Nested Query Optimization

Group 6: Xinzhu Cai, Guancheng Li, lan Romines



Goals

75% (Done) -> Support nested queries in optimizer
e Transform 4 basic types of nesting into joins with transformation rules

100% (Partially) -> Support nested predicates in execution engine
e COMPARE_IN operation - LogicalSemiJoin operator
e COMAPARE_EQUAL operation
e (){)COMPARE_NOT_IN operation, requires AntiJoin

125% (Todo) -> Rewrite views into nested queries
e Storeview in system catalog
e Replace view nodes with operator trees

Summary: between the 75% - 100% goal



LIVE DEMO



Project Goal Reiteration

Unnesting algorithms in optimizer

Before BottomUpRewrite

FilterS =
SingleJoin&
Get0 AggregateAndGroupBy3

Filter2 =

GCetl

SELECT pno from
shipment where
sno = (select max(
sno) from supplier
where subdget =
qty);

After After

DependentGetJointolnnerJoin
on SingleJoin4(BottomUp)

PullFilterThroughAggregation
applied on AAGB3(BottomUp)

Filters = Filter5 =

=

Singleloing

Filter4 =

Cet0 Filter.

[

Inneroin8

AggregateAndGroupBy6 GCet0 AggregateAndGroupBy7

Getl Cetl

After

CombineConsecutiveFilter on
Filter5(TopDown)

Filter5 =
Innerloing
Cet0 AggregateAndGroupBy7

Cetl

After PushFilterThroughJoin on
Filter5(TopDown)
InnerjoinS =

GetD AggregateAndGroupBy7

GCetl



Project Goal Reiteration

Support nested predicates in execution engine

Before Rewrite
After

PullFilterThroughMarkerJoin

Filters = applied on MarkJoin3 (
BottomUp)

3
MarkJoin3 Filter4 =
CetO Filterz2 = : =
Filter3 =

1
Cet MarkJoins

Get0 Getl

SELECT pno from
shipment where sno
in (select sno from
supplier where

subdget = qty);

After MarkJoinGetTolnnerJoin
on MarkJoin5 (BottomUp)

Filter4 =
Filter3 =
InnerJoin5

Get0 Getl

After
CombineConsecutiveFilter on
Filter4 (TopDown)

After PushFilterThroughJoin on
Filter4 (TopDown)

SemilJoing =
Filters = q
Get0 Getl
InnerJoin5
Get0 Getl




Test & Benchmarks

e Correctnessis tested with a mix of C++ code and java code

o C++ code is for a specific functionality. e.g. Check if the transformation rules
are applied successfully

o Junit test is for an end-to-end test. 10 test cases for each type



Code Quality

° : Well-defined and flexible transformation rules

° : Avoid materialization, should we use CTE nodes in the future?



Future Work

e Support views by rewriting them into nested queries
e Materialization techniques & cost model

e Deal with Type D by supporting set operations in terrier



Thank you!



