
Query Execution &
Processing

@Andy_Pavlo // 15-721 // Spring 2019

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

1
5

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Scheduling / Placement
Concurrency Control

Indexes
Operator Execution

ARCHITECTURE OVERVIEW

2

SQL Query

Networking Layer

Planner

Compiler

Execution Engine

Storage Manager

SQL Parser
Binder

Optimizer / Cost Models
Rewriter

Storage Models
Logging / Checkpoints

We Are Here

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPERATOR EXECUTION

Query Plan Processing

Application Logic Execution (UDFs)

Parallel Join Algorithms

Vectorized Operators

Query Compilation

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

QUERY EXECUTION

A query plan is comprised of operators.

An operator instance is an invocation of an
operator on some segment of data.

A task is the execution of a sequence of one or
more operator instances.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

EXECUTION OPTIMIZATION

We are now going to start discussing ways to
improve the DBMS's query execution performance
for data sets that fit entirely in memory.

There are other bottlenecks to target when we
remove the disk.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMIZATION GOALS

Approach #1: Reduce Instruction Count
→ Use fewer instructions to do the same amount of work.

Approach #2: Reduce Cycles per Instruction
→ Execute more CPU instructions in fewer cycles.
→ This means reducing cache misses and stalls due to

memory load/stores.

Approach #3: Parallelize Execution
→ Use multiple threads to compute each query in parallel.

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MonetDB/X100 Analysis

Processing Models

Parallel Execution

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MONETDB/X100

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern

CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalance

8

MONETDB/X100: HYPER-PIPELINING
QUERY EXECUTION
CIDR 2005

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/15-execution/boncz-cidr2005.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/15-execution/boncz-cidr2005.pdf

CMU 15-721 (Spring 2019)

MONETDB/X100

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern

CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalance

8

MONETDB/X100: HYPER-PIPELINING
QUERY EXECUTION
CIDR 2005

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/15-execution/boncz-cidr2005.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/15-execution/boncz-cidr2005.pdf

CMU 15-721 (Spring 2019)

MONETDB/X100

Low-level analysis of execution bottlenecks for in-
memory DBMSs on OLAP workloads.
→ Show how DBMS are designed incorrectly for modern

CPU architectures.

Based on these findings, they proposed a new
DBMS called MonetDB/X100.
→ Renamed to Vectorwise and acquired by Actian in 2010.
→ Rebranded as Vector and Avalance

8

MONETDB/X100: HYPER-PIPELINING
QUERY EXECUTION
CIDR 2005

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/15-execution/boncz-cidr2005.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/15-execution/boncz-cidr2005.pdf
https://www.businesswire.com/news/home/20190318005133/en/Actian-Avalanche-Pioneers-Next-Generation-Cloud-Data-Warehouse

CMU 15-721 (Spring 2019)

CPU OVERVIEW

CPUs organize instructions into pipeline stages.

The goal is to keep all parts of the processor busy
at each cycle by masking delays from instructions
that cannot complete in a single cycle.

Super-scalar CPUs support multiple pipelines.
→ Execute multiple instructions in parallel in a single cycle

if they are independent.
→ Flynn's Taxonomy: Single Instruction stream, Single

Data stream (SISD)

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DBMS / CPU PROBLEMS

Problem #1: Dependencies
→ If one instruction depends on another instruction, then it

cannot be pushed immediately into the same pipeline.

Problem #2: Branch Prediction
→ The CPU tries to predict what branch the program will

take and fill in the pipeline with its instructions.
→ If it gets it wrong, it has to throw away any speculative

work and flush the pipeline.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BRANCH MISPREDICTION

Because of long pipelines, CPUs will speculatively
execute branches. This potentially hides the long
stalls between dependent instructions.

The most executed branching code in a DBMS is
the filter operation during a sequential scan.
But this is (nearly) impossible to predict correctly.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT * FROM table
WHERE key >= $(low)

AND key <= $(high)

SELECTION SCANS

12

Source: Bogdan Raducanu

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

SELECTION SCANS

12

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key≥low) && (key≤high):

copy(t, output[i])
i = i + 1

Source: Bogdan Raducanu

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

SELECTION SCANS

12

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key≥low) && (key≤high):

copy(t, output[i])
i = i + 1

Source: Bogdan Raducanu

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

SELECTION SCANS

12

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key≥low) && (key≤high):

copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:
copy(t, output[i])
key = t.key
m = (key≥low ? 1 : 0) &&
⮱(key≤high ? 1 : 0)

i = i + m

Source: Bogdan Raducanu

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

SELECTION SCANS

12

Scalar (Branching)

i = 0
for t in table:
key = t.key
if (key≥low) && (key≤high):

copy(t, output[i])
i = i + 1

Scalar (Branchless)

i = 0
for t in table:
copy(t, output[i])
key = t.key
m = (key≥low ? 1 : 0) &&
⮱(key≤high ? 1 : 0)

i = i + m

Source: Bogdan Raducanu

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

SELECTION SCANS

13

Source: Bogdan Raducanu

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types,
so it must check a values type before it performs
any operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

EXCESSIVE INSTRUCTIONS

The DBMS needs to support different data types,
so it must check a values type before it performs
any operation on that value.
→ This is usually implemented as giant switch statements.
→ Also creates more branches that can be difficult for the

CPU to predict reliably.

Example: Postgres' addition for NUMERIC types.

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722

CMU 15-721 (Spring 2019)

PROCESSING MODEL

A DBMS's processing model defines how the
system executes a query plan.
→ Different trade-offs for different workloads.

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

Each query plan operator implements a next
function.
→ On each invocation, the operator returns either a single

tuple or a null marker if there are no more tuples.
→ The operator implements a loop that calls next on its

children to retrieve their tuples and then process them.

Also called Volcano or Pipeline Model.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

17

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

for t in A:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in B:
emit(t)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

17

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

for t in A:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in B:
emit(t)

1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

17

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

for t in A:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in B:
emit(t)

1

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

17

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

for t in A:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in B:
emit(t)

1

2

3

Single Tuple

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

17

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

for t in A:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in B:
emit(t)

1

2

3 5

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

17

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

for t in A:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in B:
emit(t)

1

2

3 5

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ITERATOR MODEL

This is used in almost every DBMS. Allows for
tuple pipelining.

Some operators have to block until their children
emit all of their tuples.
→ Joins, Subqueries, Order By

Output control works easily with this approach.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

Each operator processes its input all at once and
then emits its output all at once.
→ The operator "materializes" it output as a single result.
→ The DBMS can push down hints into to avoid scanning

too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM)

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

20

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
return out

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = { }
for t in child.Output():

out.add(projection(t))
return out

out = { }
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = { }
for t in B:
out.add(t)

return out

1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

20

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
return out

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = { }
for t in child.Output():

out.add(projection(t))
return out

out = { }
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = { }
for t in B:
out.add(t)

return out

1

2

3

All Tuples

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

20

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
return out

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = { }
for t in child.Output():

out.add(projection(t))
return out

out = { }
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = { }
for t in B:
out.add(t)

return out

1

2

3 5

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

20

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
return out

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = { }
for t in child.Output():

out.add(projection(t))
return out

out = { }
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = { }
for t in B:
out.add(t)

return out

1

2

3 5

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

MATERIALIZATION MODEL

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not good for OLAP queries with large
intermediate results.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VECTORIZATION MODEL

Like the Iterator Model, each operator implements
a next function in this model.

Each operator emits a batch of tuples instead of a
single tuple.
→ The operator's internal loop processes multiple tuples at a

time.
→ The size of the batch can vary based on hardware or

query properties.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VECTORIZATION MODEL

23

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
if |out|>n: emit(out)

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = { }
for t in child.Output():

out.add(projection(t))
if |out|>n: emit(out)

out = { }
for t in child.Output():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

1

2

3
out = { }
for t in B:
out.add(t)
if |out|>n: emit(out)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VECTORIZATION MODEL

23

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

out = { }
for t in A:

out.add(t)
if |out|>n: emit(out)

out = { }
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = { }
for t in child.Output():

out.add(projection(t))
if |out|>n: emit(out)

out = { }
for t in child.Output():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

1

2

3
out = { }
for t in B:
out.add(t)
if |out|>n: emit(out)

5

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to use vectorized (SIMD)
instructions to process batches of tuples.

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PL AN PROCESSING DIRECTION

Approach #1: Top-to-Bottom
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed with function calls.

Approach #2: Bottom-to-Top
→ Start with leaf nodes and push data to their parents.
→ Allows for tighter control of caches/registers in pipelines.
→ We will see this later in HyPer and Peloton ROF.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/19-compilation/p539-neumann.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/21-vectorization2/menon-vldb2017.pdf

CMU 15-721 (Spring 2019)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.
→ Provide the illusion of isolation through concurrency

control scheme.

The difficulty of implementing a concurrency
control scheme is not significantly affected by the
DBMS’s process model.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel algorithms for every relational
operator.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent instances

that perform the same function on different subsets of
data.

The DBMS inserts an exchange operator into the
query plan to coalesce results from children
operators.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30

A2A1 A3
1 2 3

A B

⨝
s

p

s

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30

A2A1 A3
1 2 3

A B

⨝
s

p

s
s s s

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30

A2A1 A3
1 2 3

A B

⨝
s

p

s
s s s
p p p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

⨝

p p p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

⨝

p p p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

⨝

p p p p p p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

INTRA-OPERATOR PARALLELISM

30

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data from

one stage to the next without materialization.

Also called pipelined parallelism.

AFAIK, this approach is not widely used in
traditional relational DBMSs.
→ Not all operators can emit output until they have seen all

of the tuples from their children.
→ It is more common in stream processing systems.

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

INTER-OPERATOR PARALLELISM

32

1 ⨝
for t1 ∊ outer:
for t2 ∊ inner:
emit(t1⨝t2)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND A.value < 99
AND B.value > 100

A B

⨝
s

p

s

INTER-OPERATOR PARALLELISM

32

1 ⨝
for t1 ∊ outer:
for t2 ∊ inner:
emit(t1⨝t2)

2 p for t ∊ incoming:
emit(pt)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Coming up with the right number of workers to
use for a query plan depends on the number of
CPU cores, the size of the data, and functionality
of the operators.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

WORKER ALLOCATION

Approach #1: One Worker per Core
→ Each core is assigned one thread that is pinned to that

core in the OS.
→ See sched_setaffinity

Approach #2: Multiple Workers per Core
→ Use a pool of workers per core (or per socket).
→ Allows CPU cores to be fully utilized in case one worker

at a core blocks.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html

CMU 15-721 (Spring 2019)

TASK ASSIGNMENT

Approach #1: Push
→ A centralized dispatcher assigns tasks to workers and

monitors their progress.
→ When the worker notifies the dispatcher that it is

finished, it is given a new task.

Approach #1: Pull
→ Workers pull the next task from a queue, process it, and

then return to get the next task.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

The easiest way to implement something is not
going to always produce the most efficient
execution strategy for modern CPUs.

We will see that vectorized / bottom-up execution
will be the better way to execute OLAP queries.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NEXT CL ASS

User-defined Functions

Stored Procedures

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

