Multi-Threaded Queries
S20 15-721 Final Presentation

Zecheng He, Yinuo Pan, Yuhong Zhang
Building on Prashanth’s work

Project Goals

Adding intra-query parallelism for Sequential Scans in terrier.

75% Goal

Parallel Scan in C++

v DataTable support
v' Dynamic block_range

assignment

NS

100% Goal

Parallel Scan Codegen

v Built-in Functions
v Needed arguments
v Parallel operator mode

v Output buffer partition

125% Goal

Memory Access &
Optimization

v Thread-local state access
Performance optimization (In

progress)

System Design

System Design
N\L 44

N B.id=C.b_id Step 1: Breaking the physical plan
A 4 into multiple pipelines

B.id,COUNT(*)

(o RTINS
S

#ZB C

Pictures from CMU 15-721 Course

System Design

/Pipelinel % \

M output_translator % Step 2: Deciding the execution mode of the whole pipeline:

e Parallel if every operator is parallel
e Serial otherwise

B seq_scan_translator @

P
2

. /

System Design

Step 3: Generating corresponding function with correct arguments
Serial
PipelineO_SerialWork(query_state, exec_ctx) {
// Initialize tableVectorlterator to scan over the whole table
}
Parallel
PipelineO_ParallelWork(query_state, exec_ctx, table_vector _iterator) {

// table_vector _iterator is initialized to iterate its own block range

System Design

Step 4: Parallel Scan on different block ranges

Thread 1 Thread n-1 Thread n

System Design

Step 5: Concurrently writing to output buffer

byte* | byte* | byte* | byte* byte* | byte* | byte*

24 | 25 | 26

Thread 1 Thread 25

byte* | byte* | byt

n-2

n-1

e

n

Benchmark

250

200

=
w
o

Value

il

o
o

[}
o

0

TableVectorBenchmark: scan on c++ side with multiple worker
ParallelScanBenchmark: execute whole sequential scan query (including the output buffer)

Parallel Scan Benchmark rps with Table Size = 10000000

num_of_thread
il 2 4 8 10 12 16 18 20 24 27 30 34

Measure Names
M scan_high_selectivity_rps
M scan_zero_selectivity_rps

table_vector_rps | | | |

Speedup

o N o ©

oOkr N W N~ O

Parallel Scan Speedup with Table Size = 10000000

Measure Names) 13.66 13.79
B scan_high_selectivity_speedup 3.54
M scan_zero_selectivity_speedup 13.48 13.36
table_vector_speedup
11.28
11.06
10.93 10.93
1.84 1.86
1.50
1.43 1.54
1.00 1.08 0.96

0 2 4 6 8 10 12 14 16 18 20 22
num_of_thread

Why the whole execution is so slow?

1. Latchon call back function

Callback functions invoked in output buffer are not thread-safe

2. Even with a thread-safe callback - the maximum speed up was still ~4.4x.

Comparing the results between high and low selectivity, we think it
might be the step copying data into output buffer.

(More profiling and optimization)

Correctness

e ParallelScan test on DataTable

o DataTableTest: RangeScanTest

o TableVectorlteratorTest: ParallelScanTest
e Codegen

o CompilerTest: Generate tpl code from physcial plan
o Other unit tests on sequential scan

Code Assessment

1. Virtual method

LaunchWork() is not implemented in most operators. Temporarily set to
virtual but not abstract method.

2. Magic constant
o sema_builtin.cpp
Adding more comments to explain the arguments being checked.
o table vector_iterator.cpp
Calculating the block range using: # of blocks / # of cores

\(‘Future: ask thread pool to provide available threads)

Future Works

e Profile current implementation to identify the bottleneck

e Integrate with Numa thread pool

e Infrastructures for other operators’ parallelism (pipeline states,
compilation context, etc.)

e Add support to other operators (hash join, hash aggregation, etc.)

THANKS

Does anyone have any questions?

