
Parallel Join Algorithms
(Hashing)

@Andy_Pavlo // 15-721 // Spring 2019

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

1
7

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Background

Parallel Hash Join

Hash Functions

Hashing Schemes

Evaluation

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARALLEL JOIN ALGORITHMS

Perform a join between two relations on multiple
threads simultaneously to speed up operation.

Two main approaches:
→ Hash Join
→ Sort-Merge Join

We won’t discuss nested-loop joins…

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

Many OLTP DBMSs don’t implement hash join.

But an index nested-loop join with a small
number of target tuples is more or less equivalent
to a hash join.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HASHING VS. SORTING

1970s – Sorting

1980s – Hashing

1990s – Equivalent

2000s – Hashing

2010s – Hashing (Partitioned vs. Non-Partitioned)

2020s – ???

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARALLEL JOIN ALGORITHMS

6

→ Hashing is faster than Sort-Merge.
→ Sort-Merge is faster w/ wider SIMD.

SORT VS. HASH REVISITED: FAST
JOIN IMPLEMENTATION ON
MODERN MULTI-CORE CPUS
VLDB 2009

→ Sort-Merge is already faster than
Hashing, even without SIMD.

MASSIVELY PARALLEL SORT-MERGE
JOINS IN MAIN MEMORY MULTI-
CORE DATABASE SYSTEMS
VLDB 2012

→ New optimizations and results for
Radix Hash Join.

MAIN-MEMORY HASH JOINS ON
MULTI-CORE CPUS: TUNING TO THE
UNDERLYING HARDWARE
ICDE 2013

→ Trade-offs between partitioning &
non-partitioning Hash-Join.

DESIGN AND EVALUATION OF MAIN
MEMORY HASH JOIN ALGORITHMS
FOR MULTI-CORE CPUS
SIGMOD 2011

→ Ignore what we said last year.
→ You really want to use Hashing!

MASSIVELY PARALLEL NUMA-AWARE
HASH JOINS
IMDM 2013

→ Hold up everyone! Let's look at
everything for real!

AN EXPERIMENTAL COMPARISON OF
THIRTEEN RELATIONAL EQUI-JOINS
IN MAIN MEMORY
SIGMOD 2016

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.vldb.org/pvldb/2/vldb09-257.pdf
http://www.vldb.org/pvldb/2/vldb09-257.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/18-sortmergejoins/p1064-albutiu.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/18-sortmergejoins/p1064-albutiu.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/17-hashjoins/balkesen-icde2013.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/17-hashjoins/balkesen-icde2013.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/17-hashjoins/p37-blanas.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/17-hashjoins/p37-blanas.pdf
http://imdm.ws/2013/papers/Lang.pdf
http://imdm.ws/2013/papers/Lang.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/17-hashjoins/schuh-sigmod2016.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/17-hashjoins/schuh-sigmod2016.pdf

CMU 15-721 (Spring 2019)

JOIN ALGORITHM DESIGN GOALS

Goal #1: Minimize Synchronization
→ Avoid taking latches during execution.

Goal #2: Minimize CPU Cache Misses
→ Ensure that data is always local to worker thread.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

IMPROVING CACHE BEHAVIOR

Factors that affect cache misses in a DBMS:
→ Cache + TLB capacity.
→ Locality (temporal and spatial).

Non-Random Access (Scan):
→ Clustering to a cache line.
→ Execute more operations per cache line.

Random Access (Lookups):
→ Partition data to fit in cache + TLB.

8

Source: Johannes Gehrke

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cs.cornell.edu/courses/cs632/2001sp/slides/Main-memory%20database%20systems.ppt

CMU 15-721 (Spring 2019)

PARALLEL HASH JOINS

Hash join is the most important operator in a
DBMS for OLAP workloads.

It’s important that we speed it up by taking
advantage of multiple cores.
→ We want to keep all of the cores busy, without becoming

memory bound

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HASH JOIN (R⨝S)

Phase #1: Partition (optional)
→ Divide the tuples of R and S into sets using a hash on the

join key.

Phase #2: Build
→ Scan relation R and create a hash table on join key.

Phase #3: Probe
→ For each tuple in S, look up its join key in hash table for

R. If a match is found, output combined tuple.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARTITION PHASE

Split the input relations into partitioned buffers by
hashing the tuples’ join key(s).
→ Ideally the cost of partitioning is less than the cost of

cache misses during build phase.
→ Sometimes called hybrid hash join.

Contents of buffers depends on storage model:
→ NSM: Either the entire tuple or a subset of attributes.
→ DSM: Only the columns needed for the join + offset.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARTITION PHASE

Approach #1: Non-Blocking Partitioning
→ Only scan the input relation once.
→ Produce output incrementally.

Approach #2: Blocking Partitioning (Radix)
→ Scan the input relation multiple times.
→ Only materialize results all at once.
→ Sometimes called radix hash join.

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NON-BLOCKING PARTITIONING

Scan the input relation only once and generate the
output on-the-fly.

Approach #1: Shared Partitions
→ Single global set of partitions that all threads update.
→ Have to use a latch to synchronize threads.

Approach #2: Private Partitions
→ Each thread has its own set of partitions.
→ Have to consolidate them after all threads finish.

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SHARED PARTITIONS

14

Data Table

A B C
hashP(key)

#p

#p

#p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

SHARED PARTITIONS

14

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

SHARED PARTITIONS

14

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

SHARED PARTITIONS

14

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

SHARED PARTITIONS

14

Data Table

A B C
hashP(key)

P1

⋮

P2

Pn

#p

#p

#p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

Combined

P1

⋮

P2

Pn

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

Combined

P1

⋮

P2

Pn

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Partitions

PRIVATE PARTITIONS

15

Data Table

A B C
hashP(key)

#p

#p

#p

Combined

P1

⋮

P2

Pn

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONING

Scan the input relation multiple times to generate
the partitions.

Multi-step pass over the relation:
→ Step #1: Scan R and compute a histogram of the # of

tuples per hash key for the radix at some offset.
→ Step #2: Use this histogram to determine output offsets

by computing the prefix sum.
→ Step #3: Scan R again and partition them according to the

hash key.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX

The radix is the value of an integer at a particular
position (using its base).

17

89 12 23 08 41 64Input

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX

The radix is the value of an integer at a particular
position (using its base).

17

89 12 23 08 41 64

9 2 3 8 1 4

Input

Radix

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX

The radix is the value of an integer at a particular
position (using its base).

17

89 12 23 08 41 64Input

Radix 8 1 2 0 4 6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

18

1 2 3 4 5 6Input

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

18

1 2 3 4 5 6

1

Input

Prefix Sum

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

18

+

1 2 3 4 5 6

1 3

Input

Prefix Sum

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREFIX SUM

The prefix sum of a sequence of numbers
(x0, x1, …, xn)

is a second sequence of numbers
(y0, y1, …, yn)

that is a running total of the input sequence.

18

+ + + + +

1 2 3 4 5 6

1 3 6 10 15 21

Input

Prefix Sum

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Step #1: Inspect input,
create histograms

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Step #1: Inspect input,
create histograms

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Step #1: Inspect input,
create histograms

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Step #1: Inspect input,
create histograms

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #2: Compute output
offsets

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

0 7

0 3

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 0, CPU 1

Partition 1

Partition 1, CPU 1

Step #3: Read input
and partition

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

, CPU 0

, CPU 0

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

Partition 0

Partition 1

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX PARTITIONS

19

Partition 0: 2
Partition 1: 2

Partition 0: 1
Partition 1: 3

0 7

0 7

0 3

1 8

1 9

1 1

1 5

1 0

Recursively repeat until target number of
partitions have been created

0 7

1 8

1 9

0 7

0 3

1 1

1 5

1 0

0

1

0

1

#p

#p

#p

#p

#p

#p

#p

#p

ha
sh

P
(k

ey
)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BUILD PHASE

The threads are then to scan either the tuples (or
partitions) of R.

For each tuple, hash the join key attribute for that
tuple and add it to the appropriate bucket in the
hash table.
→ The buckets should only be a few cache lines in size.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HASH TABLE

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs.

additional instructions to find/insert keys.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HASH FUNCTIONS

We don't want to use a cryptographic hash
function for our join algorithm.

We want something that is fast and will have a
low collision rate.
→ Best Speed: Always return '1'
→ Best Collision Rate: Perfect hashing

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

HASH FUNCTIONS

CRC-32 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed to a fast, general purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

CLHash (2016)
→ Fast hashing function based on carry-less multiplication.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
https://github.com/google/farmhash
https://github.com/lemire/clhash
https://en.wikipedia.org/wiki/Carry-less_product

CMU 15-721 (Spring 2019)

HASH FUNCTION BENCHMARK

24

0

6000

12000

18000

1 51 101 151 201 251

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Key Size (bytes)

crc32 std::hash MurmurHash3 CityHash FarmHash CLHash

Source: Fredrik Widlund

Intel Core i7-8700K @ 3.70GHz

32 64
128

192

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/fredrikwidlund/hash-function-benchmark

CMU 15-721 (Spring 2019)

HASH FUNCTION BENCHMARK

25

0

12000

24000

36000

1 51 101 151 201 251

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Key Size (bytes)

crc32 std::hash MurmurHash3 CityHash FarmHash CLHash

Source: Fredrik Widlund

Intel Core i7-8700K @ 3.70GHz

32 64

128
192

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/fredrikwidlund/hash-function-benchmark

CMU 15-721 (Spring 2019)

HASHING SCHEMES

Approach #1: Chained Hashing

Approach #2: Linear Probe Hashing

Approach #3: Robin Hood Hashing

Approach #4: Cuckoo Hashing

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CHAINED HASHING

Maintain a linked list of buckets for each slot in
the hash table.

Resolve collisions by placing all elements with the
same hash key into the same bucket.
→ To determine whether an element is present, hash to its

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CHAINED HASHING

28

Ø

hash(key)

⋮ ⋮

Buckets

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the
next free slot in the table.
→ To determine whether an element is present, hash to a

location in the index and scan for it.
→ Have to store the key in the index to know when to stop

scanning.
→ Insertions and deletions are generalizations of lookups.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LINEAR PROBE HASHING

30

A
B
C
D

hash(key)

| Ahash(A)

E
F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LINEAR PROBE HASHING

30

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

E
F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LINEAR PROBE HASHING

30

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

E
F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LINEAR PROBE HASHING

30

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E
F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LINEAR PROBE HASHING

30

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E

| Ehash(E)F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

LINEAR PROBE HASHING

30

A
B
C
D

hash(key)

| Ahash(A)

| Bhash(B)

| Chash(C)

| Dhash(D)E

| Ehash(E)F

| Fhash(F)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OBSERVATION

To reduce the # of wasteful comparisons during
the join, it is important to avoid collisions of
hashed keys.

This requires a chained hash table with ~2x the
number of slots as the # of elements in R.

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

Variant of linear hashing that steals slots from
"rich" keys and give them to "poor" keys.
→ Each key tracks the number of positions they are from

where its optimal position in the table.
→ On insert, a key takes the slot of another key if the first

key is farther away from its optimal position than the
second key.

32

ROBIN HOOD HASHING
FOUNDATIONS OF COMPUTER SCIENCE 1985

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://ieeexplore.ieee.org/document/4568152/
http://ieeexplore.ieee.org/document/4568152/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

E

of "Jumps" From First Position

F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

E
F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

E
F

A[0] == C[0]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E
F

A[0] == C[0]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E
F

C[1] > D[0]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E
F

C[1] > D[0]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E
F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

| D [1]hash(D)E

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

A[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F | D [2]hash(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

ROBIN HOOD HASHING

33

A
B
C
D

hash(key)

| A [0]hash(A)

| B [0]hash(B)

| C [1]hash(C)

E | E [2]hash(E)

F | D [2]hash(D)

| F [1]hash(F)

D[2] > F[0]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

Use multiple tables with different hash functions.
→ On insert, check every table and pick anyone that has a

free slot.
→ If no table has a free slot, evict the element from one of

them and then re-hash it find a new location.

Look-ups are always O(1) because only one
location per hash table is checked.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

hash1(X) | X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X
hash2(Y) | Y

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X
hash2(Y) | Y

Insert Z
hash1(Z) hash2(Z)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

hash1(X) | X

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

hash1(Y) | Y

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

35

Hash Table #1

⋮

Hash Table #2

⋮

Insert X
hash1(X) hash2(X)

Insert Y
hash1(Y) hash2(Y)

Insert Z
hash1(Z) hash2(Z)

hash2(Z) | Z

hash1(Y)

hash1(Y) | Y

hash2(X)

hash2(X) | X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CUCKOO HASHING

Threads have to make sure that they don’t get
stuck in an infinite loop when moving keys.

If we find a cycle, then we can rebuild the entire
hash tables with new hash functions.
→ With two hash functions, we (probably) won’t need to

rebuild the table until it is at about 50% full.
→ With three hash functions, we (probably) won’t need to

rebuild the table until it is at about 90% full.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PROBE PHASE

For each tuple in S, hash its join key and check to
see whether there is a match for each tuple in
corresponding bucket in the hash table constructed
for R.
→ If inputs were partitioned, then assign each thread a

unique partition.
→ Otherwise, synchronize their access to the cursor on S

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

38

A B

⨝

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

38

A B

⨝
Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

38

A B

⨝ Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

PROBE PHASE BLOOM FILTER

Create a Bloom Filter during the build phase when
the key is likely to not exist in the hash table.
→ Threads check the filter before probing the hash table.

This will be faster since the filter will fit in CPU caches.
→ Sometimes called sideways information passing.

38

A B

⨝ Bloom Filter

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2019)

HASH JOIN VARIANTS

39

No-P Shared-P Private-P Radix

Partitioning No Yes Yes Yes

Input scans 0 1 1 2

Sync during
partitioning

– Spinlock
per tuple

Barrier,
once at end

Barrier,
4 · #passes

Hash table Shared Private Private Private

Sync during
build phase

Yes No No No

Sync during
probe phase

No No No No

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

BENCHMARKS

Primary key – foreign key join
→ Outer Relation (Build): 16M tuples, 16 bytes each
→ Inner Relation (Probe): 256M tuples, 16 bytes each

Uniform and highly skewed (Zipf; s=1.25)

No output materialization

40

DESIGN AND EVALUATION OF MAIN MEMORY HASH JOIN
ALGORITHMS FOR MULTI-CORE CPUS
SIGMOD 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/19-hashjoins/p37-blanas.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/19-hashjoins/p37-blanas.pdf

CMU 15-721 (Spring 2019)

HASH JOIN UNIFORM DATA SET

41

0

40

80

120

160

No Partitioning Shared
Partitioning

Private
Partitioning

Radix

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
6 Cores with 2 Threads Per Core

60.2 67.6
76.8

47.3

24% faster than
No Partitioning

3.3x cache misses
70x TLB misses

Source: Spyros Blanas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

CMU 15-721 (Spring 2019)

HASH JOIN SKEWED DATA SET

42

0

40

80

120

160

No Partitioning Shared
Partitioning

Private
Partitioning

Radix

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
6 Cores with 2 Threads Per Core

25.2

167.1

56.5 50.7

Source: Spyros Blanas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

CMU 15-721 (Spring 2019)

OBSERVATION

We have ignored a lot of important parameters for
all of these algorithms so far.
→ Whether to use partitioning or not?
→ How many partitions to use?
→ How many passes to take in partitioning phase?

In a real DBMS, the optimizer will select what it
thinks are good values based on what it knows
about the data (and maybe hardware).

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

RADIX HASH JOIN UNIFORM DATA SET

44

0

40

80

120

64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72 64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72

Radix / 1-Pass Radix / 2-Pass

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

▼No Partitioning
+24% -5%

Source: Spyros Blanas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

CMU 15-721 (Spring 2019)

RADIX HASH JOIN UNIFORM DATA SET

45

0

40

80

120

64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72 64 25
6

51
2

10
24

40
96

81
92

32
76

8

13
10

72

Radix / 1-Pass Radix / 2-Pass

C
yc

le
s /

 O
u

tp
u

t T
u

pl
e

Partition Build Probe

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

▼No Partitioning

Source: Spyros Blanas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

CMU 15-721 (Spring 2019)

EFFECTS OF HYPER-THREADING

Multi-threading hides cache &
TLB miss latency.

Radix join has fewer cache & TLB
misses but this has marginal
benefit.

Non-partitioned join relies on
multi-threading for high
performance.

46

Intel Xeon CPU X5650 @ 2.66GHz
Uniform Data Set

1

3

5

7

9

11

1 3 5 7 9 11

Sp
ee

du
p

Threads

No Partitioning Radix Ideal

Source: Spyros Blanas

Hyper-Threading

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://web.cse.ohio-state.edu/~sblanas/

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

On modern CPUs, a simple hash join algorithm
that does not partition inputs is competitive.

There are additional vectorization execution
optimizations that are possible in hash joins that
we didn’t talk about. But these don’t really help…

47

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NEXT CL ASS

Parallel Sort-Merge Joins

48

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

