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Goals

75% (Done) -> Support nested queries in optimizer
e Transform 4 basic types of nesting into joins with transformation rules

100% (Partially) -> Support nested predicates in execution engine
e COMPARE_IN operation - LogicalSemiJoin operator
e COMAPARE_EQUAL operation
e (){)COMPARE_NOT_IN operation, requires AntiJoin

125% (Todo) -> Rewrite views into nested queries
e Storeview in system catalog
e Replace view nodes with operator trees

Summary: between the 75% - 100% goal



LIVE DEMO
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Project Goal Reiteration

Support nested predicates in execution engine
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Test & Benchmarks

e Correctnessis tested with a mix of C++ code and java code

o C++ code is for a specific functionality. e.g. Check if the transformation rules
are applied successfully

o Junit test is for an end-to-end test. 10 test cases for each type



Code Quality

° : Well-defined and flexible transformation rules

° : Avoid materialization, should we use CTE nodes in the future?



Future Work

e Support views by rewriting them into nested queries
e Materialization techniques & cost model

e Deal with Type D by supporting set operations in terrier



Thank you!



