
Recovery Protocols

@Andy_Pavlo // 15-721 // Spring 2019

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

1
2

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATABASE RECOVERY

Recovery algorithms are techniques to ensure
database consistency, atomicity and durability
despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that the

DBMS can recover from a failure.
→ Actions after a failure to recover the database to a state

that ensures atomicity, consistency, and durability.

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Many of the early papers (1980s) on recovery for
in-memory DBMSs assume that there is non-
volatile memory.
→ Battery-backed DRAM is large / finnicky
→ Real NVM is coming…

This hardware is still not widely available so we
want to use existing SSD/HDDs.

3

A RECOVERY ALGORITHM FOR A HIGH-PERFORMANCE
MEMORY-RESIDENT DATABASE SYSTEM
SIGMOD 1987

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/p104-lehman.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/p104-lehman.pdf

CMU 15-721 (Spring 2019)

IN-MEMORY DATABASE RECOVERY

Slightly easier than in a disk-oriented DBMS
because the system has to do less work:
→ Do not need to track dirty pages in case of a crash during

recovery.
→ Do not need to store undo records (only need redo).
→ Do not need to log changes to indexes.

But the DBMS is still stymied by the slow sync
time of non-volatile storage.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Logging Schemes

Checkpoint Protocols

Restart Protocols

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LOGGING SCHEMES

Physical Logging
→ Record the changes made to a specific record in the

database.
→ Example: Store the original value and after value for an

attribute that is changed by a query.

Logical Logging
→ Record the high-level operations executed by txns.
→ Example: The UPDATE, DELETE, and INSERT queries

invoked by a txn.

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PHYSICAL VS. LOGICAL LOGGING

Logical logging writes less data in each log record
than physical logging.

Difficult to implement recovery with logical
logging if you have concurrent txns.
→ Harder to determine which parts of the database may

have been modified by a query before crash if running at
lower isolation level.

→ Takes longer to recover because you must re-execute
every txn all over again.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILO

In-memory OLTP DBMS from Harvard/MIT.
→ Single-versioned OCC with epoch-based GC.
→ Same authors of the Masstree.
→ Eddie Kohler is unstoppable.

SiloR uses physical logging + checkpoints to
ensure durability of txns.
→ It achieves high performance by parallelizing all aspects

of logging, checkpointing, and recovery.

8

FAST DATABASES WITH FAST DURABILITY AND RECOVERY
THROUGH MULTICORE PARALLELISM
OSDI 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/File:EddieKohlerHarvard-MaleTears-August2014.jpg
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/zheng-osdi14.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/zheng-osdi14.pdf

CMU 15-721 (Spring 2019)

SILOR LOGGING PROTOCOL

The DBMS assumes that there is one storage
device per CPU socket.
→ Assigns one logger thread per device.
→ Worker threads are grouped per CPU socket.

As the worker executes a txn, it creates new log
records that contain the values that were written
to the database (i.e., REDO).

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR LOGGING PROTOCOL

Each logger thread maintains a pool of log buffers
that are given to its worker threads.

When a worker’s buffer is full, it gives it back to
the logger thread to flush to disk and attempts to
acquire a new one.
→ If there are no available buffers, then it stalls.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR LOG FILES

The logger threads write buffers out to files:
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the max

epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

11

UPDATE people
SET isLame = true

WHERE name IN ('Lin','Andy')

Txn#1001
[people, 888, (isLame→true)]
[people, 999, (isLame→true)]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

Log Records

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

Log Records

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Storage

SILOR ARCHITECTURE

12

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR PERSISTENT EPOCH

A special logger thread keeps track of the current
persistent epoch (pepoch)
→ Special log file that maintains the highest epoch that is

durable across all loggers.

Txns that executed in epoch e can only release
their results when the pepoch is durable to non-
volatile storage.

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR ARCHITECTURE

14

Epoch
Thread

Pepoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR ARCHITECTURE

14

Epoch
Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR RECOVERY PROTOCOL

Phase #1: Load Last Checkpoint
→ Install the contents of the last checkpoint that was saved

into the database.
→ All indexes have to be rebuilt.

Phase #2: Log Replay
→ Process logs in reverse order to reconcile the latest

version of each tuple.
→ The txn ids generated at runtime are enough to

determine the serial order on recovery.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR LOG REPL AY

First check the pepoch file to determine the most
recent persistent epoch.
→ Any log record from after the pepoch is ignored.

Log files are processed from newest to oldest.
→ Value logging is able to be replayed in any order.
→ For each log record, the thread checks to see whether the

tuple already exists.
→ If it does not, then it is created with the value.
→ If it does, then the tuple’s value is overwritten only if the

log TID is newer than tuple’s TID.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR RECOVERY PROTOCOL

17

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR RECOVERY PROTOCOL

17

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR RECOVERY PROTOCOL

17

P

pepoch=200

Checkpoints

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SILOR RECOVERY PROTOCOL

17

P

pepoch=200

Checkpoints

Log Files

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Often the slowest part of the txn is waiting for the
DBMS to flush the log records to disk.

Have to wait until the records are safely written
before the DBMS can return the
acknowledgement to the client.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

GROUP COMMIT

Batch together log records from multiple txns and
flush them together with a single fsync.
→ Logs are flushed either after a timeout or when the buffer

gets full.
→ Originally developed in IBM IMS FastPath in the 1980s

This amortizes the cost of I/O over several txns.

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/IBM_Information_Management_System#.22Fast_Path.22_databases

CMU 15-721 (Spring 2019)

EARLY LOCK RELEASE

A txn’s locks can be released before its commit
record is written to disk as long as it does not
return results to the client before becoming
durable.

Other txns that read data updated by a pre-
committed txn become dependent on it and also
have to wait for their predecessor’s log records to
reach disk.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Logging allows the DBMS to recover the database
after a crash/restart. But this system will have to
replay the entire log each time.

Checkpoints allows the systems to ignore large
segments of the log to reduce recovery time.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

IN-MEMORY CHECKPOINTS

There are different approaches for how the DBMS
can create a new checkpoint for an in-memory
database.

The choice of approach in a DBMS is tightly
coupled with its concurrency control scheme.

The checkpoint thread(s) scans each table and
writes out data asynchronously to disk.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

IDEAL CHECKPOINT PROPERTIES

Do not slow down regular txn processing.

Do not introduce unacceptable latency spikes.

Do not require excessive memory overhead.

30

LOW-OVERHEAD ASYNCHRONOUS CHECKPOINTING IN
MAIN-MEMORY DATABASE SYSTEMS
SIGMOD 2016

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2915966
http://dl.acm.org/citation.cfm?id=2915966

CMU 15-721 (Spring 2019)

CONSISTENT VS. FUZZY CHECKPOINTS

Approach #1: Consistent Checkpoints
→ Represents a consistent snapshot of the database at some

point in time. No uncommitted changes.
→ No additional processing during recovery.

Approach #2: Fuzzy Checkpoints
→ The snapshot could contain records updated from

transactions that have not finished yet.
→ Must do additional processing to remove those changes.

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CHECKPOINT MECHANISM

Approach #1: Do It Yourself
→ The DBMS is responsible for creating a snapshot of the

database in memory.
→ Can leverage on multi-versioned storage.

Approach #2: OS Fork Snapshots
→ Fork the process and have the child process write out the

contents of the database to disk.
→ This copies everything in memory.
→ Requires extra work to remove uncommitted changes.

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HYPER OS FORK SNAPSHOTS

Create a snapshot of the database by forking the
DBMS process.
→ Child process contains a consistent checkpoint if there

are not active txns.
→ Otherwise, use the in-memory undo log to roll back txns

in the child process.

Continue processing txns in the parent process.

33

HYPER: A HYBRID OLTP&OLAP MAIN MEMORY DATABASE SYSTEM
BASED ON VIRTUAL MEMORY SNAPSHOTS
ICDE 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2005619
http://dl.acm.org/citation.cfm?id=2005619

CMU 15-721 (Spring 2019)

H-STORE OS FORK SNAPSHOTS

34

Workload: TPC-C (8 Warehouses) + OLAP Query

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/blog/2013/12/fall-2013-research.html

CMU 15-721 (Spring 2019)

CHECKPOINT CONTENTS

Approach #1: Complete Checkpoint
→ Write out every tuple in every table regardless of

whether were modified since the last checkpoint.

Approach #2: Delta Checkpoint
→ Write out only the tuples that were modified since the

last checkpoint.
→ Can merge checkpoints together in the background.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FREQUENCY

Approach #1: Time-based
→ Wait for a fixed period of time after the last checkpoint

has completed before starting a new one.

Approach #2: Log File Size Threshold
→ Begin checkpoint after a certain amount of data has been

written to the log file.

Approach #3: On Shutdown (Mandatory)
→ Perform a checkpoint when the DBA instructs the system

to shut itself down. Every DBMS (hopefully) does this.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CHECKPOINT IMPLEMENTATIONS

37

Type Contents Frequency

MemSQL Consistent Complete Log Size

VoltDB Consistent Complete Time-Based

Altibase Fuzzy Complete Manual?

TimesTen Consistent (Blocking)
Fuzzy (Non-Blocking)

Complete
Complete

On Shutdown
Time-Based

Hekaton Consistent Delta Log Size

SAP HANA Fuzzy Complete Time-Based

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Not all DBMS restarts are due to crashes.
→ Updating OS libraries
→ Hardware upgrades/fixes
→ Updating DBMS software

Need a way to be able to quickly restart the DBMS
without having to re-read the entire database from
disk again.

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FACEBOOK SCUBA FAST RESTARTS

Decouple the in-memory database lifetime from
the process lifetime.

By storing the database shared memory, the DBMS
process can restart and the memory contents will
survive.

39

FAST DATABASE RESTARTS AT FACEBOOK
SIGMOD 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/p541-goel.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/12-recovery/p541-goel.pdf

CMU 15-721 (Spring 2019)

FACEBOOK SCUBA

Distributed, in-memory DBMS for time-series
event analysis and anomaly detection.

Heterogeneous architecture
→ Leaf Nodes: Execute scans/filters on in-memory data
→ Aggregator Nodes: Combine results from leaf nodes

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FACEBOOK SCUBA ARCHITECTURE

41

Leaf Node Leaf Node Leaf Node Leaf Node

Aggregate Node

Aggregate Node

Aggregate Node

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SHARED MEMORY RESTARTS

Approach #1: Shared Memory Heaps
→ All data is allocated in SM during normal operations.
→ Have to use a custom allocator to subdivide memory

segments for thread safety and scalability.
→ Cannot use lazy allocation of backing pages with SM.

Approach #2: Copy on Shutdown
→ All data is allocated in local memory during normal

operations.
→ On shutdown, copy data from heap to SM.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SHARED MEMORY RESTARTS

Approach #1: Shared Memory Heaps
→ All data is allocated in SM during normal operations.
→ Have to use a custom allocator to subdivide memory

segments for thread safety and scalability.
→ Cannot use lazy allocation of backing pages with SM.

Approach #2: Copy on Shutdown
→ All data is allocated in local memory during normal

operations.
→ On shutdown, copy data from heap to SM.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://twitter.com/leventov/status/977620889364783104

CMU 15-721 (Spring 2019)

FACEBOOK SCUBA FAST RESTARTS

When the admin initiates restart command, the
node halts ingesting updates.

DBMS starts copying data from heap memory to
shared memory.
→ Delete blocks in heap once they are in SM.

Once snapshot finishes, the DBMS restarts.
→ On start up, check to see whether the there is a valid

database in SM to copy into its heap.
→ Otherwise, the DBMS restarts from disk.

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

Physical logging is a general purpose approach that
supports all concurrency control schemes.
→ Logical logging is faster but not universal.

Copy-on-update checkpoints are the way to go
especially if you are using MVCC

Non-volatile memory is coming…

44

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NEXT CL ASS

Networking Protocols

Project #2 Announcement + Potential Topics

45

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

