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1 Introduction

The original B+Tree [1] from 1970s was designed for efficient access of data stored on slow disks. But if
we assume that a database fits entirely in memory (including its indexes), then we may need to consider
alternative data structures that are specifically designed for this operating environment. Such data structures
could provide more efficient multi-threaded access.

2 T-Trees

The T-Tree [3] was one of the first attempts for creating a data structure designed for in-memory databases.
It is designed to reduce the size of the index in exchange for more computational overhead during operations.
The main idea of a T-Tree is that instead of storing copies of keys in nodes (as in a B+Tree), T-Trees store
pointers to the their original values. In order to perform a comparison between the search key and a key
in the index, the DBMS must follow the pointer to the tuple to retrieve the key. The overall architecture is
similar to an AVL-Tree where threads perform breath-first search ordering of keys.

The T-Tree was proposed in 1986 from database researchers at University of Wisconsin–Madison. It is also
used in TimesTen (originally called Smallbase [2]) and other early in-memory DBMSs developed in the
1990s. Although T-Trees are still used in some DBMSs designed for operating environments with limited
memory (e.g., embedded devices), they are not commonly used in large-scale in-memory DBMSs.

Advantages:

• Uses less memory because it does not store keys inside of each node.
• Inner nodes contain key/value pairs (like B-Tree), which means the DBMS does not need to always

traverse to the leaf nodes to find the matching key.

Disadvantages:

• Difficult to re-balance because keys can move either up or down the tree.
• Difficult to implement safe concurrent access.
• Not cache-friendly because threads chase pointers when scanning range or performing binary search

inside of a node.

3 Bw -Tree

The Bw-Tree is a latch-free (“lock-free”) indexing data structure designed by Microsoft Research for the
Hekaton project [4]. In latch-free data structures, threads use atomic compare-and-swap (CAS) instructions
instead of latches to access or modify critical sections.
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It is not possible to make a latch-free B+Tree with sibling pointers. This is because threads may need to
update sibling pointers during split and merge operations, and it is not possible to use CAS to atomically
update multiple addresses. This is the problem that the Bw-Tree solves through an indirection layer.

Bw-Tree also uses an indirection layer, called the Mapping Table, to map (logical) page IDs to their physical
address locations in memory. This indirection layer allows for CAS of physical locations of pages. Threads
check the Mapping Table to find out where they need to go when traversing the tree in memory. If a thread
wants to change the location of a page, it can just perform a CAS into a single memory address in the
Mapping Table, and that updates all the pointers.

The Bw-Tree uses deltas to record changes made to single nodes known as Delta Records. It is similar to
a B+Tree except it has two key differences. The first is that the tree does not allow for in-place updates.
Instead, each update to a page produces a new delta that physically points to the base page, which acts as
the head of the delta chain. The DBMS then installs deltas in physical address slot of Mapping Table using
CAS.

Operations
We now describe the two basic operations for accessing and modifying the Bw-Tree.

Search:

• Traverse tree like a B+tree, perform comparisons along nodes.
• If Mapping Table points to delta chain, stop at first occurrence of search key.
• Otherwise, perform binary search on base page.

Delta Update:

• Since in-place operations are not allowed, each update to a new page produces a new delta.
• Delta physically points to the base page and other deltas.
• Install delta address in physical address slot of Mapping Table using CAS.
• If multiple threads try to install updates to the same page, then only one thread will succeed in in-

stalling their change. All other threads must retry their operation.

Garbage Collection
As threads modify the index and append new delta records to nodes, the node’s will grow in length and make
searches take longer. Thus, the DBMS needs to periodically compact these chains.

The first step is through cooperative consolidation where threads recognize that a chain is too long during a
normal traversal and they compact it

Consolidation:

1. The thread a copy of the target page and then applies the deltas in reverse order to the new page.
2. The thread then updates the Mapping Table to have the node id point to memory address of the new

page that it created. Using CAS ensures that the thread does not miss any new deltas that were added
after the consolidation step started.

3. Lastly, the thread registers the old page and its delta chain as reclaimable with the tree’s garbage
collector.

After consolidation, the garbage collector needs to recycle old deltas that have been already applied and old
pages. The Bw-Tree uses an epoch-based garbage collection scheme. This approach is also called RCU in
Linux and widely used for its internal data structures.

• All operations are tagged with an epoch, which is a logical counter that keeps increasing.
• Each epoch tracks the threads that are part of it and the objects that can be reclaimed.
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• A thread performing an operation joins an epoch prior to each operation and posts objects that can be
reclaimed for the current epoch (not necessarily the one it joined).

• Garbage for an epoch is reclaimed only when all threads have exited the epoch.

Structure Modifications
Since the Bw-Tree is a self-balancing tree, so it needs to perform splits and merges. There are two additional
delta record types to keep track of these changes.

Split Delta Record: Keeps track of where certain ranges of a key or a page can be found. Marks that a
subset of the base page’s key range is now located at another page and uses a logical pointer to that new
page.

Separator Delta Record: Shortcut mechanism for higher parts of the tree. Provides information in the
modified page’s parent on what ranges to find the new page. This reduces wasted time where threads
traverse the delta chain only to find out that the target key is located in a different node.

CMU OpenBw-Tree
The original Bw-Tree paper from Microsoft is missing important details on how to actually implement the
data structure. Thus, CMU set out to implement its own version of the Bw-Tree[5] for the Peloton DBMS
project. It includes some additional optimizations:

• Pre-allocated Delta Records: Use extra space in each node to store delta records. When there are
no more available slots to store new deltas in a node, this triggers a consolidation on that node. This
avoids the need for the DBMS to allocate memory for many small objects and avoids running into
random locations in memory that may not be in the CPUs caches.

• Mapping Table Extension: The Mapping Table is not implemented as a dynamic hash table, but
as a flat array as it is the fastest associative data structure. Allocating the full array for each index
is wasteful; instead, we can use virtual memory to allocate the entire array without backing it with
physical memory. Even if the entire array is allocated in the virtual memory, it is not allocated in the
physical memory unless the entry of the array has been accessed. OS only allocates physical memory
when threads access high offsets in the array.
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