
Implementing Common
Database Constraints

Wuwen Wang, Yingjing Lu, Yi Zhou

15-721 Final Presentation

Constraints - Overview

Constraints are an important feature in DBMSs to
ensure database integrity

- PRIMARY KEY
- UNIQUE
- FOREIGN KEY
- Other constraints

Goals & Progress

75% goal: implement
basic constraints for
create_table

- UNIQUE
- PK
- FK

100% goal: implement
foreign key for
create_table, and
enforce it in insertion

125% goal: implement
ALTER operation to
support dynamic change
of constraints

√
(Almost there)

Progress
Completed & Tested:

- Create Constraints (PK, NOTNULL, UNIQUE, FK)
- PK, UNIQUE, FK Constraint Verification
- Offloaded UNIQUE and PK from Index schema to constraint checking
- Multi Column PK, UNIQUE, FK Constraint Support
- Delete Constraint When Deleting Table

Constraint Storage Schema

pg_constraint

fk_constraint

exclusion_constraint

check_constraint

pg_class

pg_namespace

Refactored the original pg_constraint schema for better flexibility and expandability

Procedure
CREATE TABLE TableA (id INT PRIMARY KEY, data INT, data2 INT UNIQUE);

DDLExecutors::CreateTableExecutor

-> CreateConstraintsAndIndices

-> CatalogAccessor

-> DatabaseCatalog::CreateConstraint

● Write constraint information into the pg_constraint

*For FK, also write information into fk_constraint

● Build bw_tree for constraints to improve scan
performance

Procedure
INSERT INTO TableA VALUES (1, 2, 2);

INSERT INTO TableA VALUES (2, 2, 2);

InsertTranslator::GenConstraintVerify

-> ast::Builtin::VerifyTableInsertConstraint

-> StorageInterface::VerifyTableInsertConstraint

-> DatabaseCatalog::VerifyTableInsertConstraint

● PK/UNIQUE: Scan through bw_tree and
check if input matches

● FK: Scan through bw_tree of referenced
table and check if input matches

Testing
Unittest Runtime Query

Create Constraint & Index √ √

Create Multi Column Constraint √ √

Delete Constraint √ √

Get Constraint √ √

Enforce UNIQUE √ √

Enforce PK √ √

Enforce FK In progress In progress

Enforce Multi Column Constraint In progress In progress

Surprises & Challenges
● When the ProjectedRow for insert, update, etc contains VARLEN column,

entry data cannot be directly retrieved by using column oid and offset
according to the target table schema. We are still trying to figure this out.

● We are using String as a fake array, since VARBINARY can only be used
internally. It needs to be improved after Terrier correctly support VARBINARY.

● Some functionalities of constraints such as ALTER can be implemented after
Terrier supports index update, since it only allows index modification during
table creation.

Code Quality

Strengths:

● Modularity on FK, EXCLUSION, CHECK
constraint creation and storage. Allowing
them to be further expanded without
affecting implementation of existing ones

Weaknesses:

● Array storation
● Index update
● Abort handling

Demo

Future WORK

Cascade for Update,
Delete and Drop

*Implement online ALTER
statement on constraints after
the support of index-update

In progress for testing before the final code drop:

- UPDATE/DELETE FK CASCADE
- DROP TABLE CASCADE
- NOTNULL verification

Constraint Storage Schema

Constraint_ID
Constraint_Name
Constraint_namespace
Constraint_Type
Constraint_Deferrable
Constraint_Deferred
Constraint_Validated
Constraint_Table
Constraint_Index
Constraint_FK
Constraint_Column
Constraint_CHECK
Constraint_EXCLUSION
Constraint_Conbin

FK_ID
FK_Constraint
FK_REF_Table
FK_SRC_Table
FK_REF_Column
FK_SRC_Column
FK_UPDATE
FK_DELETE

EXCLUSION Constraint

CHECK Constraint

pg_class

pg_namespace

