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CMU 15-721 (Spring 2019)

DATABASE TALKS

Amazon Redshift
→ Ippokratis Pandis (PhD'07)
→ Today @ 4:30pm
→ DH 2315
→ https://db.cs.cmu.edu/events/spring-2019-ippokratis-

pandis-phd07-amazon/

SAP HANA
→ Anil Goel
→ Thursday May 2nd @ 12:00pm
→ CIC - 4th floor (ISTC Panther Hollow Room)
→ https://db.cs.cmu.edu/events/spring-2019-anil-goel-sap/

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/spring-2019-ippokratis-pandis-phd07-amazon/
https://db.cs.cmu.edu/events/spring-2019-anil-goel-sap/
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Cascades / Columbia

Plan Enumeration

Other Implementations
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QUERY OPTIMIZATION STRATEGIES

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Randomized Search
→ Academics in the 1980s, current Postgres

Choice #4: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #5: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum
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OPTIMIZER GENERATORS

Framework to allow a DBMS implementer to 
write the declarative rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators 

from physical rules and physical operators.

Implementation can be independent of the 
optimizer's search strategy.

Examples: Starburst, Exodus, Volcano, Cascades, 
OPT++
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STRATIFIED SEARCH

First rewrite the logical query plan using 
transformation rules.
→ The engine checks whether the transformation is allowed 

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the 
logical plan to a physical plan.
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UNIFIED SEARCH

Unify the notion of both logical→logical and 
logical→physical transformations.
→ No need for separate stages because everything is 

transformations.

This approach generates a lot more 
transformations so it makes heavy use of 
memoization to reduce redundant work.
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TOP-DOWN VS.  BOT TOM -UP

Top-down Optimization
→ Start with the final outcome that you want, and then 

work down the tree to find the optimal plan that gets you 
to that goal.

→ Example: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to 

the final outcome that you want.
→ Examples: System R, Starburst
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CASCADES OPTIMIZER

Object-oriented implementation of the Volcano 
query optimizer.

Simplistic expression re-writing can be through a 
direct mapping function rather than an exhaustive 
search.
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THE CASCADES FRAMEWORK FOR 
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe
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CASCADES OPTIMIZER

Optimization tasks as data structures.

Rules to place property enforcers.

Ordering of moves by promise.

Predicates as logical/physical operators.

10

EFFICIENCY IN THE COLUMBIA DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/xu-columbia-thesis1998.pdf


CMU 15-721 (Spring 2019)

CASCADES EXPRESSIONS

A expression is an operator with zero or more 
input expressions.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CSeq
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SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON C.id = A.id;
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CASCADES GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from 

selecting the allowable physical operators for the 
corresponding logical forms.
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Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮
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CASCADES GROUPS

A group is a set of logically equivalent logical and 
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from 

selecting the allowable physical operators for the 
corresponding logical forms.

12

Output:
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CASCADES MULTI-EXPRESSION

Instead of explicitly instantiating all possible 
expressions in a group, the optimizer implicitly 
represents redundant expressions in a group as a 
multi-expression.
→ This reduces the number of transformations, storage 

overhead, and repeated cost estimations.
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Output:
[ABC]

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
⋮

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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CASCADES RULES

A rule is a transformation of an expression to a 
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression 

that can be applied to the rule.
→ Substitute: Defines the structure of the result after 

applying the rule.

14
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Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3
[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
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Pattern

CASCADES RULES

15

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2019)

CASCADES MEMO TABLE

Stores all previously explored alternatives in a 
compact graph structure / hash table.

Equivalent operator trees and their corresponding 
plans are stored together in groups.

Provides memoization, duplicate detection, and 
property + cost management.
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PRINCIPLE OF OPTIMALIT Y

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search 
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing 

sub-plan P1 that has a greater cost than equivalent plan 
P2 with the same physical properties.
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EXPLOITING UPPER AND LOWER BOUNDS IN 
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/22-optimizer1/shapiro-ideas2001.pdf
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CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

http://db.cs.cmu.edu/
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[B]
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CASCADES MEMO TABLE
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[ABC]

[AB]
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CASCADES MEMO TABLE
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Output:
[ABC]
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3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
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⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]
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1. [A]⨝NL[B]
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Output:
[C]
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Physical M-Exps
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2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

[A]⨝SM[B]
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CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

IdxScan(C)

[A]⨝SM[B]
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CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

IdxScan(C)

[A]⨝SM[B]
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CASCADES MEMO TABLE

18

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Best Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A)

SeqScan(B)

IdxScan(C)

[A]⨝SM[B]

Output:
[BC]

Logical M-Exps
1. [B]⨝[C]
2. [C]⨝[B]

Physical M-Exps

Output:
[AC]

Logical M-Exps
1. [A]⨝[C]
2. [C]⨝[A]

Physical M-Exps
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SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower 

cost than some threshold.

Approach #3: Transformation Exhaustion
→ Stop when there are no more ways to transform the 

target plan. Usually done per group.

19
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CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Pivotal Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CMU Peloton (2010s)

20
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OBSERVATION

All of the queries we have looked at so far have 
had the following properties:
→ Equi/Inner Joins
→ Simple join predicates that reference only two tables.
→ No cross products

Real-world queries are much more complex:
→ Outer Joins
→ Semi-joins
→ Anti-joins

21
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REORDERING LIMITATIONS

No valid reordering is possible.

22

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id);

R1

⟕

B.val=C.id⟗

R0 R2

A.id=B.id

Source: Pit Fender
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REORDERING LIMITATIONS

No valid reordering is possible.

The A⟕B operator is not 
commutative with B⟗C. 
→ The DBMS does not know the value 

of B.val until after computing the 
join with A.

22

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id);

R1

⟕

B.val=C.id⟗

R0 R2

A.id=B.id

Source: Pit Fender
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PL AN ENUMERATION

How to generate different join orderings to feed 
into the optimizer's search model.
→ Need to be efficient to not slowdown the search.

Approach #1: Generate-and-Test

Approach #2: Graph Partitioning

23

ON THE CORRECT AND COMPLETE ENUMERATION 
OF THE CORE SEARCH SPACE
SIGMOD 2013
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GERMANS

24

SIGMOD 2008 VLDB 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/23-optimizer2/p539-moerkotte.pdf
http://www.vldb.org/pvldb/vol6/p1822-fender.pdf


CMU 15-721 (Spring 2019)

DYNAMIC PROGRAMMING OPTIMIZER

Model the query as a hypergraph and then 
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new 

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is 

allowed to visit and expand.

25

DYNAMIC PROGRAMMING STRIKES BACK
SIGMOD 2008
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PREDICATE EXPRESSIONS

Predicates are defined as part of each operator.
→ These are typically represented as an AST.
→ Postgres implements them as flatten lists.

The same logical operator can be represented in 
multiple physical operators using variations of the 
same expression.

26
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PREDICATE PUSHDOWN

Approach #1: Logical Transformation
→ Like any other transformation rule in Cascades.
→ Can use cost-model to determine benefit.

Approach #2: Rewrite Phase
→ Perform pushdown before starting search using an initial 

rewrite phase. Tricky to support complex predicates.

Approach #3: Late Binding
→ Perform pushdown after generating optimal plan in 

Cascades. Will likely produce a bad plan.

27
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PREDICATE MIGRATION

Observation: Not all predicates cost the same to 
evaluate on tuples.

The optimizer should consider selectivity and 
computation cost when determining the 
evaluation order of predicates.

28

SELECT * FROM foo
WHERE foo.id = 1234
AND SHA_512(foo.val) = '...'

PREDICATE MIGRATION: OPTIMIZING QUERIES 
WITH EXPENSIVE PREDICATES
SIGMOD 1993
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PIVOTAL ORCA

Standalone Cascades implementation.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS can use Orca by implementing API to 
send catalog + stats + logical plans and then 
retrieve physical plans.

Supports multi-threaded search.

29

ORCA: A MODULAR QUERY OPTIMIZER 
ARCHITECTURE FOR BIG DATA
SIGMOD 2014
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ORCA ENGINEERING 

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with 

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the 

exact same state later on for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate 

cost of two plans matches their actual execution cost.

30
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APACHE CALCITE

Standalone extensible query optimization 
framework for data processing systems.
→ Support for pluggable query languages, cost models, and 

rules.
→ Does not distinguish between logical and physical 

operators. Physical properties are provided as 
annotations.

Originally part of LucidDB.

31

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED 
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018
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MEMSQL OPTIMIZER

Rewriter
→ Logical-to-logical transformations with access to the 

cost-model.

Enumerator
→ Logical-to-physical transformations.
→ Mostly join ordering.

Planner
→ Convert physical plans back to SQL.
→ Contains MemSQL-specific commands for moving data.

32

THE MEMSQL QUERY OPTIMIZER
VLDB 2017
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MEMSQL OPTIMIZER OVERVIEW

33

Parser
Abstract

Syntax
Tree

Logical 
Plan

Physical 
Plan

Cost
Estimates

SQL Query

Binder

Rewriter

Enumerator

Planner

Physical 
Plan

SQL
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PARTING THOUGHTS

This is the part of a DBMS that I least understand.

Let me know if you are interested in exploring this 
topic more.

All of this relies on a good cost model.
A good cost model needs good statistics.

34
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PARTING THOUGHTS

This is the part of a DBMS that I least understand.

Let me know if you are interested in exploring this 
topic more.

All of this relies on a good cost model.
A good cost model needs good statistics.
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NEXT CL ASS

Cost Models

35
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