
Zecheng He, Yinuo Pan, Yuhong Zhang
Building on Prashanth’s work

Multi-Threaded Queries
S20 15-721 Final Presentation

Memory Access &
Optimization

Parallel Scan Codegen

75% Goal

Parallel Scan in C++

✓ DataTable support

✓ Dynamic block_range

assignment

100% Goal 125% Goal

✓ Built-in Functions

✓ Needed arguments

✓ Parallel operator mode

✓ Output buffer partition

✓ Thread-local state access

Performance optimization (In

progress)

Project Goals
Adding intra-query parallelism for Sequential Scans in terrier.

System Design

System Design

Step 1: Breaking the physical plan
into multiple pipelines

Pictures from CMU 15-721 Course

System Design

output_translator

seq_scan_translator

Pipeline1

Step 2: Deciding the execution mode of the whole pipeline:

● Parallel if every operator is parallel
● Serial otherwise

System Design
Step 3: Generating corresponding function with correct arguments

Serial

 Pipeline0_SerialWork(query_state, exec_ctx) {

 // Initialize tableVectorIterator to scan over the whole table

 }

Parallel

 Pipeline0_ParallelWork(query_state, exec_ctx, table_vector_iterator) {

 // table_vector_iterator is initialized to iterate its own block range

 }

System Design
Step 4: Parallel Scan on different block ranges

…...
Thread 1 Thread n-1 Thread n

System Design
Step 5: Concurrently writing to output buffer

0 1 2 3 …... 24 25 26 n-2 n-1 n

Thread 1 Thread 25

byte* byte* byte* byte* byte* byte* byte* byte* byte* byt
e*

Benchmark
● TableVectorBenchmark: scan on c++ side with multiple worker
● ParallelScanBenchmark: execute whole sequential scan query (including the output buffer)

Why the whole execution is so slow?

1. Latch on call back function

Callback functions invoked in output buffer are not thread-safe

2. Even with a thread-safe callback - the maximum speed up was still ~4.4x.

Comparing the results between high and low selectivity, we think it
might be the step copying data into output buffer.

(More profiling and optimization)

Correctness

● ParallelScan test on DataTable

○ DataTableTest: RangeScanTest

○ TableVectorIteratorTest: ParallelScanTest

● Codegen

○ CompilerTest: Generate tpl code from physcial plan
○ Other unit tests on sequential scan

Code Assessment

1. Virtual method

LaunchWork() is not implemented in most operators. Temporarily set to
virtual but not abstract method.

2. Magic constant

○ sema_builtin.cpp

Adding more comments to explain the arguments being checked.

○ table_vector_iterator.cpp

Calculating the block range using: # of blocks / # of cores

(Future: ask thread pool to provide available threads)

Future Works

● Profile current implementation to identify the bottleneck

● Integrate with Numa thread pool

● Infrastructures for other operators’ parallelism (pipeline states,

compilation context, etc.)

● Add support to other operators (hash join, hash aggregation, etc.)

Does anyone have any questions?

THANKS

