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TODAY'S AGENDA

Background
UDF In-lining
Working on Large Software Projects
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OBSERVATION

Until now, we have assumed that all of the logic
for an application is located in the application
itself.

The application has a "conversation" with the

DBMS to store/retrieve data.
— Protocols: JDBC, ODBC
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CONVERSATIONAL DATABASE API

Application

BEGIN
SOL
Program Logic
SOL
Program Logic

COMMIT

I

—
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Planner
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Query Execution
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CONVERSATIONAL DATABASE API

Application o gﬂ;if;r
Optimizer
BEGIN : Query Execution
* Program Logic

SOL
Program Logic

COMMIT
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CONVERSATIONAL DATABASE API

Application a g;l;;f:;r
Optimizer
BEGIN - Query Execution
Program Logic
SOL

—
* Program Logic

COMMIT
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CONVERSATIONAL DATABASE API

Application o g;l;;f:;r
Optimizer
BEGIN : Query Execution
Program Logic

Program Logic

: —
*COMMIT
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EMBEDDED DATABASE LOGIC

Move application logic into the DBMS to avoid
multiple network round-trips.

Potential Benefits
— Efficiency
— Reuse
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EMBEDDED DATABASE LOGIC
Application

BEGIN
SOL
Program Logic
SOL
Program Logic

COMMIT
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EMBEDDED DATABASE LOGIC

Application Q PROC(x)
BEGIN

CALL PROC(X=99) % -:g:;gr‘am Logic
— soL

Program Logic

COMMIT
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USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in

operations.

— It takes in input arguments (scalars)
— Perform some computation

— Return a result (scalars, tables)
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UDF EXAMPLE

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

DECLARE @total float;

DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum';
ELSE

SET @level = 'Regular’;

RETURN Qlevel;
END

Get all the customer ids and
compute their customer service
level based on the amount of
money they have spent.

SELECT c_custkey,
cust_level(c_custkey)
FROM customer
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UDF ADVANTAGES

They encourage modularity and code reuse
— Different queries can reuse the same application logic
without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to
express and read as UDFs.
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UDF DISADVANTAGES (1)

Query optimizers treat UDFs as black boxes.
— Unable to estimate cost if you don't know what a UDF is
going to do when you run it.

[t is difficult to parallelize UDFs due to correlated

queries inside of them.
— Some DBMSs will only execute queries with a single
thread if they contain a UDF.
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UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force

the DBMS to execute iteratively.

— RBAR = "Row By Agonizing Row"

— Things get even worse if UDF invokes queries due to
implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.
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UDF PERFORMANCE
Microsoft SQL Server

SELECT

FROM
WHERE
AND
AND

ORDER

1_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT'

THEN 1 ELSE © END

) AS low_line_count
orders, lineitem
o_orderkey = 1_orderkey
1_shipmode IN ('MAIL', 'SHIP')
1_commitdate < 1_receiptdate
1_shipdate < 1_commitdate

i >=_ -01-01"

BY 1_shipmode
BY 1_shipmode

TPC-H Q12 using a UDF (SF=1).
— Original Query: 0.8 sec
— Query + UDF: 13 hr 30 min

_—»] CREATE FUNCTION cust_name(@ckey int)

RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @Qckey;
RETURN @n;
END

Source: Karthik Ramachandra
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.
2008 — People realize that UDFs are "evil".

Source: Karthik Ramachandra
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TSQL Scalar functions are evil. DF HISTORY

I've been working with a number of clients recently who all have suffered at the hands of TSQL Scalar functions. Scalar functions were introduced .
in 5QL 2000 as a means to wrap logic so we benefit from code reuse and simplify our queries. who would be daft enough not to think this was a
good idea. | for one jumped on this initially thinking it was a great thing to do.

However as you might have gathered from the Hitle scalar functions aren't the nice friend you may think they are.

If you are running queries across large tables then this may explain why you are getting poor performance. ) F S .
In this post we will look at a simple padding function, we will be creating large volumes to emphasize the issue with scalar udfs. 11
create function padiLeft(@val varchar(100), @len int, @char char (1)) VII .
returns varchar(100)
as
hegin

return right( replicate(@char, @len) + @val, @len)
end
go
Interpreted

Scalar functions are interpreted code that means EVERY call to the function results in your code being interpreted. That means overhead for
processing your function is proportional to the number of rows.

Running this code you will see that the native system calls take considerable less time than the UDF calls. On my machine it takes 2614 ms for the
system calls and 38758ms for the UDF. Thats a 19x increase.

set statistics time on

go

select max(right(replicate('a‘,loe) + o.name + c.name, 100))
from msdb.sys.columns o

cross join msdb.sys.columns €

select max(dbo.padLeft(o.name * c.name, 100,'@'))
from msdb.sys.columns 0

Source: cross join msdb.sys.columns ¢
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.
2008 — People realize that UDFs are "evil".
2010 — Microsoft acknowledges that UDFs are evil.

Source: Karthik Ramachandra

& @ CARNEGIE MELLON
=2 DATABASE GROUP

13


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/

CMU 15-721 (Spring 2019)

MICROSOFT]

2001 - Micrg
2008 — Peop
2010 — Micr

Source: Karthik Ramachandra

ARNEGIE MELLON
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Get the latest information, insights, announcements, and news from
experts and developers in the MSDN blogs.

Oops! That Page can’t he found.
This page hag been disableq.

13


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.microsoft.com/en-us/research/people/karam/
https://blogs.msdn.microsoft.com/conor_cunningham_msft/2010/07/01/conor-vs-udfs-in-joins/

CMU 15-721 (Spring 2019)

MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 — Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

Source: Karthik Ramachandra
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 — Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

2015 - Froid project begins @ MSFT Jim Gray Lab.

Source: Karthik Ramachandra
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MICROSOFT SQL SERVER UDF HISTORY

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 — Microsoft acknowledges that UDFs are evil.
2014 — UDF decorrelation research @ II'T-B.

2015 - Froid project begins @ MSFT Jim Gray Lab.
2018 — Froid added to SQL Server 2019.

Source: Karthik Ramachandra
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Source: Karthi
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Scalar UDF Inlining

02/27/2019 » 10 minutes to read « Contributors 5]

APPLIES TO: @ sQL Server @ Azure SQL Database * Azure SQL Data Warehouse X
Parallel Data Warehouse

This article introduces Scalar UDF inlining, a feature under the intelligent query processing
suite of features. This feature improves the performance of queries that invoke scalar UDFs
in SQL Server (starting with SQL Server 2019 preview) and SQL Database.

T-SQL Scalar User-Defined Functions

User-Defined Functions that are implemented in Transact-5QL and return a single data
value are referred to as T-SQL Scalar User-Defined Functions. T-SQL UDFs are an elegant

way to achieve code reuse and modularity across SQL queries. Some computations (such as

complex business rules) are easier to express in imperative UDF form. UDFs help in building

up complex logic without requiring expertise in writing complex SQL queries.

Performance of Scalar UDFs

Scalar UDEs tvpicallv end up performina noorly due to the followinag reasons

Al Microsoft ~ 0

2 Dark assface

In this article

T-SQL Scalar User-
Defined Functions

performance of
Scalar UDFs

Automatic Inlining
of Scalar UDFs

Inlineable Scalar
UDFs requirements

Enabling scalar
UDF inlining
Disabling Scalar
UDF inlining
without changing
the compatibility
level

Important Notes

See Also
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VLDB 2017
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FROID

Automatically convert UDFs into relational

expressions that are inlined as sub-queries.
— Does not require the app developer to change UDF code.

Perform conversion during the rewrite phase to

avoid having to change the cost-base optimizer.
— Commercial DBMSs already have powerful

transformation rules for executing sub-queries efficiently.

== |FROID: OPTIMIZATION OF IMPERATIVE PROGRAMS
IN A RELATIONAL DATABASE
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SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them

— Decompose nested query and store result to temporary
table

15
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SUB-QUERIES — REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE|S.sid = R.sid
AND R.day = '2019-03-25"

SELECT name

FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2019-03-25"
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LATERAL JOIN

A lateral inner subquery can refer to fields in rows
of the table reference to determine which rows to

return.
— Allows you to have sub-queries in FROM clause.

The DBMS iterates through each row in the table
reference and evaluates the inner sub-query for

each row.

— The rows returned by the inner sub-query are added to
the result of the join with the outer query.
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FROID OVERVIEW

Step #1 — Transform Statements

Step #2 — Break UDF into Regions

Step #3 — Merge Expressions

Step #4 — Inline UDF Expression into Query
Step #5 — Run Through Query Optimizer
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STEP #1 — TRANSFORM STATEMENTS

Imperative Statements
SET @level = 'Platinum’; »

SELECT @v = SUM(o_totalprice) »
FROM orders

WHERE o_custkey=@Qckey;

IF (@total > 1000000) »
SET @level = 'Platinum';

Source: Karthik Ramachandra
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SQL Statements

SELECT 'Platinum' AS level;

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey
) AS v;

SELECT (
CASE WHEN total > 1000000
THEN 'Platinum'
ELSE NULL

END) AS level;

19
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STEP #2 — BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

DECLARE @total float;

DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum’;
ELSE

SET @level = 'Regular’;

RETURN @level;
END
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STEP #2 — BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

0 DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As Y]

FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)
SET @level = 'Platinum’;
ELSE

SET @level = 'Regular’;

RETURN @level;
END
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STEP #2 — BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

BEGIN

o DECLARE @total float;

DECLARE Q@level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

€)|1F (etotal > 1000000) -

SET @level = 'Platinum';
ELSE
SET @level = 'Regular';

RETURN @level;
END

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As Y]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level

) As G

& @ CARNEGIE MELLON
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STEP #2 — BREAK INTO REGIONS

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS
BEGIN

DECLARE @total float;
DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)

SET @level = 'Platinum';

ELSE

SET @level = 'Regular';

—
B

RETURN @level;

END

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As Y]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level

) As G
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(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlE
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STEP #2 — BREAK INTO REGIONS

RETURNS char(10) AS
BEGIN

CREATE FUNCTION cust_level(@ckey int)

DECLARE @total float;
DECLARE @level char(10);

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As Y]

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

IF (@total > 1000000)

SET @level = 'Platinum';

ELSE
SET @level = 'Regular';

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level

) As G

—
™

RETURN @level;
END
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(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlE
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STEP #3 — MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As Y]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) As G

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'’
ELSE E_R2.1level END) AS level

) As FlE
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STEP #3 — MERGE EXPRESSIONS

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As ]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

LR _R2

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular'’
ELSE E_R2.1evel END) AS level

) AS FHE

£ GROUP

»
»

SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As EiGHl
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level
) As FlG¥
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1evel END) AS level

) AS [HGE;
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STEP #3 — MERGE EXPRESSIONS

SELECT E_R3.1level |FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) A ) AS B
CROSS APPLY
(SELECT ( (SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.1level END) AS level

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.1level END) AS level

) As LY ) AS EE®
CROSS APPLY
(SELECT ( (SELECT (

CASE WHEN E_R1.total <= 1000000

THEN 'Regular’ THEN 'Regular'
ELSE E_R2.1evel END) AS level ELSE E_R2.1level END) AS level

§=_2 CARNEGIE ) AS ) AS ;

=2 DATABASE GROUP

CASE WHEN E_R1.total <= 1000000

¥ ¥ ¥,
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STEP #4 — INLINE EXPRESSION

Original Query

SELECT c_custkey,
cust_level(c_custkey)
FROM customer
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STEP #4 — INLINE EXPRESSION

SELECT c_custkey, (

Original Query SELECT E_R3.level FROM

(SELECT NULL AS level,
SELECT c_custkey, » (SELECT SUM(o_totalprice)

cust_level(c_custkey) FROM orders
WHERE o_custkey=@ckey) AS total
FROM customer ) AS
CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
THEN 'Platinum'
ELSE E_R1.level END) AS level

) As ¥

CROSS APPLY

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FlGE};

) FROM customer;
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STEP #4 — INLINE EXPRESSION

Original Query

SELECT c_custkey,
cust_level(c_custkey)
FROM customer

& @ CARNEGIE MELLON
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SELFCT c custkev (
SELECT E_R3.level] FROM

"o
2

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
AS

CROSS APPLY

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum'’

ELSE E_R1.level END) AS level

) AS

CROSS APPLY

)

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level

) As FGE:

FROM customer;
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STEP #5 - OPTIMIZE

‘0
L

o0
>%

{
u

SELECT c_custkey, (
SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.level END) AS level
) AS
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As ElGE};

) FROM customer;

SELECT c.c_custkey,

CASE WHEN e.total > 1000000
THEN 'Platinum'’
ELSE 'Regular’
END
FROM customer ¢ LEFT OUTER JOIN
(SELECT o_custkey,
SUM(o_totalprice) AS total
FROM order GROUP BY o_custkey
) AS e
ON c.c_custkey=e.o_custkey;

{BASE GROUT
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int) |e
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);
IF (@x > 1000)

SET @val = 'high';
ELSE

SET @val = 'low';
RETURN @val + ' value';

END SELECT getVal(5000);

& @ CARNEGIE MELLON
=2 DATABASE GROUP
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

Froid ‘

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
AS
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

& @ CARNEGIE MELLON
=2 DATABASE GROUP
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

»

BEGIN

DECLARE @val char(10);
SET @val = 'high';
RETURN @val + ' value';
END

Froid ‘

Dynamic Slicing

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
AS
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DNl
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

As BIE

& @ CARNEGIE MELLON
=2 DATABASE GROUP
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

»

BEGIN

DECLARE @val char(10);
SET @val = 'high';
RETURN @val + ' value';
END

»

BEGIN

DECLARE @val char(10);
SET @val = 'high';
RETURN 'high value';
END

Froid ‘

Dynamic Slicing

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
AS
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DNl
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

As BIE

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Const Propagation &
Folding

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
As (il

24
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BONUS OPTIMIZATIONS

CREATE FUNCTION getVal(@x int)
RETURNS char(10) AS
BEGIN
DECLARE @val char(10);
IF (@x > 1000)
SET @val = 'high';
ELSE
SET @val = 'low';
RETURN @val + ' value';
END

»

BEGIN
DECLARE @val char(10);
SET @val = 'high';

»

BEGIN
DECLARE @val char(10);
SET @val = 'high';

Froid ‘

RETURN @val + ' value'; RETURN 'high value';
END END
. ye . Const Propagation &
Dynamic Slicing pag

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN 'high'
ELSE 'low' END AS val)
AS
OUTER APPLY
(SELECT DT1.val + ' value'
AS returnval)

SELECT returnVal FROM
(SELECT 'high' AS val)
AS DNl
OUTER APPLY
(SELECT DT1.val +

' value'
AS returnVal)

As BIE

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Folding

SELECT returnVal FROM
(SELECT 'high value'

AS returnVal)
As (il

»

BEGIN
RETURN 'high value';
END

24

Dead Code Elimination

SELECT 'high value';
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SUPPORTED OPERATIONS (2019)

T-SQL Syntax:

— DECLARE, SET (variable declaration, assignment)
— SELECT (SQL query, assignment )

— IF / ELSE / ELSE IF (arbitrary nesting)

— RETURN (multiple occurrences)

— EXISTS, NOT EXISTS, ISNULL, IN, ... (Other relational
algebra operations)

UDF invocation (nested/recursive with

configurable depth)
All SQL datatypes.

& @ CARNEGIE MELLON
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APPLICABILITY / COVERAGE

# of Scalar Froid
UDFs Compatible

Workload1  [178 150 | 84%
Workloa 2 1%

Workload 95

26
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UDF IMPROVEMENT STUDY

Table: 100k Tuples

1000 7 Workload 1
% 10 "
2 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ]
§ 0.1
S 1000 Workload 2
S
=
S 10
é IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I||||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TTTT

0.1

Source: Karthik Ramachandra

C‘J CARNEGIE MELLON
=2 DATABASE GROUP
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PARTING THOUGHTS

This is huge. You rarely get 500x speed up without
either switching to a new DBMS or rewriting your
application.

Another optimization approach is to compile the

UDF into machine code.
— This does not solve the optimizer's cost model problem.

& @ CARNEGIE MELLON
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DISCLAIMER

[ have worked on a few large projects in my
lifetime (2.5 DBMSs, 1 distributed system).

[ have also read a large amount of “enterprise” code
for legal stuff over multiple years.

But I'm not claiming to be all knowledgeable in
modern software engineering practices.

& @ CARNEGIE MELLON
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OBSERVATION

Most software development is never from scratch.
You will be expected to be able to work with a
large amount of code that you did not write.

Being able to independently work on a large code
base is the #1 skill that companies tell me they are
looking for in students they hire.
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PASSIVE READING

Reading the code for the sake of reading code is

(usually) a waste of time.

— It’s hard to internalize functionality if you don’t have
direction.

[t's important to start working with the code right
away to understand how it works.
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TEST CASES

Adding or improving tests allows you to improve
the reliability of the code base without the risk of

breaking production code.

— [t forces you to understand code in a way that is not
possible when just reading it.

Nobody will complain (hopefully) about adding
new tests to the system.
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REFACTORING

Find the general location of code that you want to

work on and start cleaning it up.

— Add/edit comments

— Clean up messy code

— Break out repeated logic into separate functions.

Tread lightly though because you are changing
code that you are not familiar with yet.
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TOOLCHAINS & PROCESSES

Beyond working on the code, there will also be an
established protocol for software development.

More established projects will have either training

or comprehensive documentation.
— If the documentation isn’t available, then you can take the
initiative and try to write it.

& @ CARNEGIE MELLON
=2 DATABASE GROUP


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

PROJECT #3 SCHEDULE

Status Meeting: Next Week
Status Update Presentation: Monday April 8%

First Code Review: Monday April 8™
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& @ CARNEGIE MELLON
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NEXT CLASS

Hash Tables!
Hash Functions!
Hash Joins!

37
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