
Lecture #02: In-Memory Databases
15-721 Advanced Database Systems (Spring 2020)
https://15721.courses.cs.cmu.edu/spring2020/

Carnegie Mellon University
Prof. Andy Pavlo

1 Background

The history of DBMSs development is about dealing with the limitations of hardware. The first DBMSs in
the 1970s were designed in environment with the following characteristics:

• Uniprocessor (single core CPU)
• RAM was severely limited
• Database had to be stored on disk
• Disk is slow. Seriously slow

But now DRAM capacities are large and inexpensive enough that most structured databases (gigabytes/low
terabytes) will entirely fit in memory. This merits us to rethink all aspects of the DBMS to account for this.
This course is about ways to do this.

2 Disk-Oriented Database Management Systems

For a disk oriented DBMS, the system architecture is predicated on the assumption that data is stored in
non-volatile memory. This means that the DBMS may have to read data from disk during query execution.

In a disk-based system, only approximately 7% of instructions are for the execution of transaction logic
in OLTP workloads [2]. The majority of the DBMS’s instructions time are in managing three of its key
components: (1) buffer pool, (2) concurrency control, (3) logging/recovery.

Buffer Pool
The DBMS organizes the database as a set of fixed-length blocks called slotted pages. The system uses an
in-memory (volatile) buffer pool to cache the blocks cached from disk.

• When a query accesses a page, the DBMS checks to see if that page is already in memory.
• If not, the DBMS retrieves the memory from disk and copies it into a frame in its buffer pool. A

pointer to the frame is returned for further operations.
• If there is no free frame to store the new page, DBMS finds a page to evict. If the evicted page is dirty,

DBMS writes it on disk.
• Once the page is in memory, the DBMS translates any on-disk addresses to their in-memory addresses.
• Every tuple access has to go through the buffer pool manager regardless of whether that data will

always be in memory. Even if we provide the DBMS with large enough memory to store the entire
database in memory, these operations still occur.

https://15721.courses.cs.cmu.edu/spring2020/
https://15721.courses.cs.cmu.edu/spring2020/
http://www.cs.cmu.edu/~pavlo/


Spring 2020 – Lecture #02 In-Memory Databases

Concurrency Control
In a disk oriented DBMS, the system assumes that a transaction could stall at any time when it tries to access
data that is not in memory.

The system’s concurrency control protocol allows the DBMS to execute other transactions at the same time
to improve performance while still preserving atomicity and isolation guarantees. Since locks are stored
separately in memory, however, a DBMS spends extra time to locate lock owners.

Logging and Recovery
Most DBMS use STEAL + NO-FORCE buffer pool policies so all modifications have to be flushed to the WAL
before a transaction can commit [1]. Log entries contain before and after image of record modified. The
DBMS flushes WAL pages to disk separately from corresponding modified database pages, so it takes extra
work to keep track of what log record is responsible for what page (e.g., LSN).

3 In-Memory Database Management Systems

The system architecture assumes that the primary storage location of the database is in memory. This means
that the DBMS does not need to perform extra steps during execution to handle the case where it has to
retrieve data from disk. If disk I/O is no longer the slowest resource, much of the DBMS architecture will
have to change to account for other bottlenecks: [4]

• Locking/latching
• Cache-line misses
• Pointer chasing
• Predicate evaluation
• Data movement and copying
• Networking (between application and DBMS)

Data Organization
We no longer need to use the slotted page layout in an in-memory DBMS as we do not have to worry about
packing pages data onto disk. We also do not have to store the data close to each other as we are storing
them on disk. Instead, an in-memory DBMS splits the data for tuples into fixed-length and variable-length
pools. Indexes use direct pointers instead of record ids to the fixed-length data for each tuple. These tuples
then have 64-bit pointers to any variable-length values stored in a separate memory location.

Concurrency Control
In-memory DBMSs still use either a pessimistic or optimistic concurrency control schemes to interleave
transactions. They will use modern variants of these algorithms that are designed for in-memory data stor-
age. The new bottleneck is contention caused from transactions trying to access data at the same time.

One key difference is that an in-memory DBMS can store locking information about each tuple together with
its data. This is because the cost of a transaction acquiring a lock is the same as accessing data. Contrast this
with disk-oriented DBMSs where locks are physically stored separate from their tuples because the tuples
may get swapped out to disk.

Indexes
Like with concurrency control schemes, in-memory DBMSs will use data structures for their indexes that are
optimized for fast, in-memory access. In-memory DBMSs will not log index updates. Instead, the system
will rebuild the indexes upon restart when it loads the database back into memory. This avoids the runtime
overhead of logging updates to indexes during transaction execution.

15-721 Advanced Database Systems
Page 2 of 5

https://15721.courses.cs.cmu.edu/spring2020/


Spring 2020 – Lecture #02 In-Memory Databases

Query Processing
The best strategy for executing a query plan in a DBMS changes when all the data is already in memory.
Sequential scans are no longer significantly faster than random access.

The traditional tuple-at-a-time iterator model is too slow because of function calls.

Logging and Recovery
The DBMS still needs WAL on non-volatile storage since the system could halt at anytime. In many cases,
however, it may be possible to use more lightweight logging schemes (e.g., only store redo information).
For example, since there are no “dirty pages”, the DBMS does not need to maintain LSNs throughout the
systems. In-memory DBMSs still takes checkpoints to reduce the amount of log that the system has to
replay during recovery.

4 Concurrency Control

A DBMS’s concurrency control protocol to allow transactions to access a database in a multi-programmed
fashion while preserving the illusion that each of them is executing alone on a dedicated system. The goal
is to have the effect of a group of transactions on the database’s state is equivalent to any serial execution of
all transactions. There are two high-level categories of concurrency control schemes:

1. Two-Phase Locking (Pessimistic): Assume transactions will conflict so they must acquire locks on
database objects before they are allowed to access them.

2. Timestamp Ordering (Optimistic): Assume that conflicts are rare so transactions do not need to
first acquire locks on database objects and instead check for conflicts at commit time.

5 Two-Phase Locking

There are two ways to deal with deadlocks in a two-phase locking (2PL) concurrency control protocol:

• Deadlock Detection: If deadlock is found, use a heuristic to decide what transaction to kill in order
to break deadlock.

• Deadlock Prevention: If lock is not available, then make a decision about how to proceed.

6 Timestamp Ordering Concurrency Control

Use timestamps to determine the order of transactions.

Basic T/O Protocol
Every transaction is assigned a unique timestamp when they arrive in the system. The DBMS maintains
separate timestamps in each tuple’s header of the last transaction that read that tuple or wrote to it. Each
transaction check for conflicts on each read/write by comparing their timestamp with the timestamp of the
tuple they are accessing. The DBMS needs copy a tuple into the transaction’s private workspace when
reading a tuple to ensure repeatable reads.

Optimistic Concurrency Control (OCC)
Store all changes in private workspace. Check for conflicts at commit time and then merge. First proposed
in 1981 at CMU by Kung and Robinson [3].

15-721 Advanced Database Systems
Page 3 of 5

https://15721.courses.cs.cmu.edu/spring2020/


Spring 2020 – Lecture #02 In-Memory Databases

The protocol puts transactions through three phases during its execution:

1. Read Phase: Transaction’s copy tuples accessed to private work space to ensure repeatable reads, and
keep track of read/write sets.

2. Validation Phase: When the transaction invokes COMMIT, the DBMS checks if it conflicts with other
transactions. Parallel validation means that each transaction must check the read/write set of other
transactions that are trying to validate at the same time. Each transaction has to acquire locks for its
write set records in some global order. Original OCC uses serial validation.
The DBMS can proceed with the validation in two directions:

• Backward Validation: Check whether the committing transaction intersects its read/write sets
with those of any transactions that have already committed.

• Forward Validation: Check whether the committing transaction intersects its read/write sets with
any active transactions that have not yet committed.

3. Write Phase: The DBMS propagates the changes in the transactions write set to the database and
makes them visible to other transactions’ items. As each record is updated, the transaction releases
the lock acquired during the Validation Phase

Timestamp Allocation
There are different ways for the DBMS to allocate timestamps for transactions [5]. Each have their own
performance trade-offs.

• Mutex: This is the worst option. Mutexes are always a terrible idea.
• Atomic Addition: Use compare-and-swap to increment a single global counter. Requires cache

invalidation on write.
• Batched Atomic Addition: Use compare-and-swap to increment a single global counter in batches.

Needs a back-off mechanism to prevent fast burn.
• Hardware Clock: The CPU maintains an internal clock (not wall clock) that is synchronized across

all cores. Intel only. Not sure if it will exist in future CPUs.
• Hardware Counter: Single global counter maintained in hardware. Not implemented in any existing

CPUs.

7 Performance Bottlenecks

All concurrency control protocols have performance and scalability problems when there are a large number
of concurrent threads and large amount of contention (i.e., the transactions are all trying to read/write to the
same set of tuples) [5].

Lock Thrashing:

• Each transaction waits longer to acquire locks, causing other transaction to wait longer to acquire
locks.

• Can measure this phenomenon by removing deadlock detection/prevention overhead.

Memory Allocation

• Copying data on every read/write access slows down the DBMS because of contention on the memory
controller.

• Default libc malloc is slow. Never use it.

15-721 Advanced Database Systems
Page 4 of 5

https://15721.courses.cs.cmu.edu/spring2020/


Spring 2020 – Lecture #02 In-Memory Databases

References

[1] M. J. Franklin. Concurrency control and recovery. In Computing Handbook, Third Edition: Information
Systems and Information Technology, pages 12: 1–21. 2014. URL http://db.lcs.mit.edu/6.893/
F04/ccandr.pdf.

[2] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through the looking glass, and
what we found there. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD International Confer-
ence on Management of Data, pages 981–992, 2008. doi: http://doi.acm.org/10.1145/1376616.1376713.

[3] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans. Datab.
Syst, 6(2), June 1981. URL https://dl.acm.org/citation.cfm?id=319567.

[4] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The end of an
architectural era: (it’s time for a complete rewrite). In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 1150–1160, 2007. URL http://hstore.cs.brown.edu/
papers/hstore-endofera.pdf.

[5] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring into the abyss: an evaluation
of concurrency control with one thousand cores. In VLDB ’14: Proceedings of the VLDB Endowment,
volume 8, pages 209–220, November 2014. URL https://dl.acm.org/citation.cfm?id=2735511.

15-721 Advanced Database Systems
Page 5 of 5

http://db.lcs.mit.edu/6.893/F04/ccandr.pdf
http://db.lcs.mit.edu/6.893/F04/ccandr.pdf
https://dl.acm.org/citation.cfm?id=319567
http://hstore.cs.brown.edu/papers/hstore-endofera.pdf
http://hstore.cs.brown.edu/papers/hstore-endofera.pdf
https://dl.acm.org/citation.cfm?id=2735511
https://15721.courses.cs.cmu.edu/spring2020/

	Background
	Disk-Oriented Database Management Systems
	In-Memory Database Management Systems
	Concurrency Control
	Two-Phase Locking
	Timestamp Ordering Concurrency Control
	Performance Bottlenecks

