
CTE support in CMU-DB
 Project Presentation

 Group XI
Members: Rohan Aggarwal, Gautam Jain, Preetansh Goyal

Mentor: Andy Pavlo

In the current cascade-style query
optimizer implementation of CMU-DB,
add functionality of Common Table
Expressions (CTE’s) to support
TPC-DS queries.

The goals for the project were:
1. Implement functionality of

Non-Recursive CTE’s and add
support to query optimizer

2. Support TPC-DS like queries

Problem Statement

CTEs (Common Table Expressions)

● CTEs help define temporary result which can be referenced later in a complex query
● Are alternatives to using nested queries or views
● Defined within a statement using the WITH operator

Defining temp
table using CTE

Referring to
table in query

Source: https://www.essentialsql.com/introduction-common-table-expressions-ctes/

DEMO
 We will demonstrate our progress:

1. Implementation of Non-Recursive CTE’s
2. Support for TPC-DS like queries

PostgreSQL approach
WITH EMPLOYEE AS (SELECT NAME,AGE, SALARY FROM COMPANY)
SELECT E1.AGE,E2.SALARY FROM EMPLOYEE AS E1, EMPLOYEE AS E2
WHERE E1.NAME = E2.NAME;

Postgres violates the Volcano Model.

1) It has child nodes on which it doesn't call Next.
2) It has child nodes which calls next on non - descendants.

PROBLEM:

Terrier uses a different system, how to get correct
behaviour in the new setting ?

Optimizer (Logical Plan)

WITH EMPLOYEE AS (SELECT NAME,AGE,
SALARY FROM COMPANY) SELECT
E1.AGE,E2.SALARY FROM EMPLOYEE AS E1,
EMPLOYEE AS E2 WHERE E1.NAME = E2.NAME;

Where to connect the sub tree ?

1. All CTE nodes
2. Pick any one
3. Choose some specific one, first or last

We pick the first cte to connect the sub tree.

Optimizer Output (Multiple Possible Physical Plans)

Join Reordering can reorder the subtree.

Optimizer (Physical Plan)

WITH EMPLOYEE AS (SELECT NAME,AGE,
SALARY FROM COMPANY) SELECT
E1.AGE,E2.SALARY FROM EMPLOYEE AS E1,
EMPLOYEE AS E2 WHERE E1.NAME = E2.NAME;

● Perform a DFS of the tree
● Move the sub plan to the “appropriate”

place and label the node as Leader
● Leader materializes the temp table and

populates it

 Output Schema Generation

WITH EMPLOYEE AS (SELECT NAME,AGE,
SALARY FROM COMPANY) SELECT
E1.AGE,E2.SALARY FROM EMPLOYEE AS E1,
EMPLOYEE AS E2 WHERE E1.NAME = E2.NAME;

● Parent asks the child for the attributes it
requires.

● This decides the output schema of the each
node.

 Output Schema Changes

WITH EMPLOYEE AS (SELECT NAME,AGE,
SALARY FROM COMPANY) SELECT
E1.AGE,E2.SALARY FROM EMPLOYEE AS E1,
EMPLOYEE AS E2 WHERE E1.NAME = E2.NAME;

PROBLEM :
Salary never reached the Leader Node and hence
sequential scan optimizes its output.
The materialized table will never have Salary.

WITH EMPLOYEE AS (SELECT NAME,AGE,
SALARY FROM COMPANY) SELECT
E1.AGE,E2.SALARY FROM EMPLOYEE AS E1,
EMPLOYEE AS E2 WHERE E1.NAME = E2.NAME;

WHAT TO DO…?????

 Output Schema Changes

Parser To the Rescue

WITH EMPLOYEE AS (SELECT NAME,AGE,
SALARY FROM COMPANY) SELECT
E1.AGE,E2.SALARY FROM EMPLOYEE AS E1,
EMPLOYEE AS E2 WHERE E1.NAME = E2.NAME;

SOLUTION :
Parser provides Abstract expressions of the
select query inside With Clause.
Store them inside cte node to create the
correct table_schema

Table Schema and Output Schema

● Every CTE scan node has a uniform Table
Schema and its own Output Schema.

● Leader creates a new table with the table
schema and populates it.

● All nodes query each column in their
Output Schema from the Table Schema
and perform a sequential scan.

One Last Problem - Aliases in Derived Get

WITH EMPLOYEE AS (SELECT NAME, MAX(AGE) AS MXAGE, SALARY)
SELECT E1.MXAGE,E2.SALARY FROM EMPLOYEE AS E1, EMPLOYEE AS
E2 WHERE E1.NAME = E2.NAME

Derived Get requires column value expressions of the aliases.
Parser’s output does not account for this.

Solution - Create new expressions accordingly and register their
cleanup as a deferred action to the Garbage Collector.

Execution Engine

Features Introduced in the execution engine:

● Creation of table in execution engine
● CTE Leader : Pipeline breaker
● CTE Scan : CTE Table iterator

Leader Election

● Blue Pipeline, executes first
● CTE Table not populated and CTE Scan

returns no tuples
● Empty output

Population must happen at the first CTE Scan in dfs

Schema of the new table

1. Create schema of the table
2. Track output schema
3. Correct mapping of the columns

Column ID Type

0 INT

1 INT

2 VARCHAR

Column ID Type

0 VARCHAR

1 INT

NAME

AGE

Output Schema
Table Schema

Creating a table in Execution Engine

PostgreSQL

1. Using temp table
A completely different table
data structure stored in heap
memory.

2. Usage in materialized views
The temp table is optimized for
temporary materialization.

3. Population on demand

4. Deletion
Freeing up the heap usage

Terrier

1. Normal table object “not in catalog”
Usage of existing table structure support
albeit without the support of a catalog

2. New support in execution engine
Unwrapping of the ddl executor to mimic
it’s behaviour in the execution engine.

3. Populate completely

4. Deletion:
Rolling back of the data structures to
ensure no leaks. (Double deferred action)

Deletion of table (Double deferred action)

Previous

NAME AGE SALARY

Gautam 23 0

SQL Table (Main Table)

DELTA Pointers

AGE -> 23

Delta Storage Segment

● Both need to be deleted
● Transaction can only delete delta storage

when it’s about to commit

Scenario 1 : Deletion of table when TPL finishes

Previous

NAME AGE SALARY

Gautam 23 0

SQL Table (Main Table)

DELTA Pointers

AGE -> 23

Delta Storage Segment

Transaction can’t find the delta storage. :(

Solution : Defer the deletion of table to transaction -> no memory leaks

Testing

● JUnit Tests: Multiple queries involving CTEs testing the overall functionality
● Tests for TPC-DS like CTE queries
● Execution Engine tests for different possible CTE query plans
● Binder and Logical plan tests

Future Work

● Adding Merging and Pushdown optimizations to non-recursive CTE implementation
● Adding support for Recursive CTEs

Goals

125%

Add Merging ✓,
Pushdown, and,
Reuse optimizations ✓ to
non-recursive CTE
implementation

75%

Add support for very
basic non-recursive
CTEs support in the
Query engine ✓

100%

Add non-recursive
CTE support using
temporary tables
similar to
PostgreSQL ✓

