
Add/Drop Indexes

Alex, Cal, and Kunal

Progress
- We now support CREATE INDEX!

- Unfortunately, supporting a single-pass CREATE INDEX proved much more difficult than

initially expected.

- Some unexpected roadblocks:
- Concurrent DELETEs and UPDATEs require modifying the index at different times (e.g. at

commit time) to ensure that the index contains all the right keys
- Aborts / Rollbacks complicate the design space as one must deal with inserts that roll back

and other such anomalies
- Allowing the newly created index to be visible to later parts of the same transaction

prevented us from using mini-transactions to take advantage of MVCC

- How it works now
- Shared lock on table is taken by modifiers (so, anyone doing an insert/update/delete)
- These locks are held until the transaction for the modification ends
- CREATE INDEX takes the lock in exclusive mode, meaning we know that all modifications have

committed / aborted in the version chains for the table
- We build the index, and then set the index to live

Testing and Benchmarking

- We have some lower level basic tests

- Higher level JDBC tests
- Correct index creation, correct update, correct delete

- Writing some more tests to verify correctness further

Assessment of Codebase

- We feel that our code is for the most part production level
- Locking is implemented well without much inefficiency
- The scan of the table's version chain uses a new method which could be used for other things (such

as CREATE INDEX CONCURRENTLY)

- Improvements that need to be made before merging
- Documentation improvements
- Pruning of testing facilities (e.g. debug-specific locks)
- Some small bug fixes
- More test cases
- Where should the table locks live. Right now, they are in SqlTable, but they may need to be moved

Future Work

- CREATE INDEX CONCURRENTLY
- Currently implemented infrastructure:

- A mechanism for marking an index as created but not yet live
- A mechanism for iterating through the version chain of a column
- Infrastructure to pass the CONCURRENTLY flag from the postres parser all the way to the

traffic cop
- Needs to be done:

- Only allowed in a single statement transaction, meaning we can use multiple transactions
to do separate passes before finally setting the index to live

- Whitebox tests

- Using multiple worker threads to build the index
- This relies on the worker thread pool implementation

- Allow creating an index while uncommitted changes exist in the same transaction
- We disallow this to avoid deadlocking with our current locks, but this could be improved
- We decided to table it because it seems like a silly workload that could be fixed by moving the

CREATE INDEX earlier

