
Arrow Database Compression
Final Project Presentation

By Abhijith, Arvind, Paulina, and Vilas
May 4th, 2020



Goals

Add support for:

●  75%  - Compacting blocks into Arrow format with updating indexes

● 100% - Processing scan queries on compressed Arrow data

● 125% - Identifying cold blocks to compact into Arrow



Progress

Execution Layer
 

Storage Interface 

Storage Layer

Block Compactor

Sample TPL Tests Block Compactor Tests

CompactionInsertInto, AllocateSlot Built-ins TPL Code to Move a Tuple



Testing Correctness
Sample TPL Tests Block Compactor Tests

Success:
● Verified CompactionInsertInto built-in

Difficulties:
● Reproducing the scenario required by 

“MoveTuple” in TPL required a new 
built-in (AllocateSlot)

Success:
● Linked database, table, catalog, block 

compactor etc. (to avoid direct 
interaction with data table)

Difficulties:
● “MoveTuple” built-in not compiling 

within the block_compactor.h file



● Hacks:

Currently passing table name, col_ids, and an execution context to the 

block_compactor in the test. Need to use the catalog.

● Incomplete code:

Wrote TPL code that moves a tuple from original slot to a newly allocated slot. 

Need to use codegen for generating that TPL code.

Code Quality 



● Execution Context inside the BlockCompactor introduces a Circular Dependency

Design Difficulties (Dependencies)

Catalog

GC

AccessObserver

BlockCompactor



Block Compaction running as a background thread

Options:
● Standard C++ threads

● Thread pool using TBB

● C++ coroutines

Design Difficulties (Threading)



What We’ve Learned

● Preventing direct interactions with the data table and importance of access 

and moving data via the execution layer

● Importance of using an internal transaction for performing compaction

● Writing and understanding TPL code, CodeGen, Translators



Learning TPL

TPL arguments: using class variables vs. using function parameters

terrier/src/include/execution/sql/storage_interface.h, .cpp

Getter
Setter
Insert

terrier/sample_tpl/insert.tpl

https://github.com/cmu-db/terrier/blob/master/src/include/execution/sql/storage_interface.h
https://github.com/cmu-db/terrier/blob/master/src/execution/sql/storage_interface.cpp
https://github.com/cmu-db/terrier/blob/master/sample_tpl/insert.tpl


TPL arguments: using class variables vs. using function parameters

Getter
Setters
Update

Learning TPL

terrier/src/include/execution/sql/storage_interface.h, .cpp terrier/sample_tpl/update-2.tpl

https://github.com/cmu-db/terrier/blob/master/src/include/execution/sql/storage_interface.h
https://github.com/cmu-db/terrier/blob/master/src/execution/sql/storage_interface.cpp
https://github.com/cmu-db/terrier/blob/master/sample_tpl/update-2.tpl


Our Sample TPL

terrier/sample_tpl/compaction-insert-into.tpl

https://github.com/721-Project-Team/terrier/blob/master/sample_tpl/compaction-insert-into.tpl


Future Work

●  75%  - Compacting blocks into Arrow format with updating indexes

○ Create a compaction_translator in compiler → internal folder

○ Add code for generating compaction TPL in the compaction_translator



Future Work

● 100% - Processing scan queries on compressed Arrow data

        Add (accessible to the execution layer):  

○ An indicator variable for whether a tuple’s block is compacted               (or 

access to a block’s temperature)

○ A shared pointer to the dictionary of a tuple’s block

○ Decompressing and materializing scanned tuples → directly work on 

compressed data

○ Comparators for compressed data using block dictionaries

○ Benchmarking performance and identifying optimization opportunities



Future Work

● 125% - Identifying cold blocks to compact into Arrow

○ Utilize access statistics that may already be collected

○ Analyze performance of compaction (% successful compactions, memory 

usage):

■ Across workloads with different scan characteristics

■ Across a range of frequencies of when compaction occurs

■ Across different tuple types (number of columns, column types)

○ Analyze cause of non-successful compactions to identify design and 

optimization opportunities



Future Work

● Extra Thoughts

○ Currently block compaction queue only has one block. Add testing and 

implementation of multi-block queues.

○ Currently one internal transaction is processing the whole block 

compaction queue, so if even one block is accessed, the transaction rolls 

back. Consider other designs for the queue and performance constraints.

○ Test to make sure that any changes do not block other transactions.



Thank you to…

Andy

Prashanth

Matt

Tianyu

Terrier


