

https://twitter.com/andy_pavlo
https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2019)

DATABASE TALKS

Amazon Redshift

— Ippokratis Pandis (PhD'07)

— Today @ 4:30pm

— DH 2315

— https://db.cs.cmu.edu/events/spring-2019-ippokratis-
pandis-phd07-amazon/

SAP HANA
— Anil Goel MANA
)

amazon
REDSHIFT

— Thursday May 2™ @ 12:00pm
— CIC - 4th floor (ISTC Panther Hollow Room
— https://db.cs.cmu.edu/events/spring-2019-anil-goel-sap/

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/spring-2019-ippokratis-pandis-phd07-amazon/
https://db.cs.cmu.edu/events/spring-2019-anil-goel-sap/

CMU 15-721 (Spring 2019)

TODAY'S AGENDA

Cascades / Columbia
Plan Enumeration

Other Implementations

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

QUERY OPTIMIZATION STRATEGIES

Choice #1: Heuristics
— INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
— System R, early IBM DB2, most open-source DBMSs

Choice #3: Randomized Search
— Academics in the 1980s, current Postgres

Choice #4: Stratified Search
— IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #5: Unified Search
— Volcano/Cascades in 1990s, now MSSQL + Greenplum

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to

write the declarative rules for optimizing queries.

— Separate the search strategy from the data model.

— Separate the transformation rules and logical operators
from physical rules and physical operators.

Implementation can be independent of the

optimizer's search strategy.

Examples: Starburst, Exodus, Volcano, Cascades,
OPT++

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

STRATIFIED SEARCH

First rewrite the logical query plan using

transformation rules.

— The engine checks whether the transformation is allowed
before it can be applied.

— Cost is never considered in this step.

Then perform a cost-based search to map the
logical plan to a physical plan.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

UNIFIED SEARCH

Unify the notion of both logical-logical and

logical>physical transformations.
— No need for separate stages because everything is
transformations.

This approach generates a lot more
transformations so it makes heavy use of
memoization to reduce redundant work.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

TOP-DOWN VS. BOTTOM-UP

Top-down Optimization

— Start with the final outcome that you want, and then
work down the tree to find the optimal plan that gets you
to that goal.

— Example: Volcano, Cascades

Bottom-up Optimization

— Start with nothing and then build up the plan to get to
the final outcome that you want.

— Examples: System R, Starburst

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES OPTIMIZER

Object-oriented implementation of the Volcano
query optimizer.

Simplistic expression re-writing can be through a
direct mapping function rather than an exhaustive
search. Graefe

— | THE CASCADES FRAMEWORK FOR
UERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/graefe-ieee1995.pdf

CMU 15-721 (Spring 2019)

CASCADES OPTIMIZER

Optimization tasks as data structures.
Rules to place property enforcers.
Ordering of moves by promise.
Predicates as logical/physical operators.

EFFICIENCY IN THE COLUMBIA DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

& @ CARNEGIE MELLON
=2 DATABASE GROUP

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/xu-columbia-thesis1998.pdf

CMU 15-721 (Spring 2019)

CASCADES — EXPRESSIONS

A expression is an operator with zero or more
Input expressions.

SELECT * FROM A
JOIN B ON A.id
JOIN C ON C.id

A.id;

Logical Expression: (A P4 B) P C

Physical Expression: (Ag., Py Bseq) Py Cseq

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES - GROUPS

A group is a set of logically equivalent logical and

physical expressions that produce the same output.

— All logical forms of an expression.

— All physical expressions that can be derived from
selecting the allowable physical operators for the
corresponding logical forms.

Logical Exps Physical Exps
1. (AB)IC 1. (AseqPInBseq) Py Cseq
Output: |2. (Bic)nA 2. (BseqP< Cseq) Pt Aseq
[ABC] 3. (ANC)NB 3. (ASeqNNLCSeq)NNLBSeq
4. A (BIXC) 4 . AgeqP<In (CsegPy Bseq)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES - GROUPS

A group is a set of logically equivalent logical and

physical expressions that produce the same output.

— All logical forms of an expression.

— All physical expressions that can be derived from
selecting the allowable physical operators for the
corresponding logical forms.

Logical Exps Physical Exps
[1. (AMIB)IC 1. (AseqPBseq) > Cseq
§ Output: |2. (Bxac)A 2. (BseqP< Cseq) Pt Aseq
& [ABC] 3. (ANC)NB 3. (ASeqNNLCSeq)NNLBSeq
@) 4. A<I(BI<C) 4 . Age Py (sy Bseq)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES - GROUPS

A group is a set of logically equivalent logical and

physical expressions that produce the same output.

— All logical forms of an expression.

— All physical expressions that can be derived from
selecting the allowable physical operators for the
corresponding logical forms.

S Logical Exps Physical Exps
1. (ANB)NC 1. (ASeqNNLBSeq)MNLCSeq o
§ Output: |2. (Bic)<A 2. (BseqP. Cseq) P Aceq Equivalent
~ [ABC] |3- (AC)<B 3. (AseqPCseq)>Bseq | [Expressions
w 4. -AM(BNC) 4‘-ASqu<NL(CSeqNNLBSeq)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES — MULTI-EXPRESSION

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly
represents redundant expressions in a group as a

multi-expression.
— This reduces the number of transformations, storage
overhead, and repeated cost estimations.

Logical Multi-Exps |Physical Multi-Exps

1. [AB][C] 1. [AB]P<g,[C]

Output: 2. [BcIx([A] 2. [AB]D<,;[C]

[ABC] |3. [ACI[B] 3. [AB]bdy [C]
4 4

. [AI[BC] . [BCIp<tgy[A]

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES - RULES

A rule is a transformation of an expression to a

logically equivalent expression.
— Transformation Rule: Logical to Logical
— Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:

— Pattern: Defines the structure of the logical expression
that can be applied to the rule.

— Substitute: Defines the structure of the result after
applying the rule.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES - RULES

Pattern

EQJIOIN

EQJOIN GROUP 3

GROUP 1 GROUP 2

B Grow
(] Logical Expr
B Physical Expr

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES - RULES

Pattern
EQJOIN
EQJOIN GROUP 3 /[AB]MC\
A<B GET(C)
GROUP 1 GROUP 2 / \
GET(A) GET(B)
Matching Plan

B Grouwp
(] Logical Expr
B Physical Expr

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Pattern

EQJOIN

EQJOIN

GROUP 3

GROUP 1 GROUP 2

B Grow
(] Logical Expr
B Physical Expr

& @ CARNEGIE MELLON
=2 DATABASE GROUP

CASCADES - RULES

Transformation Rule

Rotate Left-to-Right

[AB]<C

N

GET(C)

N

GET(A)

GET(B)

Matching Plan

15

AI[BC]

N

GET(A)

Bp<1C

’

N

GET(B)

GET(C)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Pattern

EQJIOIN

EQJOIN

GROUP 3

GROUP 1 GROUP 2

B Grow
(] Logical Expr
B Physical Expr

& @ CARNEGIE MELLON
=2 DATABASE GROUP

CASCADES - RULES

Transformation Rule

Rotate Left-to-Right

[AB]<C

N

AP<B

GET(C)

N

GET(A)

GET(B)

Matching Plan

Y

Implementation Rule
EQJOIN-SORTMERGE

AI[BC]

N

15

GET(A)

GET(A)

Bp<1C

’

N

GET(B)

GET(C)

GET(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)
16

CASCADES — MEMO TABLE

Stores all previously explored alternatives in a
compact graph structure / hash table.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides memoization, duplicate detection, and
property + cost management.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PRINCIPLE OF OPTIMALITY

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search

space to a smaller set of expressions.

— The optimizer never has to consider a plan containing
sub-plan P1 that has a greater cost than equivalent plan
P2 with the same physical properties.

= |EXPLOITING UPPER AND LOWER BOUNDS IN
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

& @ CARNEGIE MELLON
=2 DATABASE GROUP

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/shapiro-ideas2001.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/shapiro-ideas2001.pdf

CMU 15-721 (Spring 2019)

[ABC]

[AB]

[A]

[B]

CASCADES — MEMO TABLE

Output:
[ABC]

Logical M-Exps

Physical M-Exps

[C]

Output:
[AB]

Logical M-Exps

Physical M-Exps

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps

[A]

Logical M-Exps
Output: Lo

Physical M-Exps

Output: Lo

[B]

Logical M-Exps
GET(B)

Physical M-Exps

& @ CARNEGIE MELLON
=2 DATABASE GROUP

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

[ABC]

[AB]

[A]

[B]

CASCADES — MEMO TABLE

—

Output:
[ABC]

Logical M-Exps

1][AB]IXI[C]

__—

Physical M-Exps

[C]

Output:
[AB]

Logical M-Exps
1. [A]X[B]

Physical M-Exps

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps

[A]

Logical M-Exps
Output: Lo

Physical M-Exps

Output: Lo

[B]

Logical M-Exps
GET(B)

Physical M-Exps

& @ CARNEGIE MELLON
=2 DATABASE GROUP

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

[ABC]

[AB]

[A]

[B]

CASCADES — MEMO TABLE

—

Output:
[ABC]

Logical M-Exps

1][AB]IXI[C]

__—

Physical M-Exps

[C]

Output:
[AB]

Logical M-Exps

1][»‘\]IXI[B]

Physical M-Exps

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps

[A]

Logical M-Exps
Output: Lo

Physical M-Exps

Output: Lo

[B]

Logical M-Exps
GET(B)

Physical M-Exps

& @ CARNEGIE MELLON
=2 DATABASE GROUP

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

[ABC]

[AB]

[A]

[B]

CASCADES — MEMO TABLE

—

Output:
[ABC]

Logical M-Exps

1][N%]IXI[C]

__—

Physical M-Exps

[C]

Output:
[AB]

Logical M-Exps

1}[»‘\]IXI[B]

Physical M-Exps

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps

[A]

Logical M-Exps
Output: Lo

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output: Lo

[B]

Logical M-Exps
GET(B)

Physical M-Exps

& @ CARNEGIE MELLON
=2 DATABASE GROUP

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

[ABC]

[AB]

[A] |SeqgScan(A)

[B]

CASCADES — MEMO TABLE

—

Output:
[ABC]

Logical M-Exps

1][N%]IXI[C]

__—

Physical M-Exps

[C]

[AB]

Logical M-Exps

Output: y[A]N[B]

Physical M-Exps

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps

Cost: 10

[A]

Logical M-Exps
Output: Lo

Physical M-Exps Logical M-Exps
|1. SeqgScan(A) Output: 1. GET(B)
2. IdxScan(A) [B]

Physical M-Exps

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES — MEMO TABLE

Logical M-Exps

Physical M-Exps

Logical M-Exps

Physical M-Exps

. |1. @[AB]XI[C]
Output: -
[AB] B
[A] |SeqgScan(A) /
[B]
3 Logical M-Exps |Physical M-Exps
[output: [+ [AIN[B] output: |1+ GET(C)
[AB] [C]
Cost: 10
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
Output: 1. GET(A) |1. SeqgScan(A) Output: 1. GET(B) 1. SeqScan(B)
[A] 2. IdxScan(A) [B] 2. IdxScan(B)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES — MEMO TABLE

Logical M-Exps

Physical M-Exps

& @ CARNEGIE MELLON
=2 DATABASE GROUP

. |1. @[AB]XI[C]
Output: -

[AB] |

[A] |SeqgScan(A) /

[B] |SeqgScan(B)

c Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
[C] output: [+ [AIN[B] output: |1+ GET(C)

[AB] [C]
Cost: 10 Cost: 20
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps

Output: 1. GET(A) |1. SeqgScan(A) Output: 1. GET(B) |1. SeqScan(B)

[A] 2. IdxScan(A) [B] 2. IdxScan(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

Logical M-Exps

Physical M-Exps

CASCADES — MEMO TABLE

. |1. @[AB]XI[C]
Output: -
[AB] B
[A] |SeqgScan(A) /
[B] |SeqgScan(B)
c Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
[€] Output: ; E:}EBH Output: 1. GET(C)
[AB] /’ \ [c]
N
‘/ Cost: 10 \ Cost: 20
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
Output: 1. GET(A) |1. SeqgScan(A) Output: 1. GET(B) |1. SeqScan(B)
[A] 2. IdxScan(A) [B] 2. IdxScan(B)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

[ABC]

[AB]

CASCADES — MEMO TABLE

Output:
[ABC]

__—

Logical M-Exps

1][N%]IXI[C]

Physical M-Exps

[A] |SeqgScan(A)

[B] |SeqgScan(B)

—

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
[C] output: [+ [AII[B] [AIp<y, [B] output: |1+ GET(C)
[AB] |2 [BIM[A] [A]>[B] [C]
[BIpqy [A]
Cost: 10 Cost: 20
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps

Output: 1. GET(A) |1. SeqgScan(A) Output: 1. GET(B) |1. SeqScan(B)

[A] 2. IdxScan(A) [B] 2. IdxScan(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES — MEMO TABLE

Logical M-Exps

Physical M-Exps

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Output: |1- PLABIXIC]
[ABC] [AEC] /
[AB] | [A]l<su[B] "
[A] |SegScan(A) /
(5] |seqscan(s) Cost: 50+(10+20)
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
Lc] output: |1+ [AIXI[B] 1. [A]>d, [B] Output: |1+ GET(C)
[AB] |2+ [BINIA] 2. [A],[B [C]
3. [B]pqy.[A]
Cost: 10 Cost: 20
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps

Output: |1+ GET(A) [2. SegScan(a) Output: |1+ GET(B) [1. “segscan(B)

[A] ’ 2. IdxScan(A) [B] ’ 2. IdxScan(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES — MEMO TABLE

Logical M-Exps |Physical M-Exps
output: |1 [AB][C]
[ABC] [ABC] /
[AB] | [A]p<gyu[B] | \
[A] |SeqgScan(A)
(8] [Seascan(p) At-'50+(10+20) \ Cost: 5
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
[C] |IdxScan(C) ot 1. [A]M[B] 1. [A]x[B] Output: 1. GET(C) 1. SegScan(C)
[AB] |2+ [BINIA] 2. [A],[B [C] [2. IdxScan(C)
3. [B]pqy.[A]
Cost: 10 Cost: 20
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
Output: 1. GET(A) |1. SeqgScan(A) I Output: 1. GET(B) |1. SeqScan(B)
[A] ’ 2. IdxScan(A) [B] ’ 2. IdxScan(B)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES — MEMO TABLE

Logical M-Exps |Physical M-Exps
output: | 1 [AB][C] 1. [AB]M,C
[ABC] [ABC] 2. [BC]X[A] 2. [BCIX,A
3. [AC]X[B] 3. [ACIM,B
[AB] | [A]p<gu[B] 4. [B]M[AC] :
[A] |SeqgScan(A)
51 |seascon(e) Cost: 50+(10+20) Cost: 5
TdxS c Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
[c] xScan(C) ot [A1<[B] 1. [A]q[B] Output: [1- GET(C) 1. SegScan(C)
[AB] [BI[A] |§. [Q]E [f\] [C] [2. Tdxscan(c)
° NL
Cost: 10 Cost: 20
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
Output: 1. |; izq:can(A) I Output: 1. GET(B) |1. S:chan(B) |
[A] 5 xScan(A) [B] 2. IdxScan(B)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

CASCADES — MEMO TABLE

Logical M-Exps |Physical M-Exps
Output: 1. [AB]NI[C] 1. [AB]M,C
[ABC] [ABC] 2. [BC]X[A] 2. [BCIX,A
3. [AC]X[B] 3. [ACIM,B
[AB] | [A]><u[B] 4. [BIP<[AC] :
[A] |SeqgScan(A)
8] |seascan(s) Cost: 50+(10+20) Cost: 5
Logical M-Exps |Physical M-Exps Logical M-Exps |Physical M-Exps
[C] |IdxScan(C) ot 1. [A]M[B] 1. [A]x[B] Output: 1. GET(C) I1. SegScan(C)
S——Logiaalal S B 2. IdxScan(C
[AB Logical M-Exps |Physical M-Exps [c] (0)
output: |1- [BIMIC]
[BC Logical M-Exps |Physical M-Exps
Cost: 10 output: |1+ [AIXIC]
Logical M-Exps |Physical [Ac] |? [CIPa[A] 1 M-Exps
Output: 1. GET(A) |1. SeéSca Scan(B
[A] ’ 2. IdxScarrgmy [B] z+—zanScan(B)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

SEARCH TERMINATION

Approach #1: Wall-clock Time

— Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold

— Stop when the optimizer finds a plan that has a lower
cost than some threshold.

Approach #3: Transformation Exhaustion

— Stop when there are no more ways to transform the
target plan. Usually done per group.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

CASCADES IMPLEMENTATIONS

Standalone:

— Wisconsin OPT++ (1990s)

— Portland State Columbia (1990s)
— Pivotal Orca (2010s)

— Apache Calcite (2010s)

Integrated:

— Microsoft SQL Server (1990s)
— Tandem NonStop SQL (1990s)
— Clustrix (2000s)

— CMU Peloton (2010s)

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://github.com/cmu-db/peloton/tree/master/src/optimizer

CMU 15-721 (Spring 2019)

OBSERVATION

All of the queries we have looked at so far have

had the following properties:

— Equi/Inner Joins

— Simple join predicates that reference only two tables.
— No cross products

Real-world queries are much more complex:
— Outer Joins

— Semi-joins

— Anti-joins

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

REORDERING LIMITATIONS

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id
FULL OUTER JOIN C
ON B.val = C.id);

PL s var-c.id
yd
P id=8.id
7N
RO R1 R2

Source: Pit Fender

& @ CARNEGIE MELLON
=2 DATABASE GROUP

No valid reordering is possible.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ub-madoc.bib.uni-mannheim.de/36655/

CMU 15-721 (Spring 2019)

REORDERING LIMITATIONS

SELECT * FROM A

LEET OUTER JOIN B No valid reordering is possible.
ON A.id = B.id

FULL OUTER JOIN € The AT<B operator is not
U Bowal = Cotel): commutative with B><CC.

. — The DBMS does not know the value
DL va1-c.id « of B.val until after computing the
e join with A.

P id=8.id

7N

RO R1 R2

Source: Pit Fender

& @ CARNEGIE MELLON
=2 DATABASE GROUP

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ub-madoc.bib.uni-mannheim.de/36655/

CMU 15-721 (Spring 2019)

PLAN ENUMERATION

How to generate different join orderings to feed

into the optimizer's search model.
— Need to be efficient to not slowdown the search.

Approach #1: Generate-and-Test
Approach #2: Graph Partitioning

“= |ON THE CORRECT AND COMPLETE ENUMERATION
OF THE CORE SEARCH SPACE
SIGMOD 2013

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

GERMANS

Dynamic Programming Strikes Back

Guido Moerkatte
iversity of Mannheirm

Mannheim, Germany
moerkotte @informatik.uni-mannheim.de

ABSTRACT

T bighly oficint alrithns e ke fo optimlly -

dering viditg exors products: DPecp, which is
e o dymamkc programarin. thd Top-Dewn Parition
care e limie

o
aaiter i
Takng the ost offciecs know jimordering slecrithan
Bpcep, o saring b
yE. enpable to handle comple peedicates
s .mu "Wt by g U pory 110 o 8 (0
of a) hypen ol
tbgaphs. Theey me prescat & b g Lo explit Ui ca-
pability ta effcimily
i deslt with s0-far, Our ex
! o e complx praicates
e optimiaition time by crders of mgnitide,
ks denog with compl o
O his ghves. dymanie
i mmcization

Categories and Subject Descriptors
1.2 (Systoms: Quory procesing
General Terms

Algorithuns, Thesry

1. INTRODUCTION

o petorace of

Pemission s muke digital or hard copies of all o past <f dhis vk (o0

o o e, e evor e

s b
SONGD o e 1 0 Ve B
Cemptgh 208 N 7 0% SRRl

leumann

Thomas N
Maionck isite hrlnln-mams

rbricken, Ger
neumann@mpunl mpg.de

dynamic progrs
wrder for & given o
propemed to genesate

nming algeithe

i
algorithim DPsize, whis

expl

i ey (1,
plas i e

sl the cptinal join
e preciscly,
wxder of ulrnml:g siae.

ce of bushy trocs

(o Fig. 1) T deithn sl v th coee o site.
of the-ast commoreial query optisiaes ke the g of DI
12|

due 1o the tests &

b DPeep,
Experimests shomed
The care of their algorithm geserat
Atowrup Lashi

The o
ciantion, which generatcs pla
. ppeonchn needed tests s
DPatze. Thus, with the uly

o, Clallenged by tis o

mm.u.u for dyuamic programming

rled by * in Fig, 1), which fall far
1 thin they succeed. Furthormoro, wo peapused

e sonested subgraphs

s fabicn. Al
s 20 these show fox

m 2
g optima by Jin trocs, which o i comtaln, oo

. Deltaan aod Tompa

exatil .”.-\..h‘.‘y-.”....,.u..uu.,.,.q e of

memciantion

v 00k rea

 plan goneator (1, 19,

anding g

This
s il by (1] e
w proposed by R et . (1%

[7]. With uu.ul..w.um alld Top Do

e ».mlmu« e 11,
L o oy sl

 asrting th
& thore which peoeite

Patitio
e dynamie program.

e ebncies i b of
scverl places, bypergeaghs st be handied
1, plun

el

d by Bhargna et al o

practical appronch
They abeo inchuse the

SIGMOD 2008

Counter Strike: Generic Top-Down Join Enumeration for
Hypergraphs

Pit Fender Guido Moerkotte
University of Mannheim University of Mannheim
Mannheim, Germary Mannheim, Germany
2 o - 5 A .
ABSTRACT
: exscution e o join operions & cuc w-.xr~&7l§]
e e ot Howeer. o st (DRCCr TOMINCUTLAZY, T
Iad o oy o e T e e MINCUTRAANCIL TOMINCUTCONSERVATVE) are ok ready

numeration. But caly the top-down approoch alows for beanch
s bound pruning. which can imgrove compie time by severs
orders of magnitude while stll preserving opeimality. Foe both op-
imuzstion sirategics. effcient enumeration algorehims have been
published. Howevee. there are two scvere limitations for the wp

down spprosch: The pblished al gorthens can handle only (1) sim
e (Nney) i prectes s) nne o Since ral que

e o a5 well s oLt ot joms, eflicient wp-
e i cnt usd n pracice yet. We devlop

e e e ot sdgorithm is
compeitive whan comperad (0the state of the a1

playing out its aivaag
branch-and bound prusing capabitics.

1. INTRODUCTION
For 3 DBMS that provides support for 4 declirutive query b
guage like SQL the query optimezer is 3 cracial picce of software.
The declmalive nsture of 2 query allows it 1o be tamslaed o
many equivalient evaluston plies, Essential for the execution cosls
of 3t s e ander o ok pertoms, e the st ofplis
4 el cons i vy by s anders o magnde
coacned hevecemsitsof sl sk ot
whhow rols x-umm- (1)
o prisciple, there are two approaches 10 fiad i optmal join
onder: ot up jom cuumeration via dynamic programming uid
- dorwn joins cxumeration through memaizatics. Both
face the same challenge- % eficiently fnd for a piven set of rela-

subgraphis and there exists s alge comnecting the two subgrapé,
‘Currend. the folkowang dlgorithims have been proposed: DPC

P, m i dynac programning b sl (13, TD
MINCUTLAZY (3, 1s well as TDMINCUTBRANCH asd TOMx.

Pennission 30 mike dgial or hard copies o all or fun of his wodk
pernal or caseoom use i grarted withous fec provdod Sal copues are
ol o i o e o cmmertal adr g d o
hear iy et an e cthorwi

bl 1 i s s e o e ior e

thea el m».n...__un.-mm\mu.mn.«
gt Wi 013 Ko Trern, Tl

D8 ot it Vo 4
(VDB Enlomns Y DS 11. $ 1000

et b il n el o b e e s
Vere debcencis in bl of them. Fis as his boen st i sev
s orrvmple e bt b ey g e]
Secand, plan generatoes have to deal with ouner joins and ati-
joins (7). peneral. these operatorsare e reely recederable
e g sl g ke e e
i bl canbe conely ebed oy

y. Moerktie and Neunans

e
ey

enumeration algoeitim, & cuinol benefit from beanch-and-bousd
prusing. O the other hand. branch-and-bound prosieg can sigif

optimaliy.
I this puper. wo present & novel goeric framework that
used by any existing puritoning algocithe or 1op-down
meration to efficienly handle hypergraphis. The central idea is to
senanly convert Bypergraphs o sizple graphs and introduce efiec
ive means 1o svoid ineliciencies. Thes way. any esisting port-
ioning algorilun for simple. graphs can be usad, W show that
TOMCBHYP, reslting from instesiating owe ramewark with the
UTHRANCH
g paionmg ot fo pergraps e dticint
DPHYP even without pruning. Wilh pessing. TOMCBHYY out-
petoms DPHAP by s acorel 11 115
a5 follows. Sec. (Jrecal
s m.:.m....«w‘.‘.a-mnmmm
o haivg yperedgn: S Elpesens o enc
Sec Bcontaing the experimental cvaluation, wd S
the

2. PRELIMINARIES
Before we give the formal defnithons necessary for our algo.
. Jt us demonstzate by means of a very simple example why
ypergrapihs apan from the case where joun predicates spon moee
1wo relations) are necesary when reordering mare than pan
oins. Consider the query
select *from (R ket owe join R1 o0 R0LA = RLB)
full owier join K2 on R1.C = RLD
In 3 frs sip. it i translated into an iestal operator ree:
(ReMu, awn, 0RO, cuny oRs

For this query. no valid recedering is possible. To peevee reorder-
g, conict .m © be dand nd epcnid, A he con of
every conflct presentation is 2 set of relations. called TES. associ

S withcach operaor.inthe kot cpernor e (YLD, To

1822

VLDB 2013

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p539-moerkotte.pdf
http://www.vldb.org/pvldb/vol6/p1822-fender.pdf

CMU 15-721 (Spring 2019)

DYNAMIC PROGRAMMING OPTIMIZER

SIGMOD 2008

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Model the query as a hypergraph and then
incrementally expand to enumerate new plans.

Algorithm Overview:

— [terate connected sub-graphs and incrementally add new
edges to other nodes to complete query plan.

— Use rules to determine which nodes the traversal is
allowed to visit and expand.

DYNAMIC PROGRAMMING STRIKES BACK

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p539-moerkotte.pdf

CMU 15-721 (Spring 2019) 26

PREDICATE EXPRESSIONS

Predicates are defined as part of each operator.
— These are typically represented as an AST.
— Postgres implements them as flatten lists.

The same logical operator can be represented in
multiple physical operators using variations of the
same expression.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREDICATE PUSHDOWN

Approach #1: Logical Transformation

— Like any other transformation rule in Cascades.
— Can use cost-model to determine benefit.

Approach #2: Rewrite Phase

— Perform pushdown before starting search using an initial
rewrite phase. Tricky to support complex predicates.

Approach #3: Late Binding

— Perform pushdown after generating optimal plan in
Cascades. Will likely produce a bad plan.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

PREDICATE MIGRATION

Observation: Not all predicates cost the same to
evaluate on tuples.

SELECT * FROM foo
WHERE foo.id = 1234
AND SHA 512(foo.val) = '...'

The optimizer should consider selectivity and
computation cost when determining the
evaluation order of predicates.

~— |PREDICATE MIGRATION: OPTIMIZING QUERIES
WITH EXPENSIVE PREDICATES
SIGMOD 1993

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=170078
https://dl.acm.org/citation.cfm?id=170078

CMU 15-721 (Spring 2019)

PIVOTAL ORCA

Standalone Cascades implementation.

— Originally written for Greenplum.
— Extended to support HAWQ.

A DBMS can use Orca by implementing API to
send catalog + stats + logical plans and then
retrieve physical plans.

Supports multi-threaded search.

== |ORCA: A MODULAR QUERY OPTIMIZER
ARCHITECTURE FOR BIG DATA
SIGMOD 2014

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/p337-soliman.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/p337-soliman.pdf

CMU 15-721 (Spring 2019)

ORCA — ENGINEERING

Issue #1: Remote Debugging

— Automatically dump the state of the optimizer (with
inputs) whenever an error occurs.

— The dump is enough to put the optimizer back in the
exact same state later on for further debugging.

Issue #2: Optimizer Accuracy

— Automatically check whether the ordering of the estimate
cost of two plans matches their actual execution cost.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

APACHE CALCITE

Standalone extensible query optimization

framework for data processing systems.

— Support for pluggable query languages, cost models, and
rules.

— Does not distinguish between logical and physical
operators. Physical properties are provided as
annotations.

Originally part of LucidDB.

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED
S g&%%l;g%CESSING OVER HETEROGENEOUS DATA SOURCES

& @ CARNEGIE MELLON
=2 DATABASE GROUP

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbdb.io/db/luciddb
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p221-begoli.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p221-begoli.pdf

CMU 15-721 (Spring 2019)

MEMSQL OPTIMIZER

Rewriter

— Logical-to-logical transformations with access to the
cost-model.

Enumerator

— Logical-to-physical transformations.
— Mostly join ordering.

Planner

— Convert physical plans back to SQL.
— Contains MemSQL-specific commands for moving data.

THE MEMSQL QUERY OPTIMIZER
VLDB 2017

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/chen-vldb2016.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/chen-vldb2016.pdf

CMU 15-721 (Spring 2019)

MEMSQL OPTIMIZER OVERVIEW

Logical Cost

Estimates |“_I
—
Physical

Plan

Abstract Physical
Syntax Plan
Tree

Binder —

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

PARTING THOUGHTS

This is the part of a DBMS that I least understand.

Let me know if you are interested in exploring this
topic more.

All of this relies on a good cost model.
A good cost model needs good statistics.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

PARTING THOUGHTS

This is the part of a DBMS that I least understand.

Let me know if you are interested in exploring this
topic more.

All of this relies on a good cost model.
A good cost model needs good statistics.

& @ CARNEGIE MELLON
=2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2019)

& @ CARNEGIE MELLON
=2 DATABASE GROUP

Cost Models

NEXT CLASS

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

