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About SAP

®

SAP is the world leader in enterprise applications in terms

of software and software-related service revenue. Based on
market capitalization, we are the world’s third largest
independent software manufacturer.

437,000+ 98,500+ €24.74bn

Customers in more than Employees in 144+ Total Revenue (non-
180 countries countries (03-31-2019) IFRS) in FY2018

47 yrs. 100+ 19,200+

Of history and Innovation and SAP partner
innovation development centers companies globally
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Global Database Development Team
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=
SAP Labs Waterloo

Established Database R&D site going back 35+ years
~220 people

Majority SAP Database Research and Development

Work on HANA, Cloud-native databases, distributed databases, Edge Computing
Co-op & Grad Student intern programs

Strong academic collaborations

We are hlrlngl http://www.careersatsap.com/

http://jobs.sap.com

Full-time positions
https://www.saphana.com

Student jobs - master/bachelor theses, graduate internships
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Traditional Enterprise Data Management Architectures

Transactional System for Online Transaction Processing (OLTP)
Short-running, trivial statements; frequent updates; high amount of concurrent users

Data Warehouse for Online Analytical Processing (OLAP)
Long-running, complex statements; (almost) read-only; few users

Nightly Data Extraction, Transfer, and Loading Between Systems (ETL)
Transformation from OLTP-friendly to OLAP-friendly format; indexing; pre-aggregation

OLTP OLAP

Extract, Transform, Load

Transaction Processing Data Warehouse
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Challenges of Traditional Architectures

High Costs / TCO

« Two (different?) database management systems
* Two times the license costs

« Two times the hardware

* Two times the administration

No Data Freshness for Reporting
« Data is updated only nightly
« Reporting during the day always sees stale data

ETL Processes are a Pain
« Complex to design and maintain

* Need to complete in daily maintenance window (e.g. <8 hours)
« Data preparation necessary for reporting

« Slow reaction to changing business demands (no ad-hoc reporting)
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Transaction Processing

Data Warehouse
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From Vision To Reality: Objectives for HANA

Good Enough for OLTP
« Unrealistic to beat a specialized, pure OLTP engine
« But: Be able to sustain a typical enterprise workload
 Example: 40.000 SQL statements / second

Excel in Analytics
Flexible reporting without pre-computation / aggregates
Leverage modern hardware (multicore + large DRAM capacity)
Marketing: ,Subsecond everything”
Vision: ,window of opportunity”

Support both OLTP and OLAP in ONE database
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Key Design and Implementation Aspects of SAP HANA



SAP HANA Database
Multi-Engine for Multimodal Enterprise Applications

Connection and Session Management

Authori- Calculation Engine

zation
Optimizer and Plan Generator

Manager
Execution Engine ,
Transaction

Manager

In-Memory Processing Engines

Metadata

Manager Relational Engine Graph Engine Text Engine

Persistency Layer
Logging and Recovery

Storage Management
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NewDB
Database Server

Execution
Layer

O

NewDB
Database Server

O
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In-Memory Stores

NewDB
Database Server

Execution
Layer
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O

Execution
Layer

In-Memory Stores

Persistence Layer
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In-Memory Stores

Persistence Layer

oL

Persistence Layer

N
Distributed Share-Nothing In-Memory Computing
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Observation: Enterprise Workloads are Read Dominated

Workload in Enterprise Applications consists of:
— Mainly read queries (OLTP 83%, OLAP 94%)
— Many queries access large sets of data

Workload

0
100% Write:
90 %
I Delete
80 % [ Modification
70 % Bl [nsert
0
60 OA’ Read:
50 % 8 Range Select
40 % [ Table Scan
30 % B Lookup
20 %
10 %
0 %

OLTP  OLAP
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Workload
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SAP HANA Column Store Main: Fast Queries

Read-Optimized, Immutable Data Store

Indexvector
Dictionary Compression
« All data in columnar tables is dictionary compressed Dictionary 0 0
» Dictionary is prefix-compressed 1 0
« Dictionary is sorted in same order as data values
0 Adam 2 0
Efficient secondary data compression (run-length, cluster, prefix, etc.) 1 Adriana 3 1
— Heuristic algorithm orders data to maximize compression of columns 2 Alexa 4 0)
3 Amber S 0
Compression schemes work well, e.g., 6 2
— Speeding up operations on columns to factor 10 v 3

— Reduces Storage up to factor 5 for typical SAP data schemes
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SAP HANA Column Store Delta: Write Optimized Update Support

Write-Enabled Table Fragments Handle all Updates B-Tree
* Only update operation on main is to delete rows
« UPDATEs modelled as DELETE+INSERT
 INSERT append to delta store

Dictionary not Sorted

* No need to recode column vectors upon delete/insert

Additional B-Tree for Efficient Lookup

« Allows to quickly retrieve valuelD for value 0 Keith
« Essential for fast unique checks upon insert L1 Adriana
« Can be used for range queries v
_ J9e 2 Roland
Less compression of data
3 Bert

Delta is merged with main periodically, or when thresholds exceeded
@ Delta merge for a table partition is done on-line, in background Dictionary
o Enables highly efficient scan of Main again
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Indexvector
0 0
1 0
2 0
3 1
4 0
S 0
6 2
7 3
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Delta Merge

Consolidation of Delta and Main into new Main
* Improves query performance (especially for analytics)
 Reduces memory footprint (no B-Tree for dictionary necessary)

Automatically triggered by the System based on Cost-Based Decision Function
« Considers delta:main ratio, size in RAM and disk, system workload
« Performed on a per table-basis (actually: partition-based), parallelized on column-level

Before Merge During Merge After Merge

Write Merae Operation Write Write
Operatlons 9 P Operatlons Operatlons

A

oGloocERloe

Read Operations Read Operations Read Operations
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SAP HANA Technology

Compression with run length encoding

Classical Row Store
Difficult to compress

Company Region Group
[CHARSO0] [CHAR30] | [CHAR5]

INTEL

Siemens

Siemens

SAP

SAP

IBM

USA
Europe
Europe
Europe
Europe

USA
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A

B

HANA Column Store:

Dictionary compressed

HANA Column Store:

Run length compressed*®

0 INTEL
1 Siemens 0A
2 SAP 0 Europe ||1 B
3 IBM 1 USA 2 C
1x,0¢ 1x,1¢ 1x,0°
2x,1¢ 4% .0 1% 1
2x,2" 1x,1¢ 1.2
1x,3" 3 x,0¢

0 INTEL

1 Siemens 0A

2 SAP 0 Europe ||l B

3 IBM 1 USA 2 C
0 1 0
1 0 1
1 0 2
2 0 0
2 0 0
3 1 0

* Note that there is a variety of compression methods
and algorithms like run-length compression
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Single Instruction Multiple Data (SIMD)

Scalar processing
— traditional mode

— one instruction produces
one result

SOURCE

Scalar OP

DEST
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SIMD processing
— with Intel® SSE & AVX

— one instruction produces
multiple results

SOURCE 127 0
x4 X3 oxa X1
SSE/2/3 OP
[0 = 2
X40pY4 X30pY3 X20pY2 X1opY1
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Technical Deep Dive

The New HANA EXecution Engine (HEX)

SAP
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Status Quo: HANA Query Processing Engines

Operate on dictionary-compressed data representations

Designed with analytics in mind
Also: Optimized and tuned for OLTP
Example: Full semi-join reduction for all joins
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Vector-Pipelining

Attribute Engine

Y Y
OLAP Join
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Compressed Data

Y

Row Store
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HANA as a general purpose database: Novel focus areas

Already excellent performance

New hot spot: Short-running queries
Allow migration of existing / legacy application without code changes
Many applications are not DBMS friendly

New hot spot: Memory footprint reduction
HANA materializes intermediate results between operators
Good strategy for analytics, but high intermediate memory consumption
Alternative: Pipelined execution
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Next generation query processing in HANA

Goal: Extend HANA with a next-generation execution engine
Reduce runtime memory footprint
Replace ,0ld“ engines to avoid complexity increase

Maintain competitive advantage
Exploit columnar and dictionary-compressed storage
Operate on compressed data representations

Incorporate latest research results: Code generation
Academic frontrunner: TU Munich / HyPer
Commercial systems: SAP HANA Vora/Velocity, Microsoft Hekaton
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Efficiently Compiling Efficient Query Plans
for Modern Hardware

Thomas Neumann
Technische Universitat Minchen
Munich, Germany

neumann@in.tum.de

ABSTRACT

Az main memory grows, query performance is more and more
determined by the raw CPU costs of query processing itself,
The classical iterator style query processing technique is very
simple and flexible, but shows poor performance on modern
CPUs due to lack of locality and frequent ruction mis-
predictions. Several techninques like batch oriented processing
or vectorized tuple processing have been proposed in the
past to improve this situation, but even these techniques are
frequently out-performed by hand-writt

In this work we present a novel
translates a query into compact and ef
using the LIVM compiler framework. By aiming at good
code and data locality and predictable branch layout the
resulting code frequently rivals the performance of hand-
written C++ code. We integrated these technigues into the
ain memory database systen d show that this
1t query performance while requiring only
on time.

modest comp:

1. INTRODUCTION

Most database systems translate a given query into an
expression in a (phys algebra, and then start evaluating
this algebraic expresgion to produce the query result, The
traditional way to scute these algebraic plans is the iterator
model [8], mes also called Volcano-style processing [4]:
c operator conceptually produces a
L!lplf' stream from its input, and allows for iterating over this
tuple stream by repeatedly calling the next function of the
operator,

This is a very nice and simple interf
casy combination of arbitrary operators, but it clearly comes
from a time when query processing was dominated by 1/0
and CPU consumption was less important: First, the nert
function will be called for every single tuple produced as
intermediate or final result, i.e., millions of times. Second,
the call to next is usually a virtual call or a call via a function
pointer. Consequently, the call is even more expensive than
a regular call and degrades the branch prediction of modern

and allows for

Permission (o make digital or hard copies of all or part of this work for
personal or classroom use is granted without foe provided that copies are
not made o distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

wre imvited (o prescl
wial Confierence on Very Large Dita Bases,
August 201 - September 3rd 2011, Seatle, Washington.

Proceedings of the VLD Endowment, Vol. 4, No. 9

Copyright 2011 VLDE Endowment 2150-8097/11/06... $ 10.00,

“lugle al a fime"
1LDBMS ¢

o
]
ManetDEX100
- “wector at 2 time”
" Harc-Coded :
o LE Program
T4 e s 3R K AK 18K o4 2m< 1N BM

Figure 1: Hand-written code vs. execution engines
for TPC-H Query 1 (Figure 3 of [16])

CPUs. e, this model u[h-
and complex book-kec
a simple table sean over a o
must be produced one at a time n operator has
to remember where in the compressed stream the current
nd jump to the corresponding decompression code
asked for the next tuple.
These observations have led some modern syst to a
departure from this pure iterator model, .mlm internally
(e.g., by internally decompressing a number of tuples at
o mui then enly iterating over the decompressed data), or
externally by producing more than one tuple during each next
call [11] or even producing all tuples at once [1]. This block-
oriented processing amortizes the costs of cal another
tmt'ntor over the Jarge number of produced tuples, such
on costs become negligible. However, it also
tes & major strength of the iterator model, namely the
v to pipeline data. Pipelining means that an operator
can pmﬂ data to its parent operator without copying or
ng the data. Selections, for example,
are pipelining operators, as they only pass tuples around
without modifying them. But also more complex operators
ke joins can be pipelined, at least on one of their input
When producing more than one tuple during a call
s pure pipelining usually cannot be used any more, as 1l
tuples have to be materialized somewhere to be accessible.
This materialization has other advantages like allowing for
vectorized operations [2], but in general the lack of pipelining
is very unfortunate as it conswmes more memory bandwidth.
An interesting observation in this context is that a ha
written program clearly outperforms even very fast vectorized
systems, as shown in Figure 1 (originally from [16]). In a
way that is to be expected, of course, as a human might use
tricks that database management systems would never come

results in poor code localit
can be seen by conside
As the tuples

the table s
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Code generation in HEX

HEX uses LLVM for machine code generation
Does not generate LLVM intermediate representation (IR) directly

Uses SAP's ,L" language frontend instead
L is already used within HANA, e.g. for stored procedures
Code is easier to read than IR
Benefit from existing infrastructure (supportability, debugging, profiling...)
L already contains implementations of SQL expression functions (add_years(), ...)
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The Dark Side of code generation

Compilation Times

To mitigate, HEX makes use of the Interpreter provided by L

Each piece of code is executed with the interpreter at first
=> Heavy performance penality, but execution can start immediately

When executed often: trigger compilation via LLVM (asynchronously
Once finished, execution switches to the compiled version

L interpreter is not optimal yet
Interprets L program (instructions)
Optimized bytecode interpreter provides much better performance
See recent work from TU Munich
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Adaptive Execution of Compiled Queries

André Kohn, Viktor Leis, Thomas Neumann

Technische Universitiit Miinchen

{kohna, le

Abstract—Compiling querles to machine code Is a very efficlent
way for execuling queries. One of rlooked problem with
compilation s the Ume it takes (o generate machine code.
tven with fast compilation frameworks like LLVM, generating

X ries ol Lal T

uch durations can be a major disadvantage for
workloads thal execute many complex, but quick queries. To
salve this problem, we propose an adaptive exceution framework,
which dynamically swi interpretation to compilation.
We also propose 3 erpreter for LLVM, h
can exccute queries with translation 1o machine code
and dramatically reduces (he query aten
is ed, and can execule code paths of the same query
using different execution modes. Our evaluation shows (hat
this approach achieves optimal performance in a wide variely
of seltings—low latency for small data sels and maximuni
throughput for large data sizes.

I INTRODUCTION

Compiling querics to machine code has become a very
popular method for executing querics. Compilation is used
by a large and growing number of commercial systems (e.g..
Hekaton [11, [2], MemSQL [3], Spark [4], and Impala [S])
as well as research projects (e.z., HIQUE [6], HyPer [7].
DB Toaster [8], Tupleware [9], [10], LegoBase [11], ViDa [12],

Vodoo [13], Weld [14], Peloton [15], [16]). The main advantage
of compilation is, of cou

e, efficiency. By gencrating code for
on avoids the interpretation overhead
of traditional execution engines and thereby achieves much
higher performance.

One obvious drawback of generating machine code is
compilation time. Consider, for example, the following meta
data query:

SELECT c.oid, c.re

i.inhparent
JOIN pg_namespace n ON n.oid = c.relname:
WHERE i.inhrelid = 16490 ORDER BY inhsegno

This query touches only a very small number of tuples,
which means that its execution fime is negligible (less than

1 millisecond in HyPer). How:
this q
optimizations cnabled, LLVM takes S4ms to compile this
query. In other wards, compilation takes 50 fimes longer
than execution. Assuming a workload where similar queries
are executed frequently. 98% of the time will be wasted on

. before HyPer can execute

ery, it needs to compile it to machine code. With

neumann}@in.tum

Of course, for large data sizes, compilation does pay off as
the resulting code is much more efficient than interpretation.
In this work, we focus on database systems that compile
queries to LLVM IR (* te Representation”), which is
afterwards compiled to ma VM compiler
backend. This approach offers the same machine cade quality
compiling to C/C++, while reducing compilation time by
an order of magnitude [7]. The compilation times of the
LLVM compiler may be low enough far some workloads, for
example those consisting of long-running ad hoc queries or pre-
compiled stored procedures. For other applications, however,
Tong compilation times are a major problem
he example query shown above is one of the queries
sent by the PostgreSQL administration tool pgAdmin. On
startup, pgAdmin sends dozens of complex queries (up to
22 joins), all of which access only very small meta data tables.
Compiling these queries causes perceptible and unnecessary
delays. Caching the machine code (e.g., after stripping out
constants) might improve subsequent ions, but would not
improve the initial user experience. More generally, because
the human perception threshold is than a second, the
additional latency caused by compilation can lead to a worse
user experience for interaclive applications. Finally, business
intelligence tools occasionally generate extremely large queries
(e.g., 1 MB of SQL text), which de facto cannot be compiled
with standard compilers
For the workloads just mentioned, the user experience
of a compilation-based engine can be worse than that of
a traditional, interpretation-based engine (e.g.. Volcano-style
execution). Thus, depending on the query, one would sometimes
prefer to have a compilation-based engine and sometimes an
ation-based

i

nes

ne. Ty g two query e
owever, would involve disproportic
efforts and may cause subtle bugs due tw minor semantic differ-
ences, In this work, we instead propose an adaptive execution
framewark that is principally based on a single compilation-
based query engine, yet integrates interpretation techniques that
reduce the query latency. The key components of our design
are a (i) fast bytecode interpreter specialized for database
queries, (i) & method of accurately tracking query progress,
d (i) a way to dynamically switch between interpretation
and compilation. Without relying on the notoriously inaccurate
cost estimates of query optimizers, this dynamic approach
enables the best of both worlds: Low Tatency for small queries

in the

e system,

compilation. And this query is still fairly small;
times can be much higher for larger queries.
the largest TPC-DS query, for example, takes close to 1 second.

smpilation of

2375-026X/18/531.00 €2018 |EEE
DOl 10.1109/CDE.2018.00027
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and high throughput for long. 2 queries.
Our adaptive execution framework is direetly applicable 1o
many compilation-based systems. Furthermore, our approach

computer
society
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Additional challenges

Materialization strategies (early vs late)
Currently: Late materialization to keep intermediate results small
Research: Always best approach?

Tuple-at-a-time vs blockwise processing (goal: exploit SIMD instructions in complete pipeline)
Trade-off with register locality of tuples

Finding the right mix of compilation / interpretation for very complex query plans
Research results (TUM): Compilation does not finish for extremely complex, generated queries
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Technical Deep Dive

HANA Native Storage Extensions: Adding disk processing to an in-memory database server



.
HANA Page Loadable Columns (SIGMOD - 2016)

ldea: load pieces of a column
—Not every column of each table needs to be in memory
—Not all rows of a column need to be in memory
—Not all data structures of a column need to be in memory

Load portions of data vectors needed for a query
Load portions of dictionaries needed for search
Load portions of inverted indices corresponding to query predicates

Page in/out read optimized portion:
 More memory consumed by read only portion of a column
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Native Storage Extension (VLDB 2019)

Value proposition: Use cases:
Increase HANA data capacity at low TCO Any customer built or SAP built HANA application
Deeply integrated warm data tier, with full that is challenged by growing data volumes
HANA functionality S/4AHANA and Suite on HANA data aging
models columns” solution)
Simple system landscape Reduced storage size and TCO for cloud
deployments of internal systems and HaaS

Scalable with good performance

Supported for both HANA on-premise and
HANA-as-a-Service (HaaS)

Available for any HANA application

applications

Expand capacity in HANA extension nodes (BW
use case being evaluated)

Complements, without replacing, other warm
data tiering solutions (extension nodes,
dynamic tiering)
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Data Temperature

Statistics <:

~z

NSE Advisor

Hybrid Column Store
Specialized Column Implementations:
Uncompressed, Compressed, Spatial, RowID, HashKey

Hex Query Engine

NSE Configuration DDLs

Hybrid Column Structures
Dictionary, Data Vectors, Indexes
May be loaded in memory or paged

Memory

Common pr?nitives, e.qT SIMD scans
—_— —_—

Unified Persistence
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Compatible with Memory and Paged Primitives

Partition Management

Primitives Paged Primitives : :

Elastic Buffer Cache

28




NSE Recommendation Engine

Data access frequency collected at query level for each column (scan count etc.)
to indicate data hotness

Rule based heuristics to identify cold objects (column, partition, table) with large
memory footprint as page loadable candidates

User adjustable threshold for cold and hot objects

Flexible interface for user to act on individual recommended object to convert
from column loadable to page loadable or vice versa.

HOT

/\.

RecommendatiorL
Rule

Size

/Threshold \ -
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Wrapping up



Conclusion

Operational Analytics DBMS are a Game-Changer for Enterprise Applications
Fast reporting even without indexes / aggregates / materialized views (CRM)

Additional insights from reporting on transactional data (HANA Live / Suite on HANA) — mmm
. . . v M;:, {A‘-‘: '.2:.”3.2 I‘
Complete application redesign (S4HANA) i | > o (6
No aggregates (simplification) .= hﬁ,ﬁi‘_ﬁ.m_
Poud = ——~ [T ==\ =\
Code pushdown (gl QUayrzer _,:‘;’; ‘
Fast analytics on current data in real-time (@@T_:@ﬂ Fﬁ
T : ' _’r- N

/

[ ,’
%

Pe———y g~ g
g ——————
———

e’
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Challenges and Next Steps

Cloud, Memory Footprint, and Hardware Costs
Performance Challenged by Specialized Engines and NoSQL
Towards Polyglot Persistency / Data Management Platforms

CMU PDL Tech Talk: May 2, 2019, 12:00pm
https://db.cs.cmu.edu/events/spring-2019-anil-goel-sap/

Data Management Platform

In-Memory
[ e
Disk-Based DBMS

Execution Execution
ngine ngine

naine
Column / Row Column/ ]
Store Row Store HDFS Filesystem

Very High Data Volume DB/ER
us m Extreme Processing Speed
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