
Nested Query Optimization

Group 6: Xinzhu Cai, Guancheng Li, Ian Romines

Goals

75% (Done) -> Support nested queries in optimizer
● Transform 4 basic types of nesting into joins with transformation rules

100% (Partially) -> Support nested predicates in execution engine
● COMPARE_IN operation - LogicalSemiJoin operator
● COMAPARE_EQUAL operation
● (✖) COMPARE_NOT_IN operation, requires AntiJoin

125% (Todo) -> Rewrite views into nested queries
● Store view in system catalog
● Replace view nodes with operator trees

Summary: between the 75% - 100% goal

LIVE DEMO

Project Goal Reiteration

Unnesting algorithms in optimizer

Project Goal Reiteration

Support nested predicates in execution engine

Test & Benchmarks

● Correctness is tested with a mix of C++ code and java code

○ C++ code is for a specific functionality. e.g. Check if the transformation rules
are applied successfully

○ Junit test is for an end-to-end test. 10 test cases for each type

Code Quality

● Strong : Well-defined and flexible transformation rules

● Weak: Avoid materialization, should we use CTE nodes in the future?

Future Work

● Support views by rewriting them into nested queries

● Materialization techniques & cost model

● Deal with Type D by supporting set operations in terrier

Thank you!

