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ARCHITECTURE OVERVIEW
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OPERATOR EXECUTION

Query Plan Processing

Application Logic Execution (UDFs)
Parallel Join Algorithms

Vectorized Operators

Query Compilation
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QUERY EXECUTION

A query plan is comprised of operators.

An operator instance is an invocation of an
operator on some segment of data.

A task is the execution of a sequence of one or
more operator instances.
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EXECUTION OPTIMIZATION

We are now going to start discussing ways to
improve the DBMS's query execution performance
for data sets that fit entirely in memory.

There are other bottlenecks to target when we
remove the disk.
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OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
— Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction

— Execute more CPU instructions in fewer cycles.

— This means reducing cache misses and stalls due to
memory load/stores.

Approach #3: Parallelize Execution
— Use multiple threads to compute each query in parallel.
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TODAY'S AGENDA

MonetDB/X100 Analysis
Processing Models
Parallel Execution
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MONETDB/X100

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.

— Show how DBMS are designed incorrectly for modern
CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.

— Renamed to Vectorwise and acquired by Actian in 2010.
— Rebranded as Vector and Avalance

MONETDB/X100: HYPER-PIPELINING
UERY EXECUTION
IDR 2005
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To: “pavlo@cs.cmu.edu“ <pavlo@cs.cmu.edu>
Date: 4/13/18 2:27 PM

Andy,

| am a developer currently working on Actian Vector X100, originally from the parAccel database team. | have
been watching your CMU Data Systems talks on YouTube and the classes are fantastic. | have been learning
much across areas of DB systems that | have rot previously ventured. | appreciated hearing your thoughts on
Vector in the L3 (L20 2017) session with one correction. Vector is no longer in hiding and is back on the Actian
website.

Vector and VectorH are linked from the main page (under products):

https://www.actianxom/ana!ytic-database/vector-smp-analyﬁc-database/
https:/’/www.actianAcom/analytic—database/vectorh-sql-hadoop/

Additionally, there is a community edition download:
https:/fwww.ac’rian,com/analyﬁc-database/vector-downloads/
| was not involved in any decision regarding Vector’s availability but did want you to know that it is back.

Regards,

Actian | Vector Development
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A Berkshire Hathaway Company

Actian Avalanche Pioneers Next-Generation Cloud Data Warehouse

New fully managed, third-generation, cloud data warehouse delivers industry-leading
performance, simplicity, scalability and savings

March 18, 2019 09:00 AM Eastern Daylight Time
PALO ALTO, Calif.--(BUSINESS WIRE)--
announced the Actian Avalanche™
cloud platform. This innovative, thir

an, the hybrid data management, analytics and integration company, today
cloud data warehouse, a fully managed service solution available on the AWS
d-generation, cloud data warehouse delivers breakthrough levels of speed,
flexibility and economics designed to make it easier for companies to deploy and scale data analytics services in the
cloud while saving millions over traditional data warehouse solutions.

As enterprises continue along their digital transformation journey, it's
imperative that they derive more value from their diverse, hybrid
data to improve profitability and remain competitive in their
industries. However, traditional data analytics solutions have
substantial limitations when it comes to complexity, cost and
performance. Similarly, first-generation cloud solutions have also
experienced challenges in areas of concurrency, performance at
scale and resource optimization. Many organizations, while
embracing the cloud, still critically need to address their hybrid data
legacy on-premise as well as compliance requirements.

“There is a major opportunity to
deliver transformative technology to
power an entirely new generation of
cloud data warehouses to replace
traditional solutions that are
fundamentaﬂy tapped out and
alleviate the challenges of new
demanding BI, advanced analytics

and machine learning workloads.” ) _ ) )
“Enterprises are being driven to get more value out of their data by
enabling faster, more actionable insights that drive better business
outcomes. This trend is fueling a market need for a new generation
of operational data warehouses that are simple to use and

deliver real-time insights at scale, without the traditional data lake performance penalties,” said Jim Curtis, Senior
Analyst for the Data Platforms and Analytics Channel at 451 Research. “Actian has recognized this need by

concentrating on price/performance benefits with its next generation of cloud data warehouse and on-premise
analytics offerings.”

Tweet this

Gen Ill Cloud Data Warehouse Solution
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Actian Corporation
Jeff Veis
SVP & Chief Marketing Officer
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Caitlin Noll
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CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy
at each cycle by masking delays from instructions
that cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
— Execute multiple instructions in parallel in a single cycle
if they are independent.

— Flynn's Taxonomy: Single Instruction stream, Single
Data stream (SISD)
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DBMS / CPU PROBLEMS

Problem #1: Dependencies
— If one instruction depends on another instruction, then it
cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction

— The CPU tries to predict what branch the program will
take and fill in the pipeline with its instructions.

— If it gets it wrong, it has to throw away any speculative
work and flush the pipeline.
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BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.
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SELECTION SCANS

SELECT * FROM table
WHERE key >= $(low)
AND key <= $(high)

Source: Bogdan Raducanu

& & CARNEGIE MELLON


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

SELECTION SCANS

Scalar (Branching)

i=0
for t in table:
key = t.key

if (key=low) && (keys<high):
copy(t, outputl[il)
i=1+1

Source: Bogdan Raducanu
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SELECTION SCANS

Scalar (Branching)

i=0

for t in table:

key = t.key

if (key>=low) && (keyshigh):
copy(t, outputl[il)
i=1+1

Source: Bogdan Raducanu
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SELECTION SCANS

Scalar (Branching)

i=0
for t in table:
key = t.key

Scalar (Branchless)

if (key>=low) && (keyshigh):

copy(t, outputl[il)
1=1+1

Source: Bogdan Raducanu
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i=20
for t in table:
copy(t, outputl[il)
key = t.key
m = (key=low ? 1 : 0) &&
Y (keyshigh 7 1 : 0)
i=1+m

12
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SELECTION SCANS

Scalar (Branching)

i=0
for t in table:
key = t.key

Scalar (Branchless)

if (key>=low) && (keyshigh):

copy(t, outputl[il)
1=1+1

Source: Bogdan Raducanu

& @ CARNEGIE MELLON
=2 DATABASE GROUP

i=0

for t in table:
copy(t, outputl[il)
key = t.key

Y (keyshigh 7 1 : 0)

m = (key=low ? 1 : 0) &&
i=1+m

12
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SELECTION SCANS
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EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types,
so it must check a values type before it performs

any operation on that value.

— This is usually implemented as giant switch statements.

— Also creates more branches that can be difficult for the
CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.
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so it must check a v

any operation on th
— This is usually implg
— Also creates more b
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Example: Postgres'

*®

* add_wvar() -
*®

* Full version of add functionality on variable level (handling signs).
* result might point to one of the operands toc without danger.
*

int
PGTYPESnumeric_add(numeric *varl, numeric *var2, numeric *result)
{ ES

* Decide on the signs of the two variables what to do

E3

if (varl->sign == NUMERIC POS)
{
%f (var2->sign == NUMERIC PO0S)

*®

* Both are positive result = +(ABS(varl) + ABS(var2))
*®

1f (add_abs{varl, var2, result) I= 0)
return -1;
result->sign = NUMERIC POS;

else

’lﬂr
* wvarl is positive, var2? is negative Must compare absolute values
Ed

Ew;tck (cmp_abs({varl, war2))

* ABS(varl) == ABS(var2)
* result = ZERD
* o _____._
w3
zero_var(result);
result->rscale = Max{varl->rscale, var2->rscale);
result-=dscale = Max{varl-sdscale, var2->dscale);
reak;

* ABS(varl) = ABS(var2)
* result = +(ABS(varl) - ABS(var2))
3

*

1f (sub_abs({varl, var2, result) 1= o)
return -1;
result->sign = NUMERIC POS;
reak;
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PROCESSING MODEL

A DBMS's processing model defines how the

system executes a query plan.
— Different trade-offs for different workloads.

Approach #1: Iterator Model

Approach #2: Materialization Model
Approach #3: Vectorized / Batch Model
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ITERATOR MODEL

Each query plan operator implements a next

function.

— On each invocation, the operator returns either a single
tuple or a null marker if there are no more tuples.

— The operator implements a loop that calls next on its
children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.
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ITERATOR MODE

for t in child.Next():
emit(projection(t))

for t, in left.Next():

for t, in right.Next():

buildHashTable(t,)

if probe(t,): emit(t,Xt,)

if evalPred(t):

for t in child.Next():

emit(t)

emit(t)

for t in A:

emit(t)

A

C?CARNEGlE MELLON -
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for t in B:

wSLLITTTT

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

N
A B



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODE

for t in child.Next():
emit(proj*ction(t))

)

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,Xt,)

for t in child.Next():
if evalPred(t): emit(t)

emit(t)

for t in A: for t in B:

emit(t)
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SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

n A.id, B.value

G value>100
N

A B
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ITERATOR MODE

for t in child.Next():
emit(proj*ction(t))

)

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,Xt,)

for t in child.Next():
if evalPred(t): emit(t)

emit(t)

for t in A: for t in B:

emit(t)
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SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

n A.id, B.value

G value>100
N

A B
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ITERATOR MODEL

SELECT A.id, B.value

for t in child.Next():
emit(proj*ction(t)) FROM A, B
1 WHERE A.id = B.1id

AND B.value > 100

for t left.Next():

dHashTableft,)

t, in right.lgext(): ": A.id, B.value
if probe(t,): pmit(t,Xt,) T

- for t in child.Next(): ;
SmgleTuplel if evalPred(t): emit(t) \
Gvalue>100

for t in A: for t in B: \
emit(t)=— emit(t) A B
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ITERATOR MODE

for t in child.Next():
emit(proj*ction(t))

)

for t, in left.Next():
buildHashTable(t,)
for t, in right.Next():

for t in child.Next():
if evalPr*d(t): emit(t)

for t in A:
emit(t)

}

& @ CARNEGIE MELLON
=2 DATABASE GROUP

for t in B:

emit(t)

©

17

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

n A.id, B.value

G value>100
N

A B
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ITERATOR MODEL

SELECT A.id, B.value

for t in child.Next():
emit(proj*ctiontt)) FROM A, B
1 \ WHERE A.id = B.id
for t, in left.Next(): AND B.value > 100
buildHashTable(t,)
for t, in right.Next()#qm_| n A.id, B.value

if probe(w \ T

for t in child.Next(): @I NAJd:B.ld

if evalPrdd(t):femit(t)

l G value>100

for t in A: for t inj: \
emit(t) emit(t n B
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ITERATOR MODEL

This is used in almost every DBMS. Allows for
tuple pipelining.

Some operators have to block until their children

emit all of their tuples.
— Joins, Subqueries, Order By

Output control works easily with this approach.

?SQLite Omongons  ® NUODE Cloydera

Z80Lserver  (7) Greenplum  BPostgesQl.  ORACLE  DN\MySQL.
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MATERIALIZATION MODEL

Each operator processes its input all at once and

then emits its output all at once.

— The operator "materializes" it output as a single result.

— The DBMS can push down hints into to avoid scanning
too many tuples.

— Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM)
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MATERIALIZATION MODEL

out = { }
for t in child.Output(): SELECT A.id. B.value
< out.add(projection(t)) ’
ey FROM A, B
X WHERE A.id = B.1id
out = { }
for t, in left.Output(): AND B.value > 100
buildHashTable(t,)
for t, in right.Output(): A fdl Bl
if probe(t,): out.add(t >t,) TU #.14, B.vale
return out T
P D 1081
for t in child.Output(): \
if evalPred(t): out.add(t)
return out Gvalue>100
out = { 3 out = { } N
for t in A: for t in B: A B
out.add(t) out.add(t)
&2 carnecie MeLld return out return out
w @ DATABASE GRO&r
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MATERIALIZATION MODEL

out = { }
c<f°r 2 E) OV T SELECT A.id, B.value
out.add(projection(t
mm—m\ FROM A, B
X WHERE A.id = B.id
out = { }
for t. in left.Output(): AND B.value > 100
buildHashTable(t,
for t, in right.Output(): .
if probe(t,): out]add(tbdt,) TU ».14, 5.value
return out T
— { } NA.ldzB.ld
fgr t in child.Output(): ‘\\\
if evalPred(t): out.add(t)
L A_llTuples l return out Gvalue>1 00

out = { } out = { } AN
for t in A: for t in B: A B
out.add(t) out.add(t)

E}cmmmmMau;return out-—”” return out
w @ DATABASE GRO%er
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MATERIALIZATION MODEL

out = { }
c <for ¢ in child Qutput(); SELECT A.id, B.value
out.a projection(t
mnm\ FROM A, B
X WHERE A.id = B.1id
out = { } AND B.value > 100

for t, in left.Output():

buildHashTable(t,)

rfor t, in right.Output(): i B oyal
<. if probe(t,): out.add(t,Mdt,) n .1d, B.value

[return out — t

St C 3 D 1081

<'for t in child.Output():
if evalPred(t): out.add(
Gvalue>100

L T?ﬁiﬁﬁ??ﬂﬂs\\‘
A B

out = { } out = { }
for t in A: for t in B:

out.add(t) out.add(t)

< 2 CARNEGEE MELL] return out return out
%2 DATABASE GROb
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MATERIALIZATION MODEL

out = { }
c <for t iﬂdihﬂd’o“tpuﬁ(i; SELECT A.id, B.value
out.add(projectfon(t !
7?ﬁﬂﬁ1m$\\ FROM A, B

- WHERE A.id = B.1id

out = { }
for t, in left.Output(): AND B.value > 100
buildHashTablegt,)

n A.id, B.value

+for t, in right
<. if probe(t,
return ou

(t):Tout.add(

G value>100
N

A B

!

out = { }
for t in A: for t in B}l

out.add(t) out.add(

< 2 CARNEGEE MELL] return out return out
%2 DATABASE GROb
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MATERIALIZATION MODEL

Better for OLTP workloads because queries only

access a small number of tuples at a time.
— Lower execution / coordination overhead.
— Fewer function calls.

Not good for OLAP queries with large
intermediate results.

‘ vvv
monetdb) VOLTDB
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VECTORIZATION MODEL

Like the Iterator Model, each operator implements
a next function in this model.

Each operator emits a batch of tuples instead of a

single tuple.

— The operator's internal loop processes multiple tuples at a
time.

— The size of the batch can vary based on hardware or
query properties.
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VECTORIZATION MODEL

out = { }

1

out.add(projection(t))
n: emit(out)

<:"For t in child.Output():

out = { }

9 sfor t, in left.Output():

buildHashTable(t,)

for t, in right.Output():
if probe(t,): out.add(t,Pdt,)
if |out|>n: emit(out)

23

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

out = { }

for t in child.Output():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = { }
for t in A:
out.add(t)

& & CARNEGIE MELL if |out|>n: emit(out)

out = { }
for t in B:
out.add(t)
if |out|>n: emit(out)

n A.id, B.value

G value>100
N

A B

=2 DATABASE GROUTP
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VECTORIZATION MODEL

out = { }
Qo s Pt s SELECT A.id, B.value
out.a rojection(t
TTTomeia: emit(out) FROM A, B
WHERE A.id = B.id
out = { }
e for t, in left.Output(): AND B.value > 100

buildHashTable(t,)
for t, in right.Output(): A @ Bwell
if probe(t,): out.add(t&Y) n A6 BLvate

if |out|>n: emit(out)

out = (3 NA.id=B.id
-for t in child.Output(): \\\~
<: if evalPred(t): out.add(t)
1 ~Emit(out) Gvalue>100
out = { } out = { } \
for t in A: for t in B:
out.add(t) out.add(t) A B
cooemnecemend  1F Jout|>n: emit(out) if |out|>n: emit(out)
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VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to use vectorized (SIMD)
instructions to process batches of tuples.

X

presto et S vectorwise A snow flake

orACLE (i amazer

Microsoft®

ZZSQL Server
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom

— Start with the root and "pull" data up from its children.
— Tuples are always passed with function calls.

Approach #2: Bottom-to-Top

— Start with leaf nodes and push data to their parents.

— Allows for tighter control of caches/registers in pipelines.
— We will see this later in HyPer and Peloton ROF.
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INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple

queries to execute simultaneously.
— Provide the illusion of isolation through concurrency
control scheme.

The difficulty of implementing a concurrency
control scheme is not significantly affected by the

DBMS'’s process model.
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INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)
Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational
operator.
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INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)

— Operators are decomposed into independent instances
that perform the same function on different subsets of
data.

The DBMS inserts an exchange operator into the
query plan to coalesce results from children
operators.
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INTRA-OPERATOR PARA
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L LELISM

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

t

>
N

7
O O
o N

[A] B



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INTRA-OPERATOR PARA
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L LELISM

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND A.value < 99
AND B.value > 100
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

7]
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INTRA-OPERATOR PARA

Exchange

Build HT | Build HT {§ Build HT

C‘i CARNEGIE MELLON
DATABASE GROUP

L LELISM

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND A.value < 99
AND B.value > 100
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INTRA-OPERATOR PARA

Exchange

Build HT | Build HT {§ Build HT
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INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value

FROM A, B
WHERE A.id = B.id
>t><1 AND A.value < 99
AND B.value > 100

Exchange
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) 3

P
£

C |C
7
A B



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INTRA-OPERATOR PARA
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L LELISM

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND A.value < 99
AND B.value > 100
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INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)

— Operations are overlapped in order to pipeline data from
one stage to the next without materialization.

Also called pipelined parallelism.

AFAIK, this approach is not widely used in

traditional relational DBMSs.

— Not all operators can emit output until they have seen all
of the tuples from their children.
— [t is more common in stream processing systems.
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INTER-OPERATOR PARA

for t, € outer:
for t, € inner:
emit(t,t,)
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SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND A.value < 99
AND B.value > 100
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INTER-OPERATOR PARALLELISM

SELECT A.id, B.value

FROM A, B
WHERE A.id = B.id
AND A.value < 99
# for t € incoming: AND B.value > 100
n emit(mt)

for t, € outer: 6 \G
for t, € inner: . “

emit(t,Ddt,)
A B
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OBSERVATION

Coming up with the right number of workers to
use for a query plan depends on the number of
CPU cores, the size of the data, and functionality
of the operators.
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WORKER ALLOCATION

Approach #1: One Worker per Core

— Each core is assigned one thread that is pinned to that
core in the OS.

— See sched setaffinity

Approach #2: Multiple Workers per Core

— Use a pool of workers per core (or per socket).
— Allows CPU cores to be fully utilized in case one worker
at a core blocks.
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TASK ASSIGNMENT

Approach #1: Push

— A centralized dispatcher assigns tasks to workers and
monitors their progress.

— When the worker notifies the dispatcher that it is
finished, it is given a new task.

Approach #1: Pull

— Workers pull the next task from a queue, process it, and
then return to get the next task.
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PARTING THOUGHTS

The easiest way to implement something is not
going to always produce the most efficient
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution
will be the better way to execute OLAP queries.
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NEXT CLASS

User-defined Functions
Stored Procedures
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