
Optimizer Implementation
(Part II)

@Andy_Pavlo // 15-721 // Spring 2019

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

2
3

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATABASE TALKS

Amazon Redshift
→ Ippokratis Pandis (PhD'07)
→ Today @ 4:30pm
→ DH 2315
→ https://db.cs.cmu.edu/events/spring-2019-ippokratis-

pandis-phd07-amazon/

SAP HANA
→ Anil Goel
→ Thursday May 2nd @ 12:00pm
→ CIC - 4th floor (ISTC Panther Hollow Room)
→ https://db.cs.cmu.edu/events/spring-2019-anil-goel-sap/

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/spring-2019-ippokratis-pandis-phd07-amazon/
https://db.cs.cmu.edu/events/spring-2019-anil-goel-sap/

CMU 15-721 (Spring 2019)

Cascades / Columbia

Plan Enumeration

Other Implementations

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

QUERY OPTIMIZATION STRATEGIES

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Randomized Search
→ Academics in the 1980s, current Postgres

Choice #4: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #5: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to
write the declarative rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators

from physical rules and physical operators.

Implementation can be independent of the
optimizer's search strategy.

Examples: Starburst, Exodus, Volcano, Cascades,
OPT++

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STRATIFIED SEARCH

First rewrite the logical query plan using
transformation rules.
→ The engine checks whether the transformation is allowed

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the
logical plan to a physical plan.

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UNIFIED SEARCH

Unify the notion of both logical→logical and
logical→physical transformations.
→ No need for separate stages because everything is

transformations.

This approach generates a lot more
transformations so it makes heavy use of
memoization to reduce redundant work.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TOP-DOWN VS. BOT TOM -UP

Top-down Optimization
→ Start with the final outcome that you want, and then

work down the tree to find the optimal plan that gets you
to that goal.

→ Example: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to

the final outcome that you want.
→ Examples: System R, Starburst

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES OPTIMIZER

Object-oriented implementation of the Volcano
query optimizer.

Simplistic expression re-writing can be through a
direct mapping function rather than an exhaustive
search.

9

THE CASCADES FRAMEWORK FOR
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/graefe-ieee1995.pdf

CMU 15-721 (Spring 2019)

CASCADES OPTIMIZER

Optimization tasks as data structures.

Rules to place property enforcers.

Ordering of moves by promise.

Predicates as logical/physical operators.

10

EFFICIENCY IN THE COLUMBIA DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/xu-columbia-thesis1998.pdf

CMU 15-721 (Spring 2019)

CASCADES EXPRESSIONS

A expression is an operator with zero or more
input expressions.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CSeq

11

SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON C.id = A.id;

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

12

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

12

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

G
ro

u
p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

12

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

Equivalent
Expressions

G
ro

u
p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MULTI-EXPRESSION

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly
represents redundant expressions in a group as a
multi-expression.
→ This reduces the number of transformations, storage

overhead, and repeated cost estimations.

13

Output:
[ABC]

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
⋮

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES RULES

A rule is a transformation of an expression to a
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression

that can be applied to the rule.
→ Substitute: Defines the structure of the result after

applying the rule.

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3
[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

Stores all previously explored alternatives in a
compact graph structure / hash table.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides memoization, duplicate detection, and
property + cost management.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PRINCIPLE OF OPTIMALIT Y

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing

sub-plan P1 that has a greater cost than equivalent plan
P2 with the same physical properties.

17

EXPLOITING UPPER AND LOWER BOUNDS IN
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/shapiro-ideas2001.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/shapiro-ideas2001.pdf

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

[A]⨝SM[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

IdxScan(C)

[A]⨝SM[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

IdxScan(C)

[A]⨝SM[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

IdxScan(C)

[A]⨝SM[B]

Output:
[BC]

Logical M-Exps
1. [B]⨝[C]
2. [C]⨝[B]

Physical M-Exps

Output:
[AC]

Logical M-Exps
1. [A]⨝[C]
2. [C]⨝[A]

Physical M-Exps

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower

cost than some threshold.

Approach #3: Transformation Exhaustion
→ Stop when there are no more ways to transform the

target plan. Usually done per group.

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Pivotal Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CMU Peloton (2010s)

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://github.com/cmu-db/peloton/tree/master/src/optimizer

CMU 15-721 (Spring 2019)

OBSERVATION

All of the queries we have looked at so far have
had the following properties:
→ Equi/Inner Joins
→ Simple join predicates that reference only two tables.
→ No cross products

Real-world queries are much more complex:
→ Outer Joins
→ Semi-joins
→ Anti-joins

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

REORDERING LIMITATIONS

No valid reordering is possible.

22

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id);

R1

⟕

B.val=C.id⟗

R0 R2

A.id=B.id

Source: Pit Fender

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ub-madoc.bib.uni-mannheim.de/36655/

CMU 15-721 (Spring 2019)

REORDERING LIMITATIONS

No valid reordering is possible.

The A⟕B operator is not
commutative with B⟗C.
→ The DBMS does not know the value

of B.val until after computing the
join with A.

22

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id);

R1

⟕

B.val=C.id⟗

R0 R2

A.id=B.id

Source: Pit Fender

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ub-madoc.bib.uni-mannheim.de/36655/

CMU 15-721 (Spring 2019)

PL AN ENUMERATION

How to generate different join orderings to feed
into the optimizer's search model.
→ Need to be efficient to not slowdown the search.

Approach #1: Generate-and-Test

Approach #2: Graph Partitioning

23

ON THE CORRECT AND COMPLETE ENUMERATION
OF THE CORE SEARCH SPACE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314

CMU 15-721 (Spring 2019)

GERMANS

24

SIGMOD 2008 VLDB 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p539-moerkotte.pdf
http://www.vldb.org/pvldb/vol6/p1822-fender.pdf

CMU 15-721 (Spring 2019)

DYNAMIC PROGRAMMING OPTIMIZER

Model the query as a hypergraph and then
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is

allowed to visit and expand.

25

DYNAMIC PROGRAMMING STRIKES BACK
SIGMOD 2008

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p539-moerkotte.pdf

CMU 15-721 (Spring 2019)

PREDICATE EXPRESSIONS

Predicates are defined as part of each operator.
→ These are typically represented as an AST.
→ Postgres implements them as flatten lists.

The same logical operator can be represented in
multiple physical operators using variations of the
same expression.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREDICATE PUSHDOWN

Approach #1: Logical Transformation
→ Like any other transformation rule in Cascades.
→ Can use cost-model to determine benefit.

Approach #2: Rewrite Phase
→ Perform pushdown before starting search using an initial

rewrite phase. Tricky to support complex predicates.

Approach #3: Late Binding
→ Perform pushdown after generating optimal plan in

Cascades. Will likely produce a bad plan.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREDICATE MIGRATION

Observation: Not all predicates cost the same to
evaluate on tuples.

The optimizer should consider selectivity and
computation cost when determining the
evaluation order of predicates.

28

SELECT * FROM foo
WHERE foo.id = 1234
AND SHA_512(foo.val) = '...'

PREDICATE MIGRATION: OPTIMIZING QUERIES
WITH EXPENSIVE PREDICATES
SIGMOD 1993

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=170078
https://dl.acm.org/citation.cfm?id=170078

CMU 15-721 (Spring 2019)

PIVOTAL ORCA

Standalone Cascades implementation.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS can use Orca by implementing API to
send catalog + stats + logical plans and then
retrieve physical plans.

Supports multi-threaded search.

29

ORCA: A MODULAR QUERY OPTIMIZER
ARCHITECTURE FOR BIG DATA
SIGMOD 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/p337-soliman.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/p337-soliman.pdf

CMU 15-721 (Spring 2019)

ORCA ENGINEERING

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the

exact same state later on for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate

cost of two plans matches their actual execution cost.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

APACHE CALCITE

Standalone extensible query optimization
framework for data processing systems.
→ Support for pluggable query languages, cost models, and

rules.
→ Does not distinguish between logical and physical

operators. Physical properties are provided as
annotations.

Originally part of LucidDB.

31

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbdb.io/db/luciddb
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p221-begoli.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p221-begoli.pdf

CMU 15-721 (Spring 2019)

MEMSQL OPTIMIZER

Rewriter
→ Logical-to-logical transformations with access to the

cost-model.

Enumerator
→ Logical-to-physical transformations.
→ Mostly join ordering.

Planner
→ Convert physical plans back to SQL.
→ Contains MemSQL-specific commands for moving data.

32

THE MEMSQL QUERY OPTIMIZER
VLDB 2017

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/chen-vldb2016.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/chen-vldb2016.pdf

CMU 15-721 (Spring 2019)

MEMSQL OPTIMIZER OVERVIEW

33

Parser
Abstract

Syntax
Tree

Logical
Plan

Physical
Plan

Cost
Estimates

SQL Query

Binder

Rewriter

Enumerator

Planner

Physical
Plan

SQL

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

This is the part of a DBMS that I least understand.

Let me know if you are interested in exploring this
topic more.

All of this relies on a good cost model.
A good cost model needs good statistics.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PARTING THOUGHTS

This is the part of a DBMS that I least understand.

Let me know if you are interested in exploring this
topic more.

All of this relies on a good cost model.
A good cost model needs good statistics.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

NEXT CL ASS

Cost Models

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

