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OPERATOR EXECUTION

Query Plan Processing

Application Logic Execution (UDFs)

Parallel Join Algorithms

Vectorized Operators

Query Compilation
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QUERY EXECUTION

A query plan is comprised of operators.

An operator instance is an invocation of an 
operator on some segment of data.

A task is the execution of a sequence of one or 
more operator instances.
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EXECUTION OPTIMIZATION

We are now going to start discussing ways to 
improve the DBMS's query execution performance 
for data sets that fit entirely in memory.

There are other bottlenecks to target when we 
remove the disk.
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OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.
→ This means reducing cache misses and stalls due to 

memory load/stores.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.
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MonetDB/X100 Analysis

Processing Models

Parallel Execution
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MONETDB/X100

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern 

CPU architectures.

Based on these findings, they proposed a new 
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalance
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CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy 
at each cycle by masking delays from instructions 
that cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle 

if they are independent.
→ Flynn's Taxonomy: Single Instruction stream, Single 

Data stream (SISD)
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DBMS /  CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it 

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will 

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it has to throw away any speculative 

work and flush the pipeline.
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BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively 
execute branches. This potentially hides the long 
stalls between dependent instructions.

The most executed branching code in a DBMS is 
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.
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SELECT * FROM table
WHERE key >= $(low)

AND key <= $(high)

SELECTION SCANS
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SELECTION SCANS

12

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key≥low) && (key≤high):

copy(t, output[i])
i = i + 1

Source: Bogdan Raducanu
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SELECTION SCANS
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Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key≥low) && (key≤high):

copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:
copy(t, output[i])
key = t.key
m = (key≥low ? 1 : 0) &&
⮱(key≤high ? 1 : 0)

i = i + m

Source: Bogdan Raducanu
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SELECTION SCANS
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EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types, 
so it must check a values type before it performs 
any operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the 

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

14
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PROCESSING MODEL

A DBMS's processing model defines how the 
system executes a query plan.
→ Different trade-offs for different workloads.

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

15
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ITERATOR MODEL

Each query plan operator implements a next
function.
→ On each invocation, the operator returns either a single 

tuple or a null marker if there are no more tuples.
→ The operator implements a loop that calls next on its 

children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.
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ITERATOR MODEL

17

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

for t in A:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in B:
emit(t)
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ITERATOR MODEL

This is used in almost every DBMS. Allows for 
tuple pipelining.

Some operators have to block until their children 
emit all of their tuples.
→ Joins, Subqueries, Order By

Output control works easily with this approach.
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MATERIALIZATION MODEL

Each operator processes its input all at once and 
then emits its output all at once.
→ The operator "materializes" it output as a single result.
→ The DBMS can push down hints into to avoid scanning 

too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or 
subsets of columns (DSM)
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MATERIALIZATION MODEL

20

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
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p

out = { }
for t in A:

out.add(t)
return out

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
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for t in child.Output():

out.add(projection(t))
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out = { }
for t in child.Output():

if evalPred(t): out.add(t)
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out = { }
for t in B:
out.add(t)

return out
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MATERIALIZATION MODEL

20

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
return out

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = { }
for t in child.Output():

out.add(projection(t))
return out

out = { }
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = { }
for t in B:
out.add(t)

return out

1

2

3 5

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

20

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
return out

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = { }
for t in child.Output():

out.add(projection(t))
return out

out = { }
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = { }
for t in B:
out.add(t)

return out

1

2

3 5

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

Better for OLTP workloads because queries only 
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large 
intermediate results.
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VECTORIZATION MODEL

Like the Iterator Model, each operator implements 
a next function in this model.

Each operator emits a batch of tuples instead of a 
single tuple.
→ The operator's internal loop processes multiple tuples at a 

time.
→ The size of the batch can vary based on hardware or 

query properties.
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VECTORIZATION MODEL
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for t in B:
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if |out|>n: emit(out)
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VECTORIZATION MODEL
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VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces 
the number of invocations per operator.

Allows for operators to use vectorized (SIMD) 
instructions to process batches of tuples.

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2019)

PL AN PROCESSING DIRECTION

Approach #1: Top-to-Bottom
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top
→ Start with leaf nodes and push data to their parents.
→ Allows for tighter control of caches/registers in pipelines.
→ We will see this later in HyPer and Peloton ROF.
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INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple 
queries to execute simultaneously.
→ Provide the illusion of isolation through concurrency 

control scheme.

The difficulty of implementing a concurrency 
control scheme is not significantly affected by the 
DBMS’s process model.
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INTRA-QUERY PARALLELISM

Improve the performance of a single query by 
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational 
operator.
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INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances 

that perform the same function on different subsets of 
data.

The DBMS inserts an exchange operator into the 
query plan to coalesce results from children 
operators.
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SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30
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INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from 

one stage to the next without materialization.

Also called pipelined parallelism.

AFAIK, this approach is not widely used in 
traditional relational DBMSs.
→ Not all operators can emit output until they have seen all 

of the tuples from their children.
→ It is more common in stream processing systems.
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OBSERVATION

Coming up with the right number of workers to 
use for a query plan depends on the number of 
CPU cores, the size of the data, and functionality 
of the operators.
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WORKER ALLOCATION

Approach #1: One Worker per Core
→ Each core is assigned one thread that is pinned to that 

core in the OS.
→ See sched_setaffinity

Approach #2: Multiple Workers per Core
→ Use a pool of workers per core (or per socket).
→ Allows CPU cores to be fully utilized in case one worker 

at a core blocks.
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TASK ASSIGNMENT

Approach #1: Push
→ A centralized dispatcher assigns tasks to workers and 

monitors their progress.
→ When the worker notifies the dispatcher that it is 

finished, it is given a new task.

Approach #1: Pull
→ Workers pull the next task from a queue, process it, and 

then return to get the next task.
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PARTING THOUGHTS

The easiest way to implement something is not 
going to always produce the most efficient 
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution 
will be the better way to execute OLAP queries.
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NEXT CL ASS

User-defined Functions

Stored Procedures
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