
Server-side Logic Execution

@Andy_Pavlo // 15-721 // Spring 2019

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

1
6

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Background

UDF In-lining

Working on Large Software Projects

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Until now, we have assumed that all of the logic
for an application is located in the application
itself.

The application has a "conversation" with the
DBMS to store/retrieve data.
→ Protocols: JDBC, ODBC

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CONVERSATIONAL DATABASE API

4

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

EMBEDDED DATABASE LOGIC

Move application logic into the DBMS to avoid
multiple network round-trips.

Potential Benefits
→ Efficiency
→ Reuse

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

EMBEDDED DATABASE LOGIC

6

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Application

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

EMBEDDED DATABASE LOGIC

6

CALL PROC(x=99)

PROC(x)Application

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in
operations.
→ It takes in input arguments (scalars)
→ Perform some computation
→ Return a result (scalars, tables)

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UDF EXAMPLE

Get all the customer ids and
compute their customer service
level based on the amount of
money they have spent.

8

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UDF ADVANTAGES

They encourage modularity and code reuse
→ Different queries can reuse the same application logic

without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to
express and read as UDFs.

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UDF DISADVANTAGES (1)

Query optimizers treat UDFs as black boxes.
→ Unable to estimate cost if you don't know what a UDF is

going to do when you run it.

It is difficult to parallelize UDFs due to correlated
queries inside of them.
→ Some DBMSs will only execute queries with a single

thread if they contain a UDF.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force
the DBMS to execute iteratively.
→ RBAR = "Row By Agonizing Row"
→ Things get even worse if UDF invokes queries due to

implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UDF PERFORMANCE

TPC-H Q12 using a UDF (SF=1).
→ Original Query: 0.8 sec
→ Query + UDF: 13 hr 30 min

SELECT l_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT'
THEN 1 ELSE 0 END

) AS low_line_count
FROM orders, lineitem
WHERE o_orderkey = l_orderkey
AND l_shipmode IN ('MAIL','SHIP')
AND l_commitdate < l_receiptdate
AND l_shipdate < l_commitdate
AND l_receiptdate >= '1994-01-01'
AND dbo.cust_name(o_custkey) IS NOT NULL

GROUP BY l_shipmode
ORDER BY l_shipmode

CREATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @ckey;

RETURN @n;
END

Source: Karthik Ramachandra

Microsoft SQL Server

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/
https://sqlblogcasts.com/blogs/simons/archive/2008/11/03/TSQL-Scalar-functions-are-evil-.aspx

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/
https://blogs.msdn.microsoft.com/conor_cunningham_msft/2010/07/01/conor-vs-udfs-in-joins/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

2014 – UDF decorrelation research @ IIT-B.

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

2014 – UDF decorrelation research @ IIT-B.

2015 – Froid project begins @ MSFT Jim Gray Lab.

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

2014 – UDF decorrelation research @ IIT-B.

2015 – Froid project begins @ MSFT Jim Gray Lab.

2018 – Froid added to SQL Server 2019.

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 – Microsoft adds TSQL Scalar UDFs.

2008 – People realize that UDFs are "evil".

2010 – Microsoft acknowledges that UDFs are evil.

2014 – UDF decorrelation research @ IIT-B.

2015 – Froid project begins @ MSFT Jim Gray Lab.

2018 – Froid added to SQL Server 2019.

13

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ieeexplore.ieee.org/document/6816679
https://www.microsoft.com/en-us/research/people/karam/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

CMU 15-721 (Spring 2019)

FROID

Automatically convert UDFs into relational
expressions that are inlined as sub-queries.
→ Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to
avoid having to change the cost-base optimizer.
→ Commercial DBMSs already have powerful

transformation rules for executing sub-queries efficiently.

14

FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE
VLDB 2017

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/16-udfs/p432-ramachandra.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/16-udfs/p432-ramachandra.pdf

CMU 15-721 (Spring 2019)

SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them
→ Decompose nested query and store result to temporary

table

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SUB-QUERIES REWRITE

16

SELECT name FROM sailors AS S
WHERE EXISTS (

SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2019-03-25'

)

SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2019-03-25'

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

L ATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to
return.
→ Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
reference and evaluates the inner sub-query for
each row.
→ The rows returned by the inner sub-query are added to

the result of the join with the outer query.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

FROID OVERVIEW

Step #1 – Transform Statements

Step #2 – Break UDF into Regions

Step #3 – Merge Expressions

Step #4 – Inline UDF Expression into Query

Step #5 – Run Through Query Optimizer

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SET @level = 'Platinum';

SELECT @v = SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';

Imperative Statements

SELECT 'Platinum' AS level;

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey

) AS v;

SELECT (
CASE WHEN total > 1000000
THEN 'Platinum'
ELSE NULL

END) AS level;

SQL Statements

STEP #1 TRANSFORM STATEMENTS

19

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

STEP #2 BREAK INTO REGIONS

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

STEP #2 BREAK INTO REGIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

2

STEP #2 BREAK INTO REGIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

2

STEP #2 BREAK INTO REGIONS

3

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

1

2

STEP #2 BREAK INTO REGIONS

3

4

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STEP #3 MERGE EXPRESSIONS

21

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STEP #3 MERGE EXPRESSIONS

21

SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STEP #3 MERGE EXPRESSIONS

21

SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STEP #4 INLINE EXPRESSION

22

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

Original Query

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STEP #4 INLINE EXPRESSION

22

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

Original Query SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;
) FROM customer;

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STEP #4 INLINE EXPRESSION

22

SELECT c_custkey,
cust_level(c_custkey)

FROM customer

Original Query SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;
) FROM customer;

4

1

2

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STEP #5 - OPTIMIZE

23

SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders
WHERE o_custkey=@ckey) AS total

) AS E_R1
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) AS E_R2
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
THEN 'Regular'
ELSE E_R2.level END) AS level

) AS E_R3;
) FROM customer;

SELECT c.c_custkey,
CASE WHEN e.total > 1000000

THEN 'Platinum'
ELSE 'Regular'

END
FROM customer c LEFT OUTER JOIN

(SELECT o_custkey,
SUM(o_totalprice) AS total

FROM order GROUP BY o_custkey
) AS e
ON c.c_custkey=e.o_custkey;

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
24

BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END SELECT getVal(5000);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
24

BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

Froid

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
24

BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

Dynamic Slicing

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

BEGIN
DECLARE @val char(10);
SET @val = 'high';
RETURN @val + ' value';

END

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS DT2

Froid

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
24

BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

Dynamic Slicing
Const Propagation &

Folding

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

BEGIN
DECLARE @val char(10);
SET @val = 'high';
RETURN @val + ' value';

END

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS DT2

BEGIN
DECLARE @val char(10);
SET @val = 'high';
RETURN 'high value';

END

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
AS DT1

Froid

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
24

BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';

ELSE
SET @val = 'low';

RETURN @val + ' value';
END

Dynamic Slicing
Const Propagation &

Folding
Dead Code Elimination

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000

THEN 'high'
ELSE 'low' END AS val)

AS DT1
OUTER APPLY
(SELECT DT1.val + ' value'

AS returnVal) DT2

BEGIN
DECLARE @val char(10);
SET @val = 'high';
RETURN @val + ' value';

END

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DT1
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

AS DT2

BEGIN
DECLARE @val char(10);
SET @val = 'high';
RETURN 'high value';

END

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
AS DT1

Froid

BEGIN
RETURN 'high value';
END

SELECT 'high value';

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SUPPORTED OPERATIONS (2019)

T-SQL Syntax:
→ DECLARE, SET (variable declaration, assignment)
→ SELECT (SQL query, assignment)
→ IF / ELSE / ELSE IF (arbitrary nesting)
→ RETURN (multiple occurrences)
→ EXISTS, NOT EXISTS, ISNULL, IN, … (Other relational

algebra operations)

UDF invocation (nested/recursive with
configurable depth)

All SQL datatypes.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

APPLICABILIT Y / COVERAGE

26

of Scalar
UDFs

Froid
Compatible

Workload 1 178 150

Workload 2 90 82

Workload 3 22 21

84%

95%

91%

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UDF IMPROVEMENT STUDY

27

0.1

10

1000
Table: 100k Tuples

0.1

10

1000

Im
pr

ov
em

en
t F

ac
to

r

Workload 2

Workload 1

Source: Karthik Ramachandra

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

Another optimization approach is to compile the
UDF into machine code.
→ This does not solve the optimizer's cost model problem.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
29

ANDY’S

LIFE LESSONS
FOR WORKING
ON CODE

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DISCL AIMER

I have worked on a few large projects in my
lifetime (2.5 DBMSs, 1 distributed system).

I have also read a large amount of “enterprise” code
for legal stuff over multiple years.

But I’m not claiming to be all knowledgeable in
modern software engineering practices.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Most software development is never from scratch.
You will be expected to be able to work with a
large amount of code that you did not write.

Being able to independently work on a large code
base is the #1 skill that companies tell me they are
looking for in students they hire.

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PASSIVE READING

Reading the code for the sake of reading code is
(usually) a waste of time.
→ It’s hard to internalize functionality if you don’t have

direction.

It’s important to start working with the code right
away to understand how it works.

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TEST CASES

Adding or improving tests allows you to improve
the reliability of the code base without the risk of
breaking production code.
→ It forces you to understand code in a way that is not

possible when just reading it.

Nobody will complain (hopefully) about adding
new tests to the system.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

REFACTORING

Find the general location of code that you want to
work on and start cleaning it up.
→ Add/edit comments
→ Clean up messy code
→ Break out repeated logic into separate functions.

Tread lightly though because you are changing
code that you are not familiar with yet.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TOOLCHAINS & PROCESSES

Beyond working on the code, there will also be an
established protocol for software development.

More established projects will have either training
or comprehensive documentation.
→ If the documentation isn’t available, then you can take the

initiative and try to write it.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PROJECT #3 SCHEDULE

Status Meeting: Next Week

Status Update Presentation: Monday April 8th

First Code Review: Monday April 8th

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NEXT CL ASS

Hash Tables!

Hash Functions!

Hash Joins!

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

