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ABSTRACT
Multi-core in-memory databases promise high-speed online trans-
action processing. However, the performance of individual designs
suffers when the workload characteristics miss their small sweet
spot of a desired contention level, read-write ratio, record size, pro-
cessing rate, and so forth.

Cicada is a single-node multi-core in-memory transactional data-
base with serializability. To provide high performance under diverse
workloads, Cicada reduces overhead and contention at several levels
of the system by leveraging optimistic and multi-version concur-
rency control schemes and multiple loosely synchronized clocks
while mitigating their drawbacks. On the TPC-C and YCSB bench-
marks, Cicada outperforms Silo, TicToc, FOEDUS, MOCC, two-
phase locking, Hekaton, and ERMIA in most scenarios, achieving
up to 3X higher throughput than the next fastest design. It handles
up to 2.07 M TPC-C transactions per second and 56.5 M YCSB
transactions per second, and scans up to 356 M records per second
on a single 28-core machine.

1. INTRODUCTION
Multi-core in-memory transactional systems promise significant

performance gains over disk-based systems, but recent proposals of-
ten fail to deliver consistently high performance outside of a narrow
spectrum of workload characteristics, suffering low performance
under high contention [43] and limited scalability with multiple
cores [63]. Several proposed solutions to address these problems
use hard partitioning [29, 30, 56] or batching [16, 43, 50], incurring
high latency and/or requiring specific forms of transaction submis-
sion and execution, which limits their applicability.

This paper presents Cicada, a multi-core in-memory database
system with fast serializable concurrency control that is optimistic,
multi-version, and multi-clock. Worker threads execute transactions
speculatively without eagerly writing to the shared memory (opti-
mistic); use a certain version among multiple versions of records
(multi-version); and maintain per-thread clocks (multi-clock).

Cicada’s design reduces the overhead and contention of transac-
tion processing at several levels of the system. Its optimistic multi-
version design reduces both memory-access-level interference and
transaction-level conflicts between concurrent transactions. Scal-
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able timestamp allocation using distributed clocks that are loosely
synchronized with other clocks enables tens of millions of trans-
actions per second on a single machine, which was infeasible in
prior fully-featured multi-version databases. Best-effort inlining and
rapid garbage collection make memory access efficient, enabling
this multi-version design to share the low overhead of single-version
schemes that shine under low contention. Contention regulation per-
forms globally coordinated backoff to mitigate the cost of frequent
aborts that cause performance collapse on prior optimistic schemes
under contention.

Lessons from designing Cicada include:
• Single-node systems can leverage distributed systems tech-

niques to scale well on multi-core CPUs.
• Multi-version designs, despite their complexity, can be more

efficient than single-version designs.
• Optimistic execution performs much better under contention

by using new techniques to mitigate the overhead from aborts.
We evaluate Cicada using the TPC-C [54] and YCSB [8] bench-

marks against prior state-of-the-art in-memory database designs
including both single-version schemes—Silo [55], TicToc [64],
FOEDUS [32], MOCC [57], and two-phase locking [3, 15]—and
multi-version schemes—Hekaton [12, 35] and ERMIA [31].

Our experiments show that Cicada performs better than, or at least
equally to, compared systems. Cicada achieves 3X and 1.37X higher
throughput on contended TPC-C and YCSB workloads, respectively,
than the next fastest scheme. Under uncontended YCSB scenarios,
Cicada achieves up to 69.2% higher throughput than other systems.
On uncontended TPC-C, Cicada is at least 5.54% faster than others
using the same benchmark implementation, and it is at most 11.1%
slower than FOEDUS and MOCC that employed TPC-C-specific
optimizations, including index bypassing and vertical partitioning,
which we chose not to port to Cicada and other systems to maintain
the generality of our experiments. Cicada consistently outperforms
any other multi-version scheme and two-phase locking. On a single
28-core machine, Cicada processes 2.07 M TPC-C transactions per
second and 56.5 M YCSB transactions per second, and scans up to
356 M records per second.

Section 2 examines modern in-memory concurrency control
schemes. Section 3 presents the design of Cicada. Section 4
evaluates Cicada against prior state-of-the-art concurrency control
schemes and performs factor analysis.

2. TODAY’S MULTI-CORE IN-MEMORY
CONCURRENCY CONTROL SCHEMES

This section describes modern concurrency control schemes, and
identifies their strengths and weaknesses, with a short summary of
Cicada’s design components that address these weaknesses.
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2.1 Optimistic Concurrency Control
Many high-speed in-memory databases designed for multi-core

systems, including Silo [55], FOEDUS [32], MOCC [57], BCC [65],
and TicToc [64], use a variant of optimistic concurrency control
(OCC) [33]. OCC assumes that conflicts between transactions
are rare: It executes the main part of transactions without lock-
ing records, which reduces locking overhead. It has three phases:
The transaction reads records from the shared memory and performs
all writes to a local, private copy of the records (the “read phase”).
Later, the transaction performs a series of checks (the “validation
phase”) to ensure consistency. After successful validation, the OCC
system commits the transaction by making the changes usable by
other transactions (the “write phase”). Because of its optimistic
assumption, OCC performs best under low contention.

Recent OCC designs are single-version concurrency control
(1VCC) with in-place updates (“OCC-1V-in-place”) that make trans-
action execution lightweight and keep garbage collection overhead
low [55, 64, 65]. 1VCC keeps a single committed copy of each
record, and all read-write transactions use that copy. 1VCC of-
ten supports read-only snapshots that provide a consistent view of
slightly stale data for read-only transactions [55, 65]. With in-place
updates, a write to an existing record overwrites the old value with-
out allocating new memory for the new value in the write phase.
This approach differs from the original OCC, which exchanges a
pointer to the record data to perform a write [33], requiring garbage
collection of the old value.
Strengths: OCC’s lock-free read phase permits more concurrency
than pessimistic schemes such as two-phase locking (2PL) [15]. A
reader of a record is blocked briefly while a writer of the same record
is being validated, and writers are never blocked by readers. Particu-
larly in main-memory databases, staging uncommitted changes in
local memory is beneficial because it reduces cache misses caused
by concurrent transactions writing to the same record. The low
overhead of OCC-1V-in-place makes it a favored design choice by
state-of-the-art schemes for multi-core in-memory databases; these
schemes have high performance under low contention [55].
Weaknesses: OCC suffers from both well-known and less-known
problems:

(1) Frequent aborts under high contention degrade OCC’s per-
formance. While OCC’s lock-free execution provides good con-
currency on multi-core CPUs, it risks many aborts by executing
transactions too optimistically. Furthermore, 1VCC limits the abil-
ity to avoid conflicts between transactions because it can serve only
the latest version of records.

Aborts can be expensive. Executing an aborted transaction con-
sumes local CPU cycles. It can also slow down other threads
by reading a memory location being written, repeatedly invalidat-
ing the involved threads’ L1 and L2 cacheline. Ironically, OCC’s
lightweightness can aggravate this low-level contention by retrying
aborted transactions too rapidly.

Current solutions to reduce the effect of frequent aborts are lim-
ited. TicToc relaxes the limitation of 1VCC with more flexible
transaction ordering [64], but this technique still disallows accessing
an earlier version of the record if the record has been already updated
by a concurrent transaction. Read-only snapshots are not a com-
plete solution either; they cannot be used in read-write transactions
because serializability protocols designed for 1VCC do not permit
such multi-version access. Snapshot support can reduce throughput
by about 10.5% [55], which compromises the low-overhead advan-
tage of 1VCC. The staleness of snapshots in 1VCC is typically high
because snapshots are generated at a coarse-grained interval (e.g.,
1 second [55]), which further limits their applicability.

(2) Extra reads are a less-known, but important source of perfor-

mance overhead in OCC-1V-in-place. In-place updates can cause
temporary inconsistency to the record data because transactions in
the read phase do not lock records, allowing concurrent writes. A
reader may see record data that is partially overwritten, observe
different data for repeated reads, or even access an invalid memory
location for variable-length data, which resembles inconsistency
issues in transactional memory [20]. To handle the potential incon-
sistency within the record data, modern OCC schemes make a local
copy of the record and verify the consistency of the copy before ex-
posing it to the application [55, 64]. However, creating a consistent
local copy incurs extra read(s) of the record before the application
actually consumes it; the cost increases for larger records.

(3) Index contention may occur in the OCC designs that write to
global indexes before entering the write phase. Upon creation of a
new record, several OCC designs [32, 55] insert a new index entry
to the table’s indexes as well; the new record is locked to prevent
concurrent transactions from reading it before it is committed. This
early index update ensures that the new record satisfies unique-key
invariants [55] and also simplifies making the index change visible
to the current transaction. However, early index updates can create
contention at indexes by frequently modifying their internal data
structure even for the transactions that are eventually aborted. Fur-
thermore, concurrent transactions that attempt to read the new record
may be blocked for an extended period of time if the transaction
that created the new record has a long read phase. In other words,
index updates in many OCC designs neglect the OCC’s principle of
avoiding global writes during the read phase, experiencing common
performance penalties of record updates in non-OCC designs.

OCC’s weaknesses are largely attributable to the use of 1VCC.
OCC is helpful in reducing cross-core communication, which is
important for high-speed in-memory databases. The high abort
rate of OCC is acceptable if it translates into significantly reduced
memory/cache-level contention and the cost of aborts can be min-
imized. The extra reads problem is specific to OCC-1V-in-place.
The cost of index contention can be reduced if an OCC design can
avoid early index updates.
Cicada approach: Contention regulation automatically prevents
excessive transaction restarts to increase commit throughput. Op-
timistic multi-version reduces the cost of aborts and avoids extra
reads, achieving low index contention by allowing index updates to
be deferred until validating the transaction.

2.2 Multi-Version Concurrency Control
Multi-version concurrency control (MVCC) [3] is a popular de-

sign choice for today’s on-disk databases [5, 48]. While MVCC is
less dominant for in-memory databases, recent research has led to
several new in-memory MVCC schemes including Hekaton [12, 35],
HyPer [44], Bohm [16], Deuteronomy [38, 39], and ERMIA [31].
MVCC reduces conflicts between transactions by using multiple
copies (versions) of a record; a transaction can use an earlier ver-
sion of a record even after the record has been updated by a con-
current writer. MVCC is an effective design for read-intensive
workloads [31, 44].

MVCC uses a timestamp to determine which version of records
to serve. A transaction is assigned a timestamp when it begins. A
version has a write timestamp, which indicates when the version
becomes valid, and a read timestamp, which specifies when the
version becomes invalid or until when it must remain valid. The
transaction compares its timestamp against versions’ timestamps to
find and use visible versions. The timestamps of versions use either
the transaction’s initial timestamp or a separate timestamp allocated
at commit time.
Strengths: MVCC reduces transaction conflicts. MVCC can con-



Contention level Operation intensity Record size
High-level component Low High Read Write Small Large High-speed
Optimistic multi-version O N N O O N O
Loosely synchronized clocks − − − − − − N
Best-effort inlining N − N − N − −
Rapid garbage collection N N − N N N −
Contention regulation − N N N − − −
Full Cicada system N N N N N N N

Performance
Impact
N positive
O negative

Table 1: High-level components of Cicada and their performance impact for different workload characteristics.

tinue to process a transaction accessing a record even when the
record has been updated by a concurrent transaction, whereas 1VCC
experiences many conflicts under contended and/or long transac-
tions [35].
Weaknesses: MVCC’s main weaknesses are the high overhead of
its transaction processing and data storage, and the contention during
the timestamp allocation:

(1) Computation and storage overhead of searching and storing
multi-version records can make MVCC require more CPU cycles
and memory than 1VCC. In-memory databases amplify the effect
of this computation and space overhead because they are expected
to provide orders of magnitude higher throughput than disk-based
databases, making CPU cycles precious; it is also harder to increase
memory size than disk size, making the space overhead harder to
tolerate. Most MVCC schemes use indirection to search versions
in a list or an array [12, 31, 35, 39], which can become particularly
expensive if it causes a cache miss and the workload’s working set
does not fit in CPU cache. A recent MVCC proposal [44] eliminates
indirection for latest version access by performing in-place updates
of the latest version; however, this design recreates the extra read
problem of OCC-1V-in-place.

(2) Large footprint is caused by touching more memory than
1VCC to search versions and manage multi-version records. A larger
working set reduces cache hit ratios, degrading the performance of
in-memory transaction processing. Frequent garbage collection can
keep the footprint small, but garbage collection must be efficient to
avoid incurring high overhead.

(3) Writes to the shared memory are performed in most MVCC
schemes during their main transaction execution [12, 35, 39, 44].
Such a design can harm multi-core performance [55].

(4) A bottleneck at timestamp allocation limits the scalability
of most MVCC schemes. They use a straightforward centralized
approach to allocate timestamps, wherein worker threads atomi-
cally increment a shared counter [12, 16, 35]. Because of the high
cost of using atomic operations on a single memory location [10],
the throughput of schemes using a shared counter is limited to a
few million transactions per second, whether or not the workload
is contended. This rate is an order of magnitude lower than the
maximum throughput of fast 1VCC schemes [63, 64]. Future many-
core CPUs may aggravate this scalability limit of prior MVCC
schemes [57, 63].

The weaknesses of MVCC have been only partly addressed
in modern MVCC designs [12, 16, 35, 44]. Existing MVCC
schemes report 20–45% lower throughput than 1VCC under low
contention [35, 44]. Even under contended workloads, most MVCC
schemes have not shown a consistent performance advantage over
1VCC due to their high baseline overhead [63, 64].
Cicada approach: Best-effort inlining reduces indirection by inlin-
ing read-mostly records’ version. Rapid garbage collection keeps
a working set small by quickly reclaiming old versions. Optimistic
multi-version avoids shared memory writes before transaction valida-
tion. Loosely synchronized clocks eliminate the timestamp allocation
bottleneck.

2.3 Constrained Parallel Execution
Hard-partitioned databases, such as H-Store [29], VoltDB [56],

and an early version of HyPer [30], divide the dataset into per-core
partitions, giving each core exclusive access to its own partitions.
These systems process transactions serially within a partition, avoid-
ing the need for any concurrency control overhead. They excel
under easily-partitionable workloads, but their performance rapidly
degrades when more transactions cross partition boundaries [55].

Recent designs including Doppel [43], Bohm [16], Orthrus [50],
and IC3 [58] regulate the parallelism of contended data access based
on static and dynamic analysis on data access patterns. They reduce
the cost of shared memory access to contended memory locations
on multi-core CPUs and the rate of spurious aborts without statically
dividing the main dataset. However, they suffer high latency caused
by coarse-grained batching and/or require a pre-analysis step that
forces submitting and executing a whole transaction at once.
Cicada approach: Cicada requires no batching or pre-analysis.

2.4 Hardware Transactional Memory
Hardware transactional memory (HTM) [23] provides a low-

overhead tool to detect conflicts. The latest commercial processors
support a version of HTM called restricted transactional memory
(RTM) [27]. HTM-based designs improve transaction processing
speed [37, 59, 60, 61]. Although HTM is promising for both uncon-
tended and contended workloads, we focus on general concurrency
control schemes that are applicable to a broader range of systems.
We believe that leveraging HTM and designing general concurrency
control schemes are not conflicting goals, considering that proposed
HTM-based designs are founded on conventional schemes such as
timestamp ordering [3, 6], OCC, and 2PL.
Cicada approach: Cicada is a non-HTM design.

3. DESIGN
Cicada is a multi-core in-memory database with serializability,

featuring three key design aspects: optimistic, multi-version, and
multi-clock. Cicada provides high, robust performance under low
and high contention, on read-intensive and write-intensive work-
loads, on small and large records, and for high-speed workloads that
execute tens of millions of transactions per second.

Table 1 summarizes Cicada’s high-level design components, as
well as the workload characteristics that each addresses. Opti-
mistic multi-version execution, an optimistic timestamp ordering
scheme [34] designed for multi-core in-memory OLTP, reduces both
memory access–level and transaction-level interference at records ac-
cessed by concurrent transactions, avoiding in-place updates to elim-
inate extra reads, and aborting potentially conflicting transactions
early during the read phase before creating garbage. Loosely syn-
chronized clocks maintains per-thread clocks for scalable timestamp
allocation, using non-blocking one-sided synchronization. Best-
effort inlining embeds a small version alongside the record metadata
to avoid indirection without creating a contention point. Rapid
garbage collection reclaims stale data frequently and concurrently
to ensure small footprint that improves cache hit ratios. Although
Cicada can exhibit high abort rates, contention regulation performs
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Figure 1: The workflow of Cicada.

a novel globally coordinated backoff scheme that limits the perfor-
mance penalty of aborts and maximizes system-wide throughput.

Cicada exposes its functionality through a simple C++ interface.
This interface can be used directly by an application or via a high-
level wrapper that supports rich languages such as SQL via interpre-
tation or native code generation [12, 44], possibly interacting with
remote clients.

As depicted in Figure 1, Cicada’s transaction processing adopts
OCC’s main phases of read, validation, and write, and adds mainte-
nance and contention regulation.

In the read phase, a transaction begins with a newly allocated
timestamp (§3.1) and runs the application logic that requests record
access; Cicada searches for a particular version of the requested
record by comparing the timestamp of the transaction and versions
(§3.2). Because Cicada avoids in-place updates, record reads directly
use the shared version of the record without creating a local version.
Record writes and inserts use thread-local versions to store new
record data throughout the read phase. Cicada keeps track of record
reads, writes, and inserts as the read, write, and insert set of the
transaction.

After the read phase, Cicada validates the consistency of the read
and write sets and ensures serializability by using the transaction
timestamp and version timestamps (§3.4) with performance opti-
mizations (§3.5). The validation phase makes new changes in the
write set reachable, which creates garbage that may not be collected
immediately because other threads might be accessing the data.

In the write phase, if validation has succeeded, Cicada logs and

commits the changes (§3.7). Otherwise, it deallocates any immedi-
ately reclaimable items.

Garbage is discovered and collected during maintenance (§3.8);
Cicada frequently and concurrently reclaims stale multi-version data
within tens of microseconds.

For an abort, Cicada performs randomized backoff using global
coordinated maximum backoff time (§3.9), and retries the aborted
transaction as needed.

3.1 Multi-Clock Timestamp Allocation
Cicada assigns a transaction a timestamp at its beginning. The

timestamp is used to decide which version of records to use in the
transaction. This timestamp also determines the serialized order of
committed transactions in Cicada.

Cicada maintains loosely synchronized software clocks to gen-
erate timestamps. The multi-clock design eliminates a traditional
performance bottleneck of timestamp allocation in MVCC on multi-
core CPUs [63]. It also avoids relying on synchronized hard-
ware clocks [4] because hardware virtualization can make hard-
ware clocks unstable upon live migration, and tightly synchronized
clocks may become expensive to implement on future many-core
CPUs [63]. Instead, Cicada adopts distributed clocks that have been
used in distributed transactions [1, 9, 40, 66].

Each worker thread holds a 64-bit local clock. A clock is incre-
mented right before the thread allocates a timestamp. The increment
amount is the locally measured elapsed time since the last clock
increment.

Elapsed time is susceptible to the aforementioned noise as well.
Our implementation uses the Time Stamp Counter [26] to measure
the elapsed time on each core, which provides no guarantees on
continuous clock increments and multi-socket clock synchroniza-
tion. However, this measurement done within a local core remains
scalable, so limiting the minimum and maximum clock increment—
e.g., (0, 1 hour]—is sufficient to prevent excessive clock changes
and help one-sided synchronization compensate for measurement
error by making all clocks “catch up” with the fastest clock.

Timestamps are generated by combining three factors: the current
local clock, a clock boost, and the thread ID. The clock boost is
a per-thread quantity that is temporarily granted to a thread upon
an abort; the thread ID serves as a tie-breaker. An adjusted clock
is obtained by adding the current local clock and a clock boost,
and making the sum larger than the last adjusted clock. A new
64-bit timestamp is generated by taking the low-order 56 bits of the
adjusted clock and appending the 8-bit thread ID.

Each thread remembers two timestamps. (thread.wts) stores
the timestamp generated by the above procedure. (thread.rts)
stores min_wts minus 1, where min_wts is the minimum of
(thread.wts) for all threads, updated by a leader thread period-
ically (§3.8). min_rts is also calculated similarly to (thread.rts),
and is used for safe garbage collection. A read-write transaction
uses (thread.wts) as its timestamp. A read-only transaction uses
(thread.rts) instead, and does not track or validate the read set; it
always sees consistent data because concurrent or future read-write
transactions’ timestamp is no earlier than min_wts and thus is later
than (thread.rts).

Cicada tolerates loose synchronization of clocks. Its protocol
(§3.4) does not assume that ordered timestamps are also ordered in
physical time; it only requires that timestamps are unique and each
thread’s timestamps monotonically increase, which is accomplished
by using the thread ID suffix and monotonically incrementing the
clock.

However, loose synchronization can still harm performance. A
thread using a too early timestamp is likely to fail to write to a
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Figure 2: Multi-version data structures in Cicada.

contended record. To correct clock skew, Cicada uses long-lasting
and short-lived mechanisms:

(1) One-sided synchronization opportunistically adjusts the local
clock by peeking at a remote clock without blocking remote transac-
tion processing. A worker thread periodically (every 100 µs in our
implementation) chooses a remote thread in a round-robin way. It
reads the remote clock and compensates for the small latency in the
cache coherency protocol. If the compensated remote clock is faster
than the current local clock, it becomes a new local clock.

This one-sided synchronization protocol is conservative. It can
correct a slow local clock, but it cannot adjust a fast local clock
because it cannot determine if the local clock is indeed fast or the
remote clock was incremented a while ago. However, this scheme is
effective because all threads frequently synchronize their clock with
each other. Each thread has a chance of reading a fresh remote clock
right after it has been incremented, and all slow clocks eventually
catch up to fast clocks.

(2) Temporary clock boosting provides short-term correction.
When an abort occurs due to a conflict, Cicada sets the clock boost
to a fixed quantity that is larger than the possible residual skew after
one-sided synchronization (1 µs in our implementation). The boost
is reset to zero upon a commit.

Cicada may run for a long duration. Its 64-bit clocks and times-
tamps wrap around. To handle wraparounds, Cicada reinserts a
version with a very early timestamp as a new version with the latest
timestamp and identical record data.

The overhead of reinsertions is small. Reinsertions are infrequent:
if a clock is incremented at 5 GHz, and is further truncated to 52 bits
to accommodate up to 4096 threads (12 bits for the thread ID), a
wraparound occurs every 10 days. Cicada only has to reinsert data
with expiring timestamps incrementally over several days, excluding
recently updated data, which makes the cost negligible in in-memory
databases. Read-only transactions are unaffected as usual.

For logging, it can be desirable to have a total order of timestamps.
A logger can use extended timestamps that include an era, which
stores the number of wraparounds.

By default, Cicada’s transactions do not guarantee external con-
sistency [1, 19] across multiple threads. Cicada permits committing
a transaction with an earlier timestamp after committing another
transaction with a later timestamp when using multiple threads,
similarly to data-driven timestamp-ordering schemes [64]. In other
words, a serial schedule of transactions determined by their times-

tamps in Cicada may not match the commit order in physical time.
Although such a mismatch is rarely a problem in practice because
dependent transactions can force strict ordering by accessing the
same record, it may be desirable to force stricter consistency even
when access sets may be disjoint. For external consistency, Cicada
can postpone notifying the application of a successful commit until
min_wts becomes larger than the committed transaction’s times-
tamp; this can add about 100 µs of extra latency, whose precise
amount depends on how quickly clocks increment, but Cicada can
still process other pending transactions during the delay. If only
causal consistency [47] is required, Cicada can increment a local
clock to make the timestamp for a new transaction larger than the
maximum timestamp of its preceding transactions; the local clock
adjustment is instant because Cicada’s multi-clock does not require
the increment of the local clock to be the same as that of the real-time
clock and its one-sided synchronization corrects the clock drift.

3.2 Multi-Version Execution
Cicada implements relational tables using an expandable array

of records. The array uses 2-level paging with a fixed page size
(2 MiB in our implementation). Each record can be located by its
array index (record ID).

Cicada organizes the versions of a record as a singly-linked list, as
shown in Figure 2. Each version list starts with a head node stored
in the array, followed by version nodes. The head may contain an in-
lined version (§3.3). A version contains (1) a write timestamp (wts)
that is the timestamp of the transaction that has created this version;
(2) a read timestamp (rts) that indicates the maximum timestamp of
(possibly) committed transactions that read this version; and (3) the
record data. The version also has (4) commit status (status) that
indicates the validity of this version; and (5) allocation information
including the NUMA node ID for NUMA-aware allocation and the
version size (not shown). The version list is sorted by wts of the
versions, forming latest-to-earliest order from the head.

A version becomes reachable once it has been installed into
the version list by a writer during its validation phase (§3.4). All
fields except rts and status are immutable. rts can be updated
concurrently by any reader during its validation. status is initially
PENDING when the version has been installed, and becomes either
COMMITTED or ABORTED by the writer in its write phase. UNUSED
indicates an inlined version that is not in use. Deleting a record
installs a zero-length version whose status becomes DELETED when
committed, which makes garbage collection to reclaim the record
ID for future record allocation.

A transaction with a timestamp (tx.ts) accessing a record scans
the version list of the record from latest to earliest order to find a
version to use. It ignores any later version v if (v.wts) > (tx.ts).
Otherwise, it checks (v.status). For PENDING, it spin-waits until
the status is changed. For ABORTED, it ignores this version and
proceeds to an earlier version. For COMMITTED, it stops searching
and chooses the version; we refer to this version as the version
visible to the transaction.

The blocking behavior regarding PENDING versions is based on
several observations. Blocking is short because a version remains
PENDING for only a short period of time during validation. A pending
version is likely to become COMMITTED instead of ABORTED because
it has been installed only after the writer passes early consistency
checks; thus, speculatively ignoring this pending version risks an
abort. A pending version can still be aborted, creating cascaded
aborts if it is speculatively used. Therefore, Cicada spin-waits,
unlike prior MVCC designs making speculative decisions [35, 39].

During version search, as an important performance optimization,
Cicada may perform an early abort of the current transaction that is



likely to be aborted. For a write using the visible version v, it checks
whether (v.rts) ≤ (tx.ts) because the validation protocol will
abort the transaction otherwise. For a read-modify-write (RMW),
Cicada applies a write-latest-version-only rule. It aborts the current
transaction if there is a version v′ such that (v′.wts) > (tx.ts) and
is either COMMITTED or PENDING because that later version likely
aborts this transaction.

Cicada supports read-own-writes, which serves existing thread-
local versions when a transaction accesses the same records
again [45]. It provides consistency within a transaction by not losing
earlier writes even if the application fails to reuse the pointer to the
local version. Cicada finds earlier local writes using a lightweight
thread-local hash table. A hash table entry is indexed by the table
and record ID. The entry contains a pointer to the metadata that can
locate a local version of the record. If the application can ensure
the reuse of local versions and/or no multiple accesses for the same
record, it can instruct Cicada to bypass the duplicate access check.

3.3 Best-Effort Inlining
Cicada uses best-effort inlining to reduce the indirection cost

of multi-version execution while avoiding creating overhead and
contention.

A transaction attempts to use the preallocated space for the in-
lined version in the head. It decides whether to use inlining when
a write access to a record is requested; if the inlined version is
UNUSED, it attempts to take ownership of the inlined version us-
ing an atomic compare-and-swap (CAS) operation on the status
field to change it to PENDING. If the CAS succeeds, it uses the in-
lined version to store new record data; otherwise, it falls back to
dynamic allocation of a non-inlined version. Inlining is applied
only to small records (up to 216 bytes of record data inlined in our
implementation—4 cachelines per head node including overhead)
because inlining large records has diminishing returns, and large
head nodes complicate memory management of the head node array.

Figure 2 illustrates inlining. Record 0 is not using inlining; the
pointer of the head points to a non-inlined version. Record 1 uses
inlining for the latest version, which can save a cache miss for
transactions accessing the record. Record 2 shows that the inlined
version does not have to be the latest version; the inlined version
behaves the same as if it were non-inlined, except that it is simply
marked as UNUSED when deallocated.

Cicada may promote a non-inlined version to make it inlined.
The conditions are (1) a transaction reads a non-inlined version
v as the visible version; (2) the version is early enough: (v.wts)
< min_rts; and (3) the inlined version is currently UNUSED. If so,
Cicada automatically upgrades the read access to an RMW access,
which attempts to write an inlined version with the same record data.
The promotion may fail if there is a concurrent write to the record,
but condition (2) makes this case rare. As a result, even if the latest
version of a record is non-inlined, it eventually becomes inlined.

To avoid creating a contention point at the inlined version, promo-
tion only optimizes infrequently- or never-changing read-intensive
records. If a record is frequently written, promoting a version of
such a record will incur unnecessary write overhead. If the record is
never read, promotion does not provide a performance benefit; Ci-
cada still can perform promotion for never-used records by scanning
tables occasionally, simply to save space.

3.4 Serializable Multi-Version Validation
Cicada’s validation protocol ensures that the execution of a com-

mitted transaction appears to occur atomically at the transaction’s
timestamp (tx.ts). As a result, any schedule for committed trans-
actions in Cicada is equivalent to the serial schedule that executes

the committed transactions in their timestamp order; Appendix A
provides the formal proof. This multi-version protocol permits a
transaction to freely read and write non-latest versions of records
unless it violates serializability.

Validation has three required steps: (1) Pending version installa-
tion: It installs PENDING versions by inserting them into the version
list of the records in the write set; the installation uses an atomic
compare-and-swap operation to keep versions ordered by wts in
the version list. (2) Read timestamp update: It updates, if neces-
sary, the read timestamp of every version v in the read set to ensure
(v.rts) ≥ (tx.ts) using an atomic compare-and-swap operation.
(3) Version consistency check: It verifies that (a) every previously
visible version v of the records in the read set is the currently visible
version to the transaction, and (b) every currently visible version v
of the records in the write set satisfies (v.rts) ≤ (tx.ts).

The pending version installation step blocks concurrent transac-
tions that share the same visible version and have a higher timestamp
than (tx.ts). If a concurrent transaction using the same visible ver-
sion has a lower timestamp than (tx.ts), it may proceed to install
its own pending version, aborting either this transaction itself or
that concurrent transaction. Similar to early aborts, this step aborts
the current transaction if the current visible version v fails to satisfy
(v.rts) ≤ (tx.ts).

The read timestamp update step serves to notify other transactions
that this version was read “as late as” (tx.ts).

The version consistency check step ensures (a) that no other trans-
actions have written any new version that changes the visibility of
the versions read by this transaction, and (b) that this transaction
does not commit a too early version that would invalidate the con-
sistency of already committed transactions relying on the constant
visibility of the versions read at their timestamp. Note that the latter
check uses the currently visible version to increase the concurrency
of write-only (not RMW) operations that do not depend on the
previous record data.

After successful validation, Cicada provides a customizable log-
ger with the transaction timestamp and read, write, and insert set.
If logging fails, the logger can abort the transaction; the logger can
also ignore the logging failure and retry logging later if the applica-
tion allows realizing the durability of a transaction after it has been
committed [55].

Committing versions in the write phase simply changes their
status from PENDING to COMMITTED.

A rollback upon an abort changes each pending version’s status
to ABORTED only if the version has been already installed. Otherwise,
the pending version is deallocated for immediate reuse, without
experiencing the ABA problem [42]. Similarly, any reserved record
ID for a new record is freed and becomes available for reuse.

Note that the read timestamp update step is fast because its write
is conditional. A read timestamp remains unchanged if it is already
later than (tx.ts). Our 28-core testbed (§4.3) running multi-clock
(§3.1) achieves 2.3 billion read timestamp updates per second on a
single record. By comparison, it performs only 55 million uncondi-
tional atomic fetch-and-adds per second on a single record.

3.5 Optimizations for Efficient Validation
Cicada achieves efficient validation with small footprint using

several performance optimizations:
(1) Sorting the write set by contention is performed before any

validation steps to reduce the footprint of subsequent steps upon
an abort. Cicada first calculates the approximate contention level
of the records in the write set by using wts of their latest version
(the first version in the version list); a larger wts of a record implies
that this record is likely more contended than others. It sorts the



write set in descending order of approximate contention level, and
the validation steps using the write set follow this order. Partial
sorting is sufficient because the contention level is relevant only
to highly contended records. Partial sorting costs O(n log k) to
sort top-k items in the write set with total n records (k = 8 in our
implementation).

This sorting realizes contention-aware validation, allowing Ci-
cada to detect conflicts early before installing many pending versions
(which will become garbage upon an abort) and touching a large
amount of memory. This optimization is impossible or costly in
many OCC schemes: Silo, TicToc, FOEDUS, and MOCC must
sort the entire write set in a globally consistent order (e.g., memory
address or primary key of records) to avoid deadlocks during the
locking step of their validation phase; such a design does not allow
flexible locking order and costs O(n logn) for full sorting. Cicada
does not have this limitation because it has deadlock freedom: the
pending version installation is prioritized by transaction timestamps,
which avoids a dependency cycle.

(2) Early version consistency check is performed after sorting
the write set. This is identical to the version consistency check of
the core validation protocol, detecting most aborts before installing
versions that would become garbage. This technique is inspired by
TicToc’s preemptive aborts [64].

These two optimizations can add unnecessary overhead under
low contention because they do not improve the performance of
uncontended workloads. Each thread adaptively omits both steps
if the recent transactions have been committed (5 in a row in our
implementation).

(3) Incremental version search reduces the cost of repeated ver-
sion search. The pending version installation and version consis-
tency check steps navigate version lists, which is redundant with the
version search done in the read phase. Such repeated full version
searches become particularly expensive for contended records be-
cause each search must traverse newly-inserted versions that are not
in the local CPU cache. To reduce the cost of repeated search, the
initial version search in the read phase remembers later_version
whose wts is immediately later than (tx.ts). later_version is
updated whenever a new version qualified as later_version is dis-
covered during subsequent version search. Because the version list
is sorted by wts in descending order, any new version that can abort
the current transaction is guaranteed to appear after later_version
in the version list. Thus, repeated version search can safely resume
from later_version.

3.6 Indexing
Cicada decouples indexing from the main transactional storage.

All indexes, including primary indexes, are separate data structures
from their main table. An index stores 64-bit record IDs as values
and does not store actual record data or raw pointers. Cicada’s
main indexing scheme, multi-version indexes, tackles two major
problems: avoiding phantoms and reducing index contention.

Avoiding phantoms is required for serializability [12]. The prob-
lem arises when new records that a transaction could use appear
after the transaction has been already committed. Phantoms may
occur if the system only validates access to individual records and
overlooks index data that affect index search (e.g., range scans).

Cicada’s multi-version indexes use a variant of index node valida-
tion [55]. Each index node maintains both a write timestamp and
a read timestamp in the same way that it maintains table records.
For a range query, index nodes whose key range intersects with the
query’s key range are included in the read set of the transaction. For
a point query for an absent key, the index node that could include the
key is added to the read set. For a key insert or removal, modified

index nodes are included in the read and write sets of the transac-
tion. The validation of index node accesses precludes phantoms by
detecting index node changes prior to the validation and preventing
future index node changes using an earlier timestamp (§3.4).1

The multi-version indexes leverage Cicada’s multi-version execu-
tion. They use plain Cicada tables as a memory pool; an index node
is stored as a record, and pointers to index nodes and to indexed
records use their record IDs. This scheme resembles concurrent
index designs using software transactional memory [24, 51].

Low index contention is one of the beneficial side effects of uni-
fying Cicada’s transaction processing and index validation. Unlike
many modern OCC designs that modify index data structures during
the read phase of the transaction [32, 55], Cicada’s multi-version
indexes defer index updates until validating the transaction by keep-
ing index node writes in thread-local memory; we reuse Cicada’s
read-own-writes support for table records to enable a transaction
to read back its own index updates. Consequently, index update
attempts by the transactions that are eventually aborted create little
extra contention because they never modify global index data.

We retain support for single-version indexes backed by a conven-
tional concurrent index data structure. They are more lightweight
than multi-version indexes by making fewer memory accesses, but
single-version indexes without deferred index updates often experi-
ence high index contention.

3.7 Durability and Recovery
Cicada supports durability and recovery using parallel value log-

ging and checkpointing. We believe that Cicada can also support fast
transaction-consistent checkpointing [49] by leveraging its multi-
version design, which we leave as future work. We provide a design
sketch of scalable durability and recovery. These techniques are
well-known and documented [67]; here, we describe how one would
implement them in the context of Cicada.

Redo logs are created by logger threads, each of which services
one or more worker threads on the same NUMA node. After a
worker validates a transaction, it sends a new log record to its log-
ger; the record contains the write timestamp and data of newly
installed versions in the transaction’s write and insert set. The log-
ger appends the record to its per-thread redo log file. The worker
then marks the new versions COMMITTED, allowing validation of de-
pendent transactions. For traditional block devices and networked
replicas, loggers can amortize write latency by using group com-
mit [22, 67]. On byte-addressable non-volatile memory, workers
can exploit low-latency writes [7, 13, 25] and avoid communication
overhead by directly performing logging without group commit and
separate loggers.

Checkpoints are generated regularly by checkpointer threads in
the background. Checkpointing virtually partitions each table. For
each record in a partition, checkpointers store the latest committed
version in per-thread checkpoint files. This process happens asyn-
chronously without taking locks. For safe memory access, check-
pointers participate in maintaining min_rts (§3.1); they frequently
update (thread.rts) to avoid hindering min_rts increments.

Upon recovery, multiple recovery threads replay versions in redo
logs and the last successful checkpoint in descending write times-
tamp order. A version is installed unless a version with a later
write timestamp already exists in the memory for the same record;
each record keeps only the latest version. Record deletion (§3.2)

1As a common performance optimization, Cicada does not validate
read-only accesses to internal index nodes because validating leaf in-
dex nodes that are responsible for holding index key-value pairs suf-
fices for phantom avoidance. Temporary structural inconsistencies
are mitigated by using sibling pointers, similarly to Blink-tree [36].



is executed only after finishing all replays. If a DELETED version
is applied when it is encountered, a non-DELETED version with an
earlier timestamp can recreate the deleted record later in recovery,
violating the durability of the record deletion. After completing
replays, the system initializes clocks so that new timestamps are
later than any replayed version’s write timestamp.

Space management: Each per-thread redo log is chunked to a
certain size (e.g., 1 MiB). The system records current min_wts in
the beginning of checkpointing. Upon checkpoint creation, it purges
old checkpoint and redo log files whose latest write timestamp is
earlier than the recorded min_wts.

3.8 Rapid Garbage Collection
Cicada’s garbage collection rapidly reclaims memory to maintain

a small footprint. Garbage is collected frequently and concurrently
in the cooperative maintenance.

Frequent garbage collection is important for Cicada to approach
1VCC’s lightweightness. Garbage collection in prior databases is
typically infrequent—e.g., every tens of ms. However, such infre-
quent garbage collection would inflate the working set significantly
in MVCC. For example, suppose that it takes 80 ms to reclaim
newly-created garbage (twice the 40-ms epoch length of Silo [55]
using epoch-based reclamation (EBR) [18]). If each transaction
creates 1 KiB of stale records (8× 2 cachelines) and runs at 3.5 M
transactions per second (a write-intensive, uniform YCSB scenario
that writes eight 100 byte records per transaction in §4), the working
set is 80 ms × 1 KiB × 3.5 M/s = 287 MB. This is far beyond
today’s CPU cache size; even if it fits in future caches, filling so
much cache space with garbage lowers the cache efficiency.

For frequent garbage collection, Cicada uses a variant of EBR
and quiescent-state-based reclamation (QSBR) [21]. It detects re-
claimable versions using fine-grained timestamps, unlike other de-
signs that use coarser-grained epochs for garbage collection [31, 38,
55, 64].

As the first step of the maintenance, a thread records the metadata
of new versions committed by the last transaction. Committing a
version v turns its earlier versions for the same record into garbage
when the earlier versions are not visible to current and future trans-
actions. For each v, the thread enqueues an item containing a pointer
to v and a copy of (v.wts) into the local garbage collection queue.

The thread then declares a quiescent state by setting a per-thread
flag regularly (every 10 µs in our implementation). If a leader thread
sees that every flag has been set, it resets all flags and monotonically
updates min_wts and min_rts, which store the global minimum of
(thread.wts) and (thread.rts) for all threads.

After the quiescence, a thread inspects its local garbage collec-
tion queue. It checks the front queue item to see if (v.wts) <
min_rts. If so, it can safely reclaim the earlier versions of v for
the same records because all current and future transactions use v
or later versions. Otherwise, it stops checking; the check will fail
anyway for the subsequent queue items because (v.wts) of each
item monotonically increases within the queue.

Concurrent garbage collection allows multiple threads to re-
claim the versions of different records as well as of the same
record. Cicada maintains a small per-record data structure con-
taining a garbage collection lock and the minimum write timestamp
(record.min_wts), separate from the main record metadata (the
head), which is prefetched while creating a new garbage collection
item for the record. The thread performs garbage collection for a
committed version v if (a) acquiring the garbage collection lock suc-
ceeds and (b) (v.wts) > (record.min_wts). If condition (a) fails,
this garbage collection item is discarded to avoid excessive garbage
collection attempts on contended records. Condition (b) ensures

that the pointer to v is not dangling. The thread detaches the rest of
the version list from v, updates (record.min_wts), and releases the
lock, making the record available for concurrent garbage collection.
Finally, the thread returns the versions in the detached version list
to its local memory pool.

3.9 Contention Regulation
OCC schemes are vulnerable to contention [43]. They execute

transactions with minimal coordination between threads, which
makes it hard to detect conflicts early.

Contention wastes local and global system resources. An aborted
transaction consumes local CPU cycles for its execution. Even
though OCC avoids making shared memory writes in the read phase,
reading contended data can cause contention by invalidating another
thread’s cacheline. The memory management overhead of MVCC
can further increase the cost of aborts. Although Cicada’s early
aborts and early version consistency check steps avoid installing
versions until a transaction is likely to be committed, a few aborts
reach the pending version installation step and creates garbage.

Backoff is a common mechanism to reduce contention. A thread
sleeps for a certain duration after it aborts a transaction. The dura-
tion of sleep varies by backoff schemes. For example, the DBx1000
framework [11] chooses a random duration between 0 and the maxi-
mum backoff duration of 100 µs for an aborted transaction, and each
thread allows at most 10 transactions’ backoff to overlap.

Backoff schemes based on local information are often suboptimal.
Although they can reduce interactions between threads, they tend to
be overly conservative under high abort rates. Different workloads
running on different systems have different optimal backoff time;
some scenarios may favor the maximum backoff time of a few µs
for the highest performance, even though the abort rate may remain
high, while the others may benefit from longer backoff time and
lower abort rates.

Cicada regulates contention with randomized backoff using glob-
ally coordinated maximum backoff time. A leader thread updates
the maximum backoff time as part of its maintenance. The leader
uses hill climbing to incrementally find the optimal maximum back-
off time that maximizes the throughput of committed transactions.
Each worker thread tracks the number of locally committed trans-
actions. Periodically (5 ms in our implementation), the leader ag-
gregates the number of committed transactions across all threads
to obtain the throughput. It then calculates the changes of the
throughput and the maximum backoff time between the second-
to-last period and the last period. If the gradient (the throughput
change divided by the maximum backoff time change) is positive,
it increases the maximum backoff time by a fixed amount (0.5 µs
in our implementation); if the gradient is negative, it decreases the
maximum backoff time by the same amount. If the gradient is zero
or undefined (no change in the maximum backoff time), it chooses
a direction at random.

4. EVALUATION
This section compares the performance of Cicada and modern in-

memory database designs, and examines the contribution of Cicada’s
components to its performance.

We show that (1) Cicada consistently achieves high performance
under low and high contention, on read-intensive and write-intensive
workloads, on small and large records, and for high-speed work-
loads; and (2) Cicada’s components are crucial to its performance.

4.1 Compared Systems
We compare Cicada with seven serializable in-memory concur-

rency control schemes: Silo [55], TicToc [64], FOEDUS [32],



MOCC [57], 2PL no-wait [3], Hekaton [12, 35], and ERMIA
SI+SSN [31]. Silo is an OCC-1V-in-place scheme using epoch-
based group commit. TicToc is an OCC-1V-in-place scheme using
flexible data-driven timestamp allocation to improve the perfor-
mance of contended workloads over Silo. FOEDUS is an OCC-1V-
in-place scheme designed to scale on many-core systems; MOCC
mixes FOEDUS’s OCC and locking to reduce the cost of access to
contended records. 2PL no-wait is two-phase locking that avoids
deadlock by aborting the current transaction upon locking failure
and uses 1VCC and in-place updates. Hekaton is an MVCC scheme
that forms the basis of a production DBMS. ERMIA is an MVCC de-
sign that improves fairness among read-mostly and write-intensive
transactions; we use its SI+SSN variant for serializability.
Implementation: We implement Cicada in C++. We use the ref-
erence implementation of Silo [52], TicToc [11], FOEDUS and
MOCC [17], and ERMIA [14]. For Hekaton and 2PL no-wait, we
use implementations available in DBx1000 [11, 63]. We also use
DBx1000’s reimplementation of Silo, denoted as Silo′. Silo′ is often
faster than the reference Silo because Silo′ uses DBx1000’s backoff
scheme (§3.9), and its hash index for unordered index queries.
Optimization: We optimized the implementation of compared con-
currency control schemes to improve their performance on our
testbed. (1) For Silo, we changed its page pool to allocate hugepages
directly via mmap() with MAP_HUGETLB. (2) For 1VCC schemes in
DBx1000 (Silo′, TicToc, and 2PL), we collocated the record data
and its concurrency control metadata on the same cacheline to re-
duce indirection as in the original Silo. The measured performance
of compared schemes on our testbed is higher than their published
results because of the more efficient memory access.
Missing features: The original DBx1000 lacks (1) an ordered index
with phantom avoidance, (2) a NUMA-aware small object alloca-
tor, and (3) dynamic record creation and deletion. We modified
DBx1000 to use Masstree [41] as an ordered index and ported Silo’s
phantom avoidance scheme.2 We also apply Silo’s RCU implemen-
tation to provide existing DBx1000 schemes with efficient object
allocation and dynamic record management.

FOEDUS and MOCC require at least 4 threads on our testbed.
We simply omit experiments using fewer threads on these systems.

4.2 Workloads
Experiments use two standard workloads: TPC-C and YCSB.

TPC-C [54] is a benchmark for online transaction processing (OLTP)
databases. TPC-C has a configurable number of warehouses. A
worker thread mostly interacts with its local warehouses, but ap-
proximately 10% of NewOrder and 15% of Payment transactions
access a remote warehouse. YCSB [8] is a benchmark commonly
used for key-value store evaluation, and also adopted in transac-
tional database evaluation by accessing multiple records in a single
transaction. YCSB supports different workload characteristics via
configurable parameters: the number of requests per transaction,
the ratio of reads to all read and read-modify-write (RMW) requests,
and the skew factor of the Zipf distribution for requested keys. Each
read or read-modify-write request chooses a random key based on
the key distribution, and reads or updates the corresponding record,
performing a simple calculation with the field data. A scan picks a

2TicToc does not provide the detailed design and implementation
of phantom avoidance [64]. TicToc’s authors have indicated [62]
that complete phantom avoidance would need to maintain a read
timestamp on each index node in the same way as normal records in
addition to performing Silo’s phantom avoidance. Our experiments
using TicToc without index read timestamps have faster execution
speed and fewer aborts than with the full phantom avoidance, which
is sufficient to provide the upper bound of TicToc’s performance.

random key in the same way and reads a certain number of records
using subsequent keys.
Implementation: Cicada shares benchmark implementations with
existing concurrency control schemes in DBx1000 via a thin wrapper
that allows Cicada to be used as a concurrency control scheme within
DBx1000. That is, Cicada and existing schemes in DBx1000 share
the benchmark code, but have separate data storage and transaction
processing engines. Cicada’s DBx1000 compatibility allows direct
comparisons with existing DBx1000 schemes.

We implemented missing benchmarks for compared systems.
(1) The original DBx1000 implemented TPC-C-NP, a subset of
TPC-C that uses only NewOrder and Payment transactions; we im-
plemented the full TPC-C for DBx1000. (2) Silo, FOEDUS, MOCC,
and ERMIA only supported a uniform key distribution on YCSB;
we ported DBx1000’s YCSB benchmark for these implementations
to support Zipf key distributions.
Optimization: The TPC-C implementation of existing systems
employs different TPC-C-specific optimizations. (1) Silo uses read-
only transactions for OrderStatus and StockLevel. (2) DBx1000
systems use hash indexes for the tables that do not require range
queries. (3) Silo and ERMIA remember the last seen NO_O_ID in
Delivery within the benchmark client and never reuse NO_O_ID
even when a transaction fails to process a corresponding entry.
(4) FOEDUS and MOCC accelerate transactions with index by-
passing and vertical partitioning.

We retain these optimizations in existing TPC-C implementa-
tions to respect the original authors’ performance tuning effort.
Cicada’s TPC-C uses only the first two optimizations: (1) Cicada
provides low-latency read-only transactions at almost no cost; and
(2) DBx1000-compatible schemes share the same TPC-C implemen-
tation, including index types. However, (3) Cicada avoids externally
storing any user data that could reduce aborts; and (4) Cicada al-
ways uses indexing and no vertical partitioning to reflect the cost
of index searches and contended record accesses more precisely.
Consequently, the TPC-C implementation for Cicada and other
DBx1000-compatible schemes is one of the least optimized imple-
mentations among compared systems, which helps maintain the
generality of our experiments using this TPC-C implementation.
Configuration: Our experiments encompass diverse benchmark
configurations that appear in literature [8, 50, 55, 58, 61, 64]. Con-
tended TPC-C uses 1 warehouse and 4 warehouses. Uncontended
TPC-C uses a number of warehouses equal to worker threads; 28-
warehouse TPC-C uses about 10 GB of user data (i.e., excluding
indexes and storage overheads) by the end of a run. The YCSB
benchmark uses 10 M records of 100 bytes by default, which cor-
responds to 1 GB of user data; we include experiments using up to
2000 bytes per record, which is 20 GB of user data. The number
of records in each scan is chosen uniformly at random in [1, 100].
We refer to the read ratio of 95% (5% RMW) as read-intensive
and 50% (50% RMW) as write-intensive. We use combinations
of read-/write-intensiveness, the Zipf skew of the key distribution,
and the number of requests per transaction. Several benchmark
configurations, such as TPC-C with many warehouses and YCSB
with small skew, have working sets far larger than our testbed’s CPU
cache size, resulting in 42.8 GB/s of peak memory bandwidth use.

4.3 Testbed and Measurement
Experiments use a single server equipped with two Intel® Xeon®

E5-2697 v3 CPUs (each with 14 cores and 35 MiB last level cache)
and 128 GiB of DRAM. The experiments pin threads to different
cores and use NUMA-aware memory allocation with hugepages.

All processing is done in memory; persistent logging and remote
clients are disabled. We expect that logging will lower the through-
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Figure 3: TPC-C (full mix) throughput; with phantom avoidance.
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Figure 4: TPC-C (full mix) throughput; with deferred index updates and no phantom avoidance. DBx1000-compatible schemes only.
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Figure 5: TPC-C-NP (NewOrder and Payment only) throughput. DBx1000-compatible schemes only.

put of all schemes (e.g., by 17% [44]). Remote clients will add
extra overhead; efficient I/O stacks [2, 28, 46] can minimize this
overhead.

Each experiment is run 5 times. Every data point in graphs show
an error bar that indicates the minimum and maximum, whose
difference is typically small. The measurement begins after an
initial ramp-up period. The experiments enforce fairness among
transactions by retrying aborted transactions without starving trans-
actions that make frequent conflicts (e.g., Delivery in TPC-C). For
consistency across benchmarks, Throughput (the y-axis) measures
the number of all committed transactions per second (tps). The
throughput of committed NewOrder is 45% of the total committed
throughput in TPC-C results.

4.4 TPC-C Experiments
Under high contention: Figures 3a and 3b examine the effect of
contention using TPC-C with 1 and 4 warehouses, respectively,
using up to 28 threads. All schemes except Cicada scale poorly
because they suffer frequent conflicts at record and index updates.
Only ERMIA has comparable 1-warehouse performance to Cicada’s
using 12 threads, but its throughput collapses with more threads
because ERMIA attempts excessive parallel data access to contended
records; Cicada’s contention regulation automatically avoids such
excessive access. Cicada achieves up to 3X higher throughput than
the next fastest design.

Note that Cicada’s throughput continues to scale up to 12 threads
for 1-warehouse TPC-C and 28 threads for 4-warehouse TPC-C.

This may appear to violate TPC-C’s inherent concurrency limit:
a Payment transaction writes to a per-warehouse record in the
WAREHOUSE table, which disallows concurrent Payment transactions
greater than the warehouse count. However, Cicada benefits from
more threads because (1) WAREHOUSE is modified by Payment only,
and (2) Payment is only a single transaction type in TPC-C. Ci-
cada’s multi-version execution allows running other transaction
types concurrently because they only read WAREHOUSE or do not ac-
cess it at all. Payment is typically cheaper to process than NewOrder,
Deliver, and StockLevel. A bottleneck by the concurrency limit
of WAREHOUSE becomes apparent when Cicada uses many threads
enough to have active Payment for every warehouse.

To scale under contention, however, a system must have efficient
index updates even with high abort rates. Cicada’s multi-version
indexes keep any updates entirely in local memory before the trans-
action is committed, reducing the cost of index updates. In contrast,
other systems suffer index contention; they perform early index
updates before transaction validation, which causes their phantom
avoidance to frequently abort concurrent transactions that accessed
the modified nodes.

Figures 4a and 4b use the same warehouse configuration as above,
with systems modified to reduce the cost of index updates. Sys-
tems defer index updates until all record accesses are validated
and also omit phantom avoidance. Since this modification requires
extensive code changes, we only compare DBx1000-compatible
schemes. Cicada uses a single-version index based on Masstree
without phantom avoidance as in other systems to show that Cicada
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Figure 6: YCSB throughput using 16 requests per transaction.

maintains high performance when using conventional single-version
indexes. With cheaper index updates, most systems, notably Silo′

and TicToc, show better scalability, confirming that their high in-
dex update cost under frequent aborts is a major (but not the only)
bottleneck. However, Cicada still outperforms compared systems.
Cicada’s multi-version execution and contention regulation make
transaction processing efficient by reducing high-level (transaction)
and low-level (memory access) contention. Cicada’s 1-warehouse
throughput is 33.2% higher than Silo′, reaching 443 k tps, which is
comparable to that of a modern concurrency control scheme that is
based on static analysis [58], even though Cicada uses no analysis.
Under low contention: Figure 3c shows the throughput of uncon-
tended TPC-C using the same number of warehouses as threads.
TPC-C is write-intensive, so MVCC creates and reclaims many
versions, making this scenario favor 1VCC schemes. ERMIA and
Hekaton’s throughput is lower than others, due to MVCC overhead.
In contrast, Cicada’s 28-thread throughput is 2.07 M tps. This per-
formance is up to 11.1% lower than FOEDUS and MOCC that
use extra TPC-C-specific optimizations that Cicada and DBx1000
schemes do not implement. Using the same TPC-C implementa-
tion on DBx1000, Cicada is 5.54% faster than Silo′; Cicada’s high
speed under low contention is possible by best-effort inlining, rapid
garbage collection, and no extra read cost, which enable efficient
memory access despite maintaining multiple versions. In particular,
Cicada’s inlining is applied to its own hash index, reducing the
number of random memory accesses required for each index search.

Figure 4c uses lightweight index updates under low contention.
Cicada maintains up to 10.7% higher throughput than other systems
and scales linearly with more core count.
TPC-C-NP: Figure 5 shows the TPC-C-NP (NewOrder and
Payment only) performance on DBx1000. The result is largely
similar to TPC-C with deferred index updates and no phantom
avoidance in Figure 4, but Cicada shows an even larger performance
gain because relatively short and prone-to-conflict transactions of
TPC-C-NP make the benefit of Cicada’s efficient transaction execu-
tion and conflict resolution more visible.

4.5 YCSB Experiments
Figure 6a compares the performance of fast OCC schemes under

contended YCSB using 16 requests per transaction, 50% read/50%
RMW, and Zipf skew of 0.99. Cicada’s multi-version design and
contention regulation help maintain its high performance: Cicada’s
throughput is higher than others when using the same thread count;
with 28 threads, Cicada’s throughput is 37.1% higher than TicToc’s.
Cicada’s performance decreases only slightly when many threads
execute transactions; FOEDUS and MOCC reach their peak through-
put at 8 threads and experience performance degradations with more
threads, indicating that their contention regulation is less effective
than Cicada’s.

Figure 6b plots the throughput of systems on write-intensive
YCSB with 28 threads and variable skew to examine the effect of the
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Figure 7: Read-intensive YCSB. 1 request per transaction, skew of 0.99.

write-intensiveness and the skew of the key popularity distribution
separately. All schemes experience lower throughput with higher
Zipf skew of the key popularity distribution because of increased
conflicts on a few popular keys. Cicada maintains higher throughput
than compared systems under both low and high skew. With low
skew where the working set is large and has little access locality,
Cicada’s best-effort inlining keeps the number of random memory
accesses low; in particular, Cicada’s inlining makes multi-version
hash indexes competitive with conventional hash indexes used in
compared systems. With high skew, the benefit of best-effort inlining
diminishes because the working set is small, causing fewer last
level cache misses. However, Cicada’s multi-version execution
and contention regulation helps sustain high performance under
contention.

Figure 6c shows the read-intensive YCSB performance with 28
threads and variable skew. Systems achieve slightly higher perfor-
mance with moderate skew (e.g., 0.8) due to locality of memory
reads, but they eventually show lower performance with high skew
(e.g., 0.99) due to more frequent conflicts at record reads and up-
dates. Cicada again maintains the highest throughput across all
contention levels, achieving up to 69.2% higher throughput than the
next best. The performance gap is larger than on write-intensive
YCSB because random memory access time, which Cicada’s best-
effort inlining saves, constitutes for a larger fraction of execution
time on this read-intensive YCSB. Cicada also does not suffer from
the cost of extra reads that slow OCC-1V-in-place schemes including
Silo and TicToc.

4.6 Factor Analysis
Multi-clock (§3.1): As shown on Figure 7, Cicada processes
56.5 M tps for a YCSB workload using 1 request per transaction,
95% read/5% RMW, Zipf skew of 0.99, and 28 threads. This result
makes Cicada one of the fastest in-memory MVCC designs; other
MVCC designs such as Hekaton that use centralized timestamp-
ing reach only 3.50–5.10 M tps for 28 threads. Modifying Cicada
to use traditional timestamp allocation with atomic fetch-and-add
on a shared counter drops throughput to 6.22 M tps, showing that
multi-clock timestamp allocation is crucial for Cicada to handle
high-speed transactions.
Multi-version execution (§3.2): Cicada maintains high throughput
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No-wait No-latest No-sort No-precheck
−13.2% −4.9% −12.7% −9.5%

Table 2: Throughput differences when disabling a performance optimization
on contended YCSB.

under contended workloads using multi-version execution. The
fine-grained versioning also ensures that Cicada’s snapshots have
low staleness. For read-only TPC-C transactions (OrderStatus and
StockLevel), Cicada’s average and 99.9-th percentile staleness is
117 µs and 724 µs. This staleness is orders of magnitude smaller
than that of previous epoch-based snapshots, which reaches tens
to hundreds of ms; for example, Silo has 0.5 second staleness on
average because a snapshot is taken every second [55].
Best-effort inlining (§3.3): Figure 8 plots the throughput of read-
intensive YCSB using 16 requests per transaction, a uniform key
popularity, and 28 threads. Best-effort inlining improves throughput
under this uncontended workload especially for small record size
because the indirection accounts for a large fraction of the processing
cost for small records, but the benefit gradually diminishes with
large records. However, even for large records, inlining boosts
performance because the node size of Cicada’s multi-version hash
index is 24 bytes, which is within the size limit of inlining (216
bytes in the implementation).

Best-effort inlining also accelerates scans. On read-intensive
YCSB with skew of 0.99 and 28 threads, scans are executed as
read-only transactions. Each RMW updates a single record. Cicada
scans 356 M records per second (rps) with inlining, but only 203 M
rps without inlining.
Performance optimizations (§3.2, §3.5): Table 2 summarizes the
throughput difference on contended YCSB using 16 requests per
transaction, 50% read/50% RMW, skew of 0.99, and 28 threads,
when omitting each of the performance optimizations. No-wait
speculatively ignores PENDING versions as in Hekaton. No-latest
disables the write-latest-version-only rule. No-sort skips the
contention-aware write set sorting. No-precheck skips the early
version consistency check. By omitting any single optimization,
Cicada achieves 4.9–13.2% lower throughput.
Rapid garbage collection (§3.8): Figure 9 shows the TPC-C
throughput of Cicada using 28 threads with different minimum
intervals of quiescence. Performing garbage collection only ev-
ery 100 ms drops throughput by 36.0% for 28-warehouse TPC-C,
27.2% for 4-warehouse TPC-C, and 2.2% for 1-warehouse TPC-C
vs. the default 10 µs garbage collection interval; rapid garbage col-
lection is most beneficial for high-throughput workloads that create
more garbage and inflate the working set. The infrequent garbage
collection causes high space overhead (the total version count /
the total record count−100%) of 9.89%. In contrast, rapid garbage
collection in Cicada limits the space overhead to 1.83%.
Contention regulation (§3.9): Figure 10 illustrates the effective-
ness of Cicada’s contention regulation, using TPC-C with 4 ware-
houses (top), TPC-C-NP with 4 warehouses (middle), and write-
intensive YCSB with 1 request per transaction and skew of 0.99
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Figure 9: TPC-C throughput with different minimum intervals of quiescence
for garbage collection.
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Figure 10: Throughput and abort rate of contended TPC-C (top), TPC-C-NP
(middle), and YCSB (bottom) using contention regulation (auto) and fixed
backoff settings (manual).

(bottom). All experiments use 28 threads. Horizontal lines plot the
throughput and abort time (the ratio of the time spent on aborted
transaction processing and backoff to the total processing time) when
using maximum backoff time globally coordinated by contention
regulation. Curves with markers use manually chosen maximum
backoff time instead. The graphs show that the optimal maximum
backoff time is workload dependent, and it can be desirable to use
small (often zero) maximum backoff time for the best throughput
even though the abort rate may stay high. Cicada achieves nearly
optimal performance under both workloads. Our experiments also
showed the unique maximum throughput without local maxima,
making contention regulation reliable. This result suggests that high
abort rates are not necessarily harmful; inexpensive aborts can make
high abort rates acceptable and achieve high throughput.

5. CONCLUSION
Cicada is a transactional in-memory database that uses a variety

of innovations to achieve high performance under diverse workloads.
It borrows from distributed system designs to unshackle its transac-
tion ordering from being bottlenecked by a centralized clock; uses
multi-version execution to provide the benefits of optimistic concur-
rency control without its major drawbacks; uses best-effort inlining
and rapid garbage collection to blend the high concurrency of multi-
version concurrency control with the low overhead of single-version
designs; and uses a novel low-overhead global backoff coordination
scheme to optimize its throughput under contention. Using these
techniques, Cicada outperforms prior state-of-the-art in-memory
databases under most workloads, and roughly matches their perfor-
mance on the remainder.
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Figure 11: YCSB throughput using 1 request per transaction. Included as part of Appendix B.

APPENDIX
A. PROOF OF SERIALIZABILITY

We prove the serializability of Cicada’s protocol. For brevity,
we assume no timestamp wraparounds by using extended times-
tamps (§3.1); using either timestamp format makes no difference
to the schedule of transactions in Cicada. We consider read-write
transactions and omit proofs regarding record inserts and deletes.

Definition 1. The visible version of a record for a transaction is
a version whose write timestamp is the latest (highest) among all
committed versions of the record and is earlier (smaller) than the
transaction’s timestamp.

LEMMA 1. All transactions have a unique timestamp.

PROOF. Each thread monotonically increases its local clock and
never reuses the same clock for timestamp allocation. Timestamps
have the thread ID as a unique suffix, which guarantees that all
timestamps are unique.

LEMMA 2. A version of a record that is read by a committed
transaction is the visible version of the record in the serial schedule.

PROOF. Let a committed transaction be tx, and the committed
version of a record read by tx be v.

Assume that there exists a committed transaction tx′ that commits
v′ such that (v.wts) < (v′.wts) < (tx.ts). v′ instead of v would
become the visible version to tx.

If tx′ has installed v′ before tx passes the version consistency
step, tx is blocked in the version consistency check step while v′

is PENDING. If v′ becomes COMMITTED, tx sees v′ as the currently
visible version and is aborted, which is impossible because tx is
committed. If v′ becomes ABORTED, it is a contradiction to the
assumption that tx′ is committed. Thus, tx′ must install v′ after tx
passes the version consistency check step.

Recall the order of validation steps. tx performs the read times-
tamp update step before the version consistency check step. The
read timestamp update step for tx ensures (tx.rts) ≤ (v.rts). tx′

performs the version consistency check step after installing v′.
(Case 1) Suppose tx′ reads v. tx′ observes (tx′.ts) = (v′.wts)

< (v.rts). Thus, tx′ is aborted by failing the version consistency
check step, which is a contradiction to the assumption that tx′ is
committed.

(Case 2) Suppose tx′ reads a committed version v′′ that is earlier
than v. tx already passed the version consistency step by observ-
ing v, so tx′ also observes v, which makes tx′ fail the version
consistency check step because v, not v′′, is the current visible ver-
sion. This again makes a contraction to the assumption that tx′ is
committed.

(Case 3) Suppose tx′ reads a committed version v′′ that is later
than v. We substitute tx and tx′ with tx′ and tx′′. Reapplying
this lemma reaches Case 1 or Case 2 in finite steps, precluding the

existence of v′′ if tx′ is committed. Consequently, this makes a
contradiction to the assumption that tx′ is committed.

Therefore, no such tx′ exists. v is the visible version to tx.

THEOREM 1. Any schedule for committed transactions in Ci-
cada is equivalent to the serial schedule that executes the committed
transactions in their timestamp order.

PROOF. A committed transaction creates at most one version for
a record. By Lemma 1, each version’s write timestamp following the
transaction’s timestamp is unique within a record. With Lemma 2,
every committed transaction reads the uniquely determined visible
version of the record as it would in the serial schedule. Therefore,
any schedule of committed transactions in Cicada is equivalent to
the serial schedule.

B. ADDITIONAL EVALUATION
Figure 11 plots the YCSB throughput using similar configurations

as Figure 6, but with 1 request per transaction. By making each
transaction tiny, we examine the worst-case overhead of transac-
tion initialization and finalization. As an MVCC design, Cicada
has more out-of-transaction processing, such as timestamp alloca-
tion and garbage collection, than 1VCC designs such as Silo and
TicToc. The overhead is most apparent on write-intensive YCSB
as shown in Figures 11a and 11b because Cicada must reclaim
many newly-created versions. Furthermore, Cicada loses its ad-
vantage of avoiding extra read costs that is more significant under
read-intensive workloads. However, the overhead is not excessively
high; Cicada achieves 8.7% lower throughput than TicToc on the
write-intensive YCSB with 28 threads and skew of 0.99. Cicada’s
read-intensive YCSB performance is similar to or higher than Silo′

and TicToc.
Cicada supports an optimization that we do not use in any of

our experiments because no other systems implement it: reading
a single record without using a transaction. Cicada allows directly
locating and reading versions. Because the record data is always
consistent in Cicada, it is unnecessary to lock the shared version or
create a local version. This optimization can accelerate workloads
with many single-record reads (e.g., TATP [53]), mitigating the
initialization and finalization overhead with tiny transactions.

C. ACKNOWLEDGMENTS
This work was supported by funding from National Science Foun-

dation under awards CNS-1345305 and CCF-1535821, and Intel
via the Intel Science and Technology Center for Cloud Computing
(ISTC-CC) and the Intel Science and Technology Center for Visual
Cloud Systems (ISTC-VCS). We thank Sol Boucher, Anuj Kalia,
Andrew Pavlo, Xiangyao Yu, and anonymous reviewers for their
feedback. We appreciate Tianzheng Wang and Kangnyeon Kim for
helping us run their systems.



D. REFERENCES
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient

optimistic concurrency control using loosely synchronized clocks. In
Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, 1995.

[2] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), 2014.

[3] P. A. Bernstein and N. Goodman. Concurrency control in distributed
database systems. ACM Computing Surveys, 13(2), June 1981.

[4] S. Boyd-Wickizer. Optimizing Communication Bottlenecks in
Multiprocessor Operating System Kernels. PhD thesis, Massachusetts
Institute of Technology, 2013.

[5] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for
snapshot databases. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, 2008.

[6] M. J. Carey and M. Stonebraker. The performance of concurrency
control algorithms for database management systems. In Proceedings
of the 10th International Conference on Very Large Data Bases, 1984.

[7] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson. From
ARIES to MARS: Transaction support for next-generation, solid-state
drives. In Proc. 24th ACM Symposium on Operating Systems
Principles (SOSP), Farmington, PA, Nov. 2013.

[8] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proc. 1st ACM
Symposium on Cloud Computing (SOCC), Indianapolis, IN, June
2010.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In Proc. 10th USENIX OSDI. USENIX,
2012.

[10] T. David, R. Guerraoui, and V. Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP), 2013.

[11] DBx1000: A single node OLTP database management system.
https://github.com/yxymit/DBx1000, 2016.

[12] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL Server’s
memory-optimized OLTP engine. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, 2013.
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