.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PELOTON ADAPTIVE STORAGE

Employ a single execution engine architecture that
is able to operate on both NSM and DSM data.
→ Don’t need to store two copies of the database.
→ Don’t need to sync multiple database segments.

Note that a DBMS can still use the delta-store
approach with this single-engine architecture.

35

BRIDGING THE ARCHIPELAGO BETWEEN ROW-STORES AND
COLUMN-STORES FOR HYBRID WORKLOADS
SIGMOD 2016

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.cs.cmu.edu/papers/2016/arulraj-sigmod2016.pdf
http://db.cs.cmu.edu/papers/2016/arulraj-sigmod2016.pdf

CMU 15-721 (Spring 2019)

PELOTON ADAPTIVE STORAGE

36

Original Data Adapted Data

SELECT AVG(B)
FROM AndySux
WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx” A B C D

A B C D A B C D

Cold

Hot

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

37

Tile Group A

Tile Group B

A B C D

Tile #1

Tile #2 Tile #3 Tile #4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

37

A B C D

Tile #1

Tile #2 Tile #3 Tile #4

H

+
+

+
+
+

Tile Group
Header

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

AS

γ

s

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

37

A B C DH

+
+

+
+
+

SELECT AVG(B)
FROM AndySux
WHERE C = “yyy”

1
2

B

1
2
3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

AS

γ

s

TILE ARCHITECTURE

Introduce an indirection layer that abstracts the
true layout of tuples from query operators.

37

A B C DH

+
+

+
+
+

SELECT AVG(B)
FROM AndySux
WHERE C = “yyy”

1
2

B

1
2
3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PELOTON ADAPTIVE STORAGE

38

0

400

800

1200

1600

Row Layout Column Layout Adaptive Layout

Sep-15
Scan Insert Scan Insert Scan Insert Scan Insert Scan Insert Scan Insert

E
xe

cu
ti

on
 T

im
e

(m
s)

Sep-16 Sep-17 Sep-18 Sep-19 Sep-20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SYSTEM CATALOGS

Almost every DBMS stores their a database's
catalog in itself.
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.

The entire DBMS should be aware of transactions
in order to automatically provide ACID guarantees
for DDL commands and concurrent txns.

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SCHEMA CHANGES

ADD COLUMN:
→ NSM: Copy tuples into new region in memory.
→ DSM: Just create the new column segment

DROP COLUMN:
→ NSM #1: Copy tuples into new region of memory.
→ NSM #2: Mark column as "deprecated", clean up later.
→ DSM: Just drop the column and free memory.

CHANGE COLUMN:
→ Check whether the conversion is allowed to happen.

Depends on default values.

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INDEXES

CREATE INDEX:
→ Scan the entire table and populate the index.
→ Have to record changes made by txns that modified the

table while another txn was building the index.
→ When the scan completes, lock the table and resolve

changes that were missed after the scan started.

DROP INDEX:
→ Just drop the index logically from the catalog.
→ It only becomes "invisible" when the txn that dropped it

commits. All existing txns will still have to update it.

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SEQUENCES

Typically stored in the catalog. Used for
maintaining a global counter
→ Also called "auto-increment" or "serial" keys

Sequences are not maintained with the same
isolation protection as regular catalog entries.
→ Rolling back a txn that incremented a sequence does not

rollback the change to that sequence.
→ All INSERT queries would incur write-write conflicts.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

We abandoned the hybrid storage model
→ Significant engineering overhead.
→ Delta version storage + column store is almost

equivalent.

Catalogs are hard.

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

