
High-Performance Concurrency Control
Mechanisms for Main-Memory Databases

Per-Åke Larson1, Spyros Blanas2, Cristian Diaconu1,
Craig Freedman1, Jignesh M. Patel2, Mike Zwilling1

Microsoft1, University of Wisconsin – Madison2
{palarson, cdiaconu, craigfr,mikezw}@microsoft.com, {sblanas, jignesh}@cs.wisc.edu

ABSTRACT
A database system optimized for in-memory storage can support
much higher transaction rates than current systems. However,
standard concurrency control methods used today do not scale to
the high transaction rates achievable by such systems. In this pa-
per we introduce two efficient concurrency control methods spe-
cifically designed for main-memory databases. Both use multiver-
sioning to isolate read-only transactions from updates but differ in
how atomicity is ensured: one is optimistic and one is pessimistic.
To avoid expensive context switching, transactions never block
during normal processing but they may have to wait before com-
mit to ensure correct serialization ordering. We also implemented
a main-memory optimized version of single-version locking. Ex-
perimental results show that while single-version locking works
well when transactions are short and contention is low perfor-
mance degrades under more demanding conditions. The multiver-
sion schemes have higher overhead but are much less sensitive to
hotspots and the presence of long-running transactions.

1. INTRODUCTION
Current database management systems were designed assuming
that data would reside on disk. However, memory prices continue
to decline; over the last 30 years they have been dropping by a
factor of 10 every 5 years. The latest Oracle Exadata X2-8 system
ships with 2TB of main memory and it is likely that we will see
commodity servers with multiple terabytes of main memory with-
in a few years. On such systems the majority of OLTP databases
will fit entirely in memory, and even the largest OLTP databases
will keep the active working set in memory, leaving only cold,
infrequently accessed data on external storage.
A DBMS optimized for in-memory storage and running on a
many-core processor can support very high transaction rates.
Efficiently ensuring isolation between concurrently executing
transactions becomes challenging in such an environment. Current
DBMSs typically rely on locking but in a traditional implementa-
tion with a separate lock manager the lock manager becomes a
bottleneck at high transaction rates as shown in experiments by
Johnson et al [15]. Long read-only transactions are also problem-
atic as readers may block writers.
This paper investigates high-performance concurrency control
mechanisms for OLTP workloads in main-memory databases. We

found that traditional single-version locking is “fragile”. It works
well when all transactions are short and there are no hotspots but
performance degrades rapidly under high contention or when the
workload includes even a single long transaction.
Decades of research has shown that multiversion concurrency
control (MVCC) methods are more robust and perform well for a
broad range of workloads. This led us to investigate how to con-
struct MVCC mechanisms optimized for main memory settings.
We designed two MVCC mechanisms: the first is optimistic and
relies on validation, while the second one is pessimistic and relies
on locking. The two schemes are mutually compatible in the sense
that optimistic and pessimistic transactions can be mixed and
access the same database concurrently. We systematically ex-
plored and evaluated these methods, providing an extensive ex-
perimental evaluation of the pros and cons of each approach. The
experiments confirmed that MVCC methods are indeed more
robust than single-version locking.
This paper makes three contributions. First, we propose an opti-
mistic MVCC method designed specifically for memory resident
data. Second, we redesign two locking-based concurrency control
methods, one single-version and one multiversion, to fully exploit
a main-memory setting. Third, we evaluate the effectiveness of
these three different concurrency control methods for different
workloads. The insights from this study are directly applicable to
high-performance main memory databases: single-version locking
performs well only when transactions are short and contention is
low; higher contention or workloads including some long transac-
tions favor the multiversion methods; and the optimistic method
performs better than the pessimistic method.
The rest of the paper is organized as follows. Section 2 covers
preliminaries of multiversioning and describes how version visi-
bility and updatability are determined based on version
timestamps. The optimistic scheme and the pessimistic scheme
are described in Section 3 and Section 4, respectively. Section 5
reports performance results. Related work is discussed in Section
6, and Section 7 offers concluding remarks. Proofs of correctness
are provided in an online addendum to this paper and at [27].

2. MV STORAGE ENGINE
A transaction is by definition serializable if its reads and writes
logically occur as of the same time. The simplest and most widely
used MVCC method is snapshot isolation (SI). SI does not guar-
antee serializability because reads and writes logically occur at
different times, reads at the beginning of the transaction and
writes at the end. However, a transaction is serializable if we can
guarantee that it would see exactly the same data if all its reads
were repeated at the end of the transaction.
To ensure that a transaction T is serializable we must guarantee
that the following two properties hold:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 4
Copyright 2011 VLDB Endowment 2150-8097/11/12... $ 10.00.

298

1. Read stability. If T reads some version V1 of a record during
its processing, we must guarantee that V1 is still the version
visible to T as of the end of the transaction, that is, V1 has not
been replaced by another committed version V2. This can be
implemented either by read locking V1 to prevent updates or
by validating that V1 has not been updated before commit.
This ensures that nothing has disappeared from the view.

2. Phantom avoidance. We must also guarantee that the transac-
tion’s scans would not return additional new versions. This can
be implemented in two ways: by locking the scanned part of an
index/table or by rescanning to check for new versions before
commit. This ensures that nothing has been added to the view.

Lower isolation levels are easier to support.
 For repeatable read, we only need to guarantee read stability.
 For read committed, no locking or validation is required;

always read the latest committed version.
 For snapshot isolation, no locking or validation is required;

always read as of the beginning of the transaction.
We have implemented a prototype main-memory storage engine.
We begin with a high-level overview of how data is stored, how
reads and updates are handled, and how it is determined what
versions are visible to a reader, and that a version can be updated.

2.1 Storage and Indexing
Our prototype currently supports only hash indexes which are
implemented using lock-free hash tables. A table can have many
indexes, and records are always accessed via an index lookup -
there is no direct access to a record without going through an in-
dex. (To scan a table, one simply scans all buckets of any index
on the table.) The techniques presented here are general and can
be applied to ordered indexes implemented by trees or skip lists.
Figure 1 shows a simple bank account table containing six ver-
sions. Ignore the numbers (100) in red for now. The table has two
(user) columns: Name and Amount. Each version has a valid time
defined by timestamps stored in the Begin and End fields. A table
can have several indexes, each one with a separate (hash) pointer
field. The example table has one index on the Name column. For
simplicity we assume that the hash function just picks the first
letter of the name. Versions that hash to the same bucket are
linked together using the Hash ptr field.

Hash bucket J contains four records: three versions for John and
one version for Jane. The order in which the records are linked
together is immaterial. Jane’s single version (Jane, 150) has a
valid time from 15 to infinity meaning that it was created by a
transaction that committed at time 15 and it is still valid. John’s
oldest version (John, 100) was valid from time 10 to time 20 when
it was updated. The update created a new version (John, 110) that
initially had a valid time of 20 to infinity. We will discuss John’s
last version (John, 130) in a moment.

2.2 Reads
Every read specifies a logical (as-of) read time and only versions
whose valid time overlaps the read time are visible to the read; all
other versions are ignored. Different versions of a record have
non-overlapping valid times so at most one version of a record is
visible to a read. A lookup for John, for example, would be han-
dled by a scan of bucket J that checks every version in the bucket
but returns only the one whose valid time overlaps the read time.

2.3 Updates
Bucket L contains two records which both belong to Larry. Trans-
action 75 is in the process of transferring $20 from Larry’s ac-
count to John’s account. It has created the new versions for Larry
(Larry, 150) and for John (John, 130) and inserted them into the
appropriate buckets in the index.
Note that transaction 75 has stored its transaction ID in the Begin
and End fields of the new and old versions, respectively. (One bit
in the field indicates the field’s current content.) A transaction ID
stored in the End field serves as a write lock and prevents other
transactions from updating the same version and it identifies
which transaction has updated it. A transaction Id stored in the
Begin field informs readers that the version may not yet be com-
mitted and it identifies which transaction owns the version.
Now suppose transaction 75 commits with end timestamp 100. It
then returns to the old and new versions and sets the Begin and
End fields, respectively, to 100. The final values are shown in red
below the old and new versions. The old version (John, 110) now
has the valid time 20 to 100 and the new version (John, 130) has a
valid time from 100 to infinity.
Every update creates a new version so we need to discard old
versions that are no longer needed to avoid filling up memory. A
version can be discarded when it is no longer visible to any trans-
action. In our prototype, once a version has been identified as
garbage, collection is handled cooperatively by all threads. Alt-
hough garbage collection is efficient and fully parallelizable,
keeping track of the old versions does consume some processor
resources. Details of our garbage collection algorithm are beyond
the scope of this paper.

2.4 Transaction Phases
A transaction can be in one of four states: Active, Preparing,
Committed, or Aborted. Fig. 2 shows the possible transitions be-
tween these states.

Committed

Active

Aborted

PreparingTransaction gets
end timestamp

Log updates and wait for I/O

Transaction gets
begin timestamp

Figure 2: State transitions for each transaction

10 John 10020

15 Jane 150inf

30 Larry 170Tx75

20 John 110Tx75

Tx75 Larry 150inf

Tx75 John 130Inf

J

L

Old

New

Old

New

Hash index
on Name

Begin End Name Amount Hash ptr

Header Payload

Record format

Figure 1: Example account table with one hash index.
Transaction 75 has transferred $20 from Larry’s account
to John’s account but has not yet committed.

100

100

100

100

299

A transaction goes through three different phases. We outline the
processing in each phase only briefly here; it is fleshed out in
more detail in connection with each concurrency control method
(Sections 3 and 4).
1. The transaction is created; it acquires a begin timestamp and

sets its state to Active.
2. Normal processing phase. The transaction does all its normal

processing during this phase. A transaction never blocks during
this phase. For update operations, the transaction copies its
transaction ID into the Begin field of the new versions and into
the End field of the old or deleted versions. If it aborts, it
changes its state to Aborted and skips directly to step 4. When
the transaction has completed its normal processing and re-
quests to commit, it acquires an end timestamp and switches to
the Preparing state.

3. Preparation phase. During this phase the transaction deter-
mines whether it can commit or is forced to abort. If it has to
abort, it switches its state to Aborted and continues to the next
phase. If it is ready to commit, it writes all its new versions and
information about deleted versions to a redo log record and
waits for the log record to reach non-volatile storage. The
transaction then switches its state to Committed.

4. Postprocessing phase. If the transaction has committed, it
proceeds to replace its transaction ID with its end timestamp
from the Begin field of the new versions and from the End
field of the old or deleted versions. If the transaction has abort-
ed, it marks all its new versions as garbage and sets their Begin
and End timestamps to infinity to make them invisible.

5. The transaction is terminated. The old versions are assigned to
the garbage collector, which is responsible for discarding them
when they are no longer needed.

Timestamps are drawn from a global, monotonically increasing
counter. A transaction’s gets a unique timestamp by atomically
reading and incrementing the counter.

2.5 Version Visibility
Under multiversioning a read must specify a logical read time.
Only versions whose valid time overlaps the logical read time are
visible to the read. The read time can be any value between the
transaction’s begin time and the current time. Which read time is
chosen depends on the concurrency control method used and the
transaction’s isolation level; more about this in Sections 3 and 4.
While determining the visibility of a version is straightforward in
principle, it is more complicated in practice as we do not want a
transaction to block (wait) during normal processing. Recall that a
version’s Begin or End fields can temporarily store a transaction
ID, if the version is being updated. If a reader encounters such a
version, determining visibility without blocking requires checking
another transaction’s state and end timestamp and potentially even
restricting the serialization order of transactions.
We now examine each case in turn, beginning from the easiest
and most common case where both fields contain a timestamp,
and then discussing the cases where the Begin or End fields con-
tain transaction IDs.

Begin and End fields contain timestamps
Let RT denote the logical read time being used by a transaction T.
To determine whether a version V is visible to T, we check V’s
Begin and End fields. If both fields contain timestamps, we simp-
ly check whether RT falls between the two timestamps. If it does,
V is visible to T, otherwise not.

Begin field contains a transaction ID
Suppose transaction T reads version V and finds that V’s Begin
field contains the ID of a transaction TB. Version V may still be
visible; it depends on transaction TB’s state and TB’s end
timestamp. TB may, for example, have committed already but not
yet finalized the Begin fields of its new versions. If so, V is a
committed version with a well-defined begin time. Table 1 sum-
marizes the various cases that may occur and the action to take
depending on the state of the transaction TB.

Table 1: Case analysis of action to take when version V’s
Begin field contains the ID of transaction TB

If TB is still in the Active state, the version is uncommitted and
thus not visible to any other transactions than TB. If TB has up-
dated a record multiple times, only the latest version is visible to
it. V is the latest version if its End field contains infinity.
If transaction TB is in the Preparing state, it has acquired an end
timestamp TS which will be V’s begin timestamp if TB commits.
A safe approach in this situation would be to have transaction T
wait until transaction TB commits. However, we want to avoid all
blocking during normal processing so instead we continue with
the visibility test and, if the test returns true, allow T to specula-
tively read V. Transaction T acquires a commit dependency on
TB, restricting the serialization order of the two transactions. That
is, T is allowed to commit only if TB commits. Commit depend-
encies are discussed in more detail in Section 2.7.
The last three cases in Table 1 are straightforward.

End field contains a transaction ID
Once it has been determined that version V’s valid time begins
before transaction T’s read time RT, we proceed to check V’s End
field. If it contains a timestamp, determining visibility is straight-
forward: V is visible to T if and only if RT is less than the
timestamp. However, if the field contains the ID of transaction
TE, we have to check the state and end timestamp of TE. Table 2
summarizes the various cases and the actions to take, assuming
that we have already determined that V’s begin timestamp is, or
will be, less than RT.
The first case (TE is Active) was discussed earlier. If TE’s state is
Preparing, it has an end timestamp TS that will become the end
timestamp of V if TE does commit. If TS is greater than the read

TB’s state TB’s end
timestamp

Action to take when transac-
tion T checks visibility of ver-
sion V.

Active Not set V is visible only if TB=T and V’s
end timestamp equals infinity.

Preparing TS V’s begin timestamp will be TS
but V is not yet committed. Use
TS as V’s begin time when test-
ing visibility. If the test is true,
allow T to speculatively read V.

Committed TS V’s begin timestamp will be TS
and V is committed. Use TS as
V’s begin time to test visibility.

Aborted Irrelevant Ignore V; it’s a garbage version.

Terminated
or not
found

Irrelevant Reread V’s Begin field. TB has
terminated so it must have final-
ized the timestamp.

300

time RT, it is obvious that V will be visible if TE commits. If TE
aborts, V will still be visible, because any transaction that updates
V after TE has aborted will obtain an end timestamp greater than
TS. If TS is less than RT, we have a more complicated situation:
if TE commits, V will not be visible to T but if TE aborts, it will
be visible. We could handle this by forcing T to wait until TE
commits or aborts but we want to avoid all blocking during nor-
mal processing. Instead we allow T to speculatively ignore V and
proceed with its processing. Transaction T acquires a commit
dependency (see Section 2.7) on TE, that is, T is allowed to com-
mit only if TE commits.

Table 2: Case analysis of action to take when V's End field
contains a transaction ID TE.

The case when TE’s state is Committed is obvious but the Abort-
ed case warrants some explanation. If TE has aborted, some other
transaction TO may have sneaked in after T read V’s End field,
discovered that TE has aborted and updated V. However, TO must
have updated V’s end field after T read it and TO must have been
in the Active state. This implies that TO’s end timestamp was
assigned after T read V and thus it must be later than T’s logical
read time, It follows that it doesn’t matter if a transaction TO
sneaked in; V is always visible to T if TE is in the Aborted state.
If TE has terminated or is not found, TE must have either commit-
ted or aborted and finalized V’s end timestamp since we read the
field. So we reread the End field and try again.

2.6 Updating a Version
Suppose transaction T wants to update a version V. V is updatable
only if it is the latest version, that is, it has an end timestamp equal
to infinity or its End field contains the ID of a transaction TE and
TE’s state is Aborted. If the state of transaction TE is Active or
Preparing, V is the latest committed version but there is a later
uncommitted version. This is a write-write conflict. We follow the
first-writer-wins rule and force transaction T to abort.
Suppose T finds that V is updatable. It then creates the new ver-
sion and proceeds to install it in the database. The first step is to
atomically store T’s transaction ID in V’s End field to prevent
other transactions from updating V. If the store fails because the
End field has changed, T must abort because some other transac-

tion has sneaked in and updated V before T managed to install its
update. If the store succeeds, T then connects the new version into
all indexes it participates in. T also saves pointers to the old and
new versions; they will be needed during postprocessing.

2.7 Commit Dependencies
A transaction T1 has a commit dependency on another transaction
T2, if T1 is allowed to commit only if T2 commits. If T2 aborts,
T1 must also abort, so cascading aborts are possible. T1 acquires a
commit dependency either by speculatively reading or specula-
tively ignoring a version, instead of waiting for T2 to commit..
We implement commit dependencies by a register-and-report
approach: T1 registers its dependency with T2 and T2 informs T1
when it has committed or aborted. Each transaction T contains a
counter, CommitDepCounter, that counts how many unresolved
commit dependencies it still has. A transaction cannot commit
until this counter is zero. In addition, T has a Boolean variable
AbortNow that other transactions can set to tell T to abort. Each
transaction T also has a set, CommitDepSet, that stores transac-
tion IDs of the transactions that depend on T.
To take a commit dependency on a transaction T2, T1 increments
its CommitDepCounter and adds its transaction ID to T2’s Com-
mitDepSet. When T2 has committed, it locates each transaction in
its CommitDepSet and decrements their CommitDepCounter. If
T2 aborted, it tells the dependent transactions to also abort by
setting their AbortNow flags. If a dependent transaction is not
found, this means that it has already aborted.
Note that a transaction with commit dependencies may not have to
wait at all - the dependencies may have been resolved before it is
ready to commit. Commit dependencies consolidate all waits into
a single wait and postpone the wait to just before commit.
Some transactions may have to wait before commit. Waiting rais-
es a concern of deadlocks. However, deadlocks cannot occur be-
cause an older transaction never waits on a younger transaction. In
a wait-for graph the direction of edges would always be from a
younger transaction (higher end timestamp) to an older transaction
(lower end timestamp) so cycles are impossible.

3. OPTIMISTIC TRANSACTIONS
This section describes in more detail the processing performed in
the different phases for optimistic transactions. We first consider
serializable transactions and then discuss lower isolation levels.
The original paper by Kung and Robinson [17] introduced two
validation methods: backward validation and forward validation.
We use backward validation but optimize it for in-memory stor-
age. Instead of validating a read set against the write sets of all
other transactions, we simply check whether a version that was
read is still visible as of the end of the transaction. A separate
write phase is not needed; a transaction’s updates become visible
to other transactions when the transaction changes its state to
Committed.
A serializable optimistic transaction keeps track of its reads, scans
and writes. To this end, a transaction object contains three sets:
1. ReadSet contains pointers to every version read;
2. ScanSet stores information needed to repeat every scan;
3. WriteSet contains pointers to versions updated (old and

new), versions deleted (old) and versions inserted (new).

TE’s state TE’s end
timestamp

Action to take when transaction
T checks visibility of a version V
as of read time RT.

Active Not set V is visible only if V was created
by transaction T and V’s end
timestamp equals infinity.

Preparing TS V’s end timestamp will be TS pro-
vided that TE commits. If TS >
RT, V is visible to T. If TS < RT, T
speculatively ignores V.

Committed TS V’s end timestamp will be TS and
V is committed. Use TS as V’s end
timestamp when testing visibility

Aborted Irrelevant V is visible.
Terminated
or not found

Irrelevant Reread V’s End field. TE has ter-
minated so it must have finalized
the timestamp.

301

3.1 Normal Processing Phase
Normal processing consists of scanning indexes (see Section 2.1)
to locate versions to read, update, or delete. Insertion of an entire-
ly new record or updating an existing record creates a new version
that is added to all indexes for records of that type.
To do an index scan, a transaction T specifies an index I, a predi-
cate , and a logical read time RT. The predicate is a conjunction

 where is a search predicate that determines what
part of the index to scan and is an optional residual predicate.
For a hash index, is an equality predicate on columns of the
hash key. For an ordered index, is a range predicate on the
ordering key of the index.
We now outline the processing during a scan when T runs at seri-
alizable isolation level. All reads specify T’s begin time as the
logical read time.
Start scan. When a scan starts, it is registered in T’s ScanSet so T
can check for phantoms during validation. Sufficient information
must be recorded so that the scan can be repeated. This includes at
least the following: index I and predicates and . Exactly how
the predicates are specified depends on the implementation.
Check predicate. If a version V doesn’t satisfy P, it is ignored
and the scan proceeds. If the scan is a range scan and the index
key exceeds the upper bound of the range, the scan is terminated.
Check visibility. Next we check whether version V is visible to
transaction T as of time RT (section 2.5). The result of the test
may be conditional on another transaction T2 committing. If so, T
registers a commit dependency with T2 (section 2.7). If the visi-
bility test returns false, the scan proceeds to the next version.
Read version. If T intends to just read V, no further checks are
required. T records the read by adding a pointer to V to its
ReadSet. The pointer will be used during validation.
Check updatability. If transaction T intends to update or delete
V, we must check whether the version is updatable. A visible
version is updatable if its End field equals infinity or it contains a
transaction ID and the referenced transaction has aborted. Note
that speculative updates are allowed, that is, an uncommitted ver-
sion can be updated but the transaction that created it must have
completed normal processing.
Update version. To update V, T first creates a new version VN
and then atomically sets V’s End field to T’s transaction ID. This
fails if some other transaction T2 has already set V’s End field.
This is a write-write conflict and T must abort.
If T succeeds in setting V’s End field (the most likely outcome),
this serves as an exclusive write lock on V because it prevents
further updates of V. T records the update by adding two pointers
to its WriteSet: a pointer to V (old version) and a pointer to VN
(new version). These pointers are used later for multiple purposes:
for logging new versions during commit, for postprocessing after
commit or abort, and for locating old versions when they are no
longer needed and can be garbage collected.
The new version VN is not visible to any other transaction until T
precommits, therefore T can proceed to include VN in all indexes
that the table participates in.
Delete version. A delete is an update of V that doesn’t create a
new version. The end timestamp of V is first checked and then set
in the same way as for updates. If this succeeds, a pointer to V
(old version) is added to the write set and the delete is complete.

When transaction T reaches the end of normal processing, it pre-
commits and begins its preparation phase. Precommit simply con-
sists of acquiring the transaction’s end timestamp and setting the
transaction state to Preparing.

3.2 Preparation Phase
The preparation phase of an optimistic transaction consists of
three steps: read validation, waiting for commit dependencies, and
logging. We discuss each step in turn.
Validation consists of two steps: checking visibility of the ver-
sions read and checking for phantoms. To check visibility transac-
tion T scans its ReadSet and for each version read, checks whether
the version is still visible as of the end of the transaction. To
check for phantoms, T walks its ScanSet and repeats each scan
looking for versions that came into existence during T’s lifetime
and are visible as of the end of the transaction. (T may acquire
additional commit dependencies during validation but only if it
speculatively ignores a version.)
Figure 3 illustrates the different cases that can occur. It shows the
lifetime of a transaction T, the valid times of versions V1 to V4 of
four different records, and the expected outcome of read valida-
tion and phantom detection. We assume that all four versions
satisfy the search predicate used by T and that they were all creat-
ed and terminated by transactions other than T.
Version V1 is visible to T both at its start and end. If V1 is includ-
ed in T’s ReadSet, it passes read validation and also phantom
detection.
Version V2 is visible to T as of its start timestamp but not at the
end of the transaction. If V2 is included in T’s ReadSet, it fails
read validation. V2 is not a phantom.
Version V3 both began and ended during T’s lifetime, so it is not
visible to T at the start or at the end of the transaction. It is not
included in T’s ReadSet so it won’t be subject to read validation.
V3 is not visible at the end of T, so V3 is not a phantom.
Version V4 was created during T’s lifetime and is visible at the
end of T, so V4 is a phantom. It is not included in T’s ReadSet
because it was not visible as of T’s start time.
If T fails validation, it is not serializable and must abort. If T
passes validation, it must wait for outstanding commit dependen-
cies to be resolved, if it has any. More specifically, T can proceed
to the postprocessing phase if either its CommitDepCounter is
zero or its AbortNow flag is set.
To complete the commit, T scans its WriteSet and writes the new
versions it created to a persistent log. Commit ordering is deter-
mined by transaction end timestamps, which are included in the
log records, so multiple log streams on different devices can be
used. Deletes are logged by writing a unique key or, in the worst

V4

V1

V2

V3

Validation outcome

Pass
Reads

Fail
NA
NA

Pass
Pass
Pass
Fail

Phantoms

T’s lifetime
Figure 3: Possible validation outcomes.

302

case, all columns of the deleted version. After the log writes have
been completed, T sets its transaction state to Committed, thereby
signaling that the commit is done.

3.3 Postprocessing
During this phase a committed transaction TC propagates its end
timestamp to the Begin and End fields of new and old versions,
respectively, listed in its WriteSet. An aborted transaction TA sets
the Begin field of its new versions to infinity, thereby making
them invisible to all transactions, and attempts to reset the End
fields of its old versions to infinity. However, another transaction
may already have detected the abort, created another new version
and reset the End field of the old version. If so, TA leaves the End
field value unchanged.
The transaction then processes all outgoing commit dependencies
listed in its CommitDepSet. If it aborted, it forces the dependent
transactions to also abort by setting their AbortNow flags. If it
committed, it decrements the target transaction’s CommitDep-
Counter and wakes up the transaction if the count becomes zero.
Once postprocessing is done, other transactions no longer need to
refer to the transaction object. It can be removed from the transac-
tion table but it will not be discarded entirely; the pointers to old
versions in its WriteSet are needed for garbage collection.

3.4 Lower Isolation Levels
Enforcing lower isolation levels is cheaper. A transaction requir-
ing a higher isolation level bears the full cost of enforcing the
higher level and does not penalize “innocent bystanders”.
Repeatable read: Repeatable read is required to enforce read
stability but not to prevent phantoms. We implement repeatable
read simply by validating a transaction’s ReadSet before commit.
As phantom detection is not required, a transaction’s scans are not
recorded. Transaction begin time is used as the logical read time.
Read committed: Read committed only guarantees that all ver-
sions read are committed. We implement read committed by al-
ways using the current time as the logical read time. No validation
is required so a transaction’s reads and scans are not recorded.
Snapshot isolation: Implementing snapshot isolation is straight-
forward in our case: always read as of the beginning of the trans-
action. No validation is needed so scans and reads are not tracked.
Read-only transactions: If a transaction is known to be read-
only, the best performance is obtained by running it under snap-
shot isolation or read committed depending on whether it needs a
transaction-consistent view or not.

4. PESSIMISTIC TRANSACTIONS
A pessimistic transaction prevents its reads from being invalidated
by acquiring read locks. This section describes our design of mul-
tiversion locking optimized for main-memory databases
A serializable pessimistic transaction must keep track of which
versions it read, which hash buckets it scanned, and its new and
old versions. To this end, the transaction maintains three sets:
1. ReadSet contains pointers to versions read locked by the

transaction;
2. BucketLockSet contains pointers to hash buckets visited and

locked by the transaction;
3. WriteSet contains references to versions updated (old and

new), versions deleted (old) and versions inserted (new).

4.1 Lock Types
We use two types of locks: record locks and bucket locks. Record
locks are placed on versions to ensure read stability. Bucket locks
are placed on (hash) buckets to prevent phantoms. The name re-
flects their use for hash indexes in our prototype but range locks
for ordered indexes can be implemented in the same way.

4.1.1 Record Locks
Updates or deletes can only be applied to the latest version of a
record; older versions cannot be further updated. Thus, locks are
required only for the latest version of a record; never for older
versions. So what’s needed is an efficient many-readers-single-
writer lock for this case.
We do not want to store record locks in a separate table – it’s too
slow. Instead we embed record locks in the End field of versions
so no extra space is required. In our prototype, the End field of a
version is 64 bits. As described earlier, this field stores either a
timestamp or a transaction ID with one bit indicating what the
field contains. We change how we use this field to make room for
a record lock.
1. ContentType (1 bit): indicates the content type of the remain-

ing 63 bits
2. Timestamp (63 bits): when ContentType is zero.
3. RecordLock (63 bits): when ContentType is one.

3.1. NoMoreReadLocks (1 bit): a flag set when no further
read locks are accepted. Used to prevent starvation.

3.2. ReadLockCount (8 bits): number of read locks.
3.3. WriteLock (54 bits): ID of the transaction holding a

write lock on this version or infinity (max value).

We do not explicitly keep track of which transactions have a ver-
sion read locked. Each transaction records its ReadSet so we can
find out by checking the ReadSets of all current transactions. This
is only needed for deadlock detection which occurs infrequently.
A transaction acquires a read lock on a version V by atomically
incrementing V’s ReadLockCount. No further read locks can be
acquired if the counter has reached its max value (255) or the
NoMoreReadlocks flag is set. If so, the transaction aborts.
A transaction write locks a version V by atomically copying its
transaction ID into the WriteLock field. This action both write
locks the version and identifies who holds the write lock.

4.1.2 Bucket Locks (Range Locks)
Bucket locks are used only by serializable transactions to prevent
phantoms. When a transaction TS begins a scan of a hash bucket,
it locks the bucket. Multiple transactions can have a bucket
locked. A bucket lock consists of the following fields.
1. LockCount: number of locks on this bucket.
2. LockList: list of (serializable) transactions holding a lock on

this bucket.

The current implementation stores the LockCount in the hash
bucket to be able to check quickly whether the bucket is locked.
LockLists are implemented as arrays stored in a separate hash
table with the bucket address as the key.
To acquire a lock on a bucket B, a transaction TS increments B’s
LockCount, locates B’s LockList, and adds its transaction Id to
the list. To release the lock it deletes its transaction ID from B’s
LockList and decrements the LockCount.
Range locks in an ordered index can be implemented in the same
way. If the index is implemented by a tree structure, a lock on a

303

node locks the subtree rooted at that node. If the index is imple-
mented by skip lists, locking a tower locks the range from that
tower to the next tower of the same height.

4.2 Eager Updates, Wait-For Dependencies
In a traditional implementation of multiversion locking, an update
transaction TU would block if it attempts to update or delete a
read locked version or attempts to insert or update a version in a
locked bucket. This may lead to frequent blocking and thread
switching. A thread switch is expensive, costing several thousand
instructions. In a main-memory system, just a few thread switches
can add significantly to the cost of executing a transaction.
To avoid blocking we allow a transaction TU to eagerly update or
delete a read locked version V but, to ensure correction serializa-
tion order, TU cannot precommit until all read locks on V have
been released. Similarly, a transaction TR can acquire a read lock
on a version that is already write locked by another transaction
TU. If so, TU cannot precommit until TR has released its lock.
Note that an eager update or delete is not speculative because it
doesn’t matter whether TR commits or aborts; it just has to com-
plete and release its read lock.
The same applies to locked buckets. Suppose a bucket B is
locked by two (serializable) transactions TS1 and TS2. An update
transaction TU is allowed to insert a new version into B but it is
not allowed to precommit before TS1 and TS2 have completed
and released their bucket locks.
We enforce correct serialization order by wait-for dependencies.
A wait-for dependency forces an update transaction TU to wait
before it can acquire an end timestamp and begin commit pro-
cessing. There are two flavors of wait-for dependencies, read
lock dependencies and bucket lock dependencies that differ in
what event they wait on.
A transaction T needs to keep track of both incoming and out-
going wait-for dependencies. T has an incoming dependency if it
waits on some other transaction and an outgoing dependency if
some other transaction waits on it. To track wait-for dependen-
cies, the following fields are included in each transaction object.
For incoming wait-for dependencies:
 WaitForCounter: indicates how many incoming dependen-

cies the transaction is waiting for.
 NoMoreWaitFors: when set the transaction does not allow

additional incoming dependencies. Used to prevent starva-
tion by incoming dependencies continuously being added.

For outgoing wait-for dependencies:
 WaitingTxnList: IDs of transactions waiting on this transac-

tion to complete.

4.2.1 Read Lock Dependencies.
A transaction TU that updated or deleted a version V has a wait-
for dependency on V as long as V is read locked. TU is not al-
lowed to acquire an end timestamp and begin commit processing
unless V’s ReadLockCount is zero.
When a transaction TU updates or deletes a version V, it acquires
a write lock on V by copying its transaction ID into the WriteLock
field. If V’s ReadLockCount is greater than zero, TU takes a wait-
for dependency on V simply by incrementing its WaitForCounter.
TU may also acquire a wait-for dependency on V by another
transaction TR taking a read lock on V. A transaction TR that
wants to read a version V must first acquire a read lock on V by

incrementing V’s ReadLockCount. If V’s NoMoreReadLocks flag
is set or ReadLockCount is at max already, lock acquisition fails
and TR aborts. Otherwise, if V is not write locked or V’s Read-
LockCount is greater than zero, TR increments V’s Read-
LockCount and proceeds. However, if V is write locked by a
transaction TU and this is the first read lock on V (V’s Read-
LockCount is zero), TR must force TU to wait on V. TR checks
TU’s NoMoreWaitFors flag. If it is set, TU cannot install the
wait-for dependency and aborts. Otherwise everything is in order
and TR acquires the read lock by incrementing Vs’ Read-
LockCounter and installs the wait-for dependency by increment-
ing TU’s WaitForCounter.
When a transaction TR releases a read lock on a version V, it may
also need to release a wait-for dependency. If V is not write
locked, TR simply decrements V’s ReadLockCounter and pro-
ceeds. The same applies if V is write locked and V’s Read-
LockCounter is greater than one. However, if V is write locked by
a transaction TU and V’s ReadLockCounter is one, TR is about to
release the last read lock on V and therefore must also release
TU’s wait-for dependency on V. TR atomically sets V’s Read-
LockCounter to zero and V’s NoMoreReadLocks to true. If this
succeeds, TR locates TU and decrements TU’s WaitForCounter.
Setting the NoMoreReadLocks flag before releasing the wait-for
dependency is necessary because this may be TU’s last wait-for
dependency. If so, TU is free to acquire an end timestamp and
being its commit processing. In that case, TU’s commit cannot be
further postponed by taking out a read lock on V. In other words,
further read locks on V would have no effect.

4.2.2 Bucket Lock Dependencies.
A serializable transaction TS acquires a lock on a bucket B by
incrementing B’s LockCounter and adding its transaction ID to
B’s LockList. The purpose of TR’s bucket lock is not to disallow
new versions from being added to B but to prevent them from
becoming visible to TR. That is, another transaction TU can add a
version to B but, if it does, then TU cannot precommit until TS
has completed its processing and released its lock on B. This is
enforced by TU obtaining a wait-for dependency on TS.
TU can acquire this type of dependency either by acquiring one
itself or by having one imposed by TS. We discuss each case.
Suppose that, as a result of an update or insert, TU is about to add
a new version V to a bucket B. TU checks whether B has any
bucket locks. If it does, TU takes out a wait-for dependency on
every transaction TS in B’s LockList by adding its own transac-
tion ID to TS’s WaitForList and incrementing its own WaitFor-
Counter. If TU’s NoMoreWaitFors flag is set, TU can’t take out
the dependency and aborts.
Suppose a serializable transaction TS is scanning a bucket B and
encounters a version V that satisfies TS’s search predicate but the
version is not visible to TS, that is, V is write locked by a transac-
tion TU that is still active. If TU commits before TS, V becomes
a phantom to TS. To prevent this from happening, TS registers a
wait-for dependency on TU’s behalf by adding TU’s transaction
ID to its own WaitingTxnList and incrementing TU’s WaitFor-
Counter. If TU’s NoMoreWaitFors flag is set, TS can’t impose the
dependency and aborts.
When a serializable transaction TS has precommitted and ac-
quired its end timestamp, it releases its outgoing wait-for depend-
encies. It scans its WatingTxnList and, for each transaction T
found, decrements T’s WaitForCounter.

304

4.3 Processing Phases
This section describes how locking affects the processing done in
the different phases of a transaction.

4.3.1 Normal Processing Phase
Recall that normal processing consists of scanning indexes to
select record versions to read, update, or delete. An insertion or
update creates a new version that has to be added to all indexes
for records of that type.
We now outline what a pessimistic transaction T does differently
than an optimistic transaction during a scan and how this depends
on T’s isolation level. For snapshot isolation, the logical read time
is always the transaction begin time. For all other isolation levels,
it is the current time which has the effect that the read sees the
latest version of a record.
Start scan. If T is a serializable transaction, it takes out a bucket
lock on B to prevent phantoms and records the lock in its Bucket-
LockSet. Other isolation levels do not take out a bucket lock.
Check predicate. Same as for optimistic transactions.
Check visibility. This is done in the same way as for optimistic
transaction, including taking out commit dependencies as needed.
If a version V is not visible, it is ignored and the scan continues
for all isolations levels except serializable. If T is serializable and
V is write locked by a transaction TU that is still active, V is a
potential phantom so T forces TU to delay its precommit by im-
posing a wait-for dependency on TU.
Read version. If T runs under serializable or repeatable read and
V is a latest version, T attempts to acquire a read lock on V. If T
can’t acquire the read lock, it aborts. If T runs under a lower iso-
lation level or V is not a latest version, no read lock is required.
Check updatability. The same as for optimistic transactions.
Update version. As for optimistic transactions, T creates a new
version N, sets V’s WriteLock and, if V was read locked, takes
out a wait-for dependency on V by incrementing its own Wait-
ForCounter. T then proceeds to add N to all indexes it participates
in. If T adds N to a locked index bucket B, it takes out wait-for
dependencies on all (serializable) transactions holding locks on B.
Delete version. A delete is essentially an update of V that doesn’t
create a new version. T sets V’s WriteLock and if V was read
locked, takes out a wait-for dependency on V by incrementing its
own WaitForCounter.
When transaction T reaches the end of normal processing, it re-
leases its read locks and its bucket locks, if any. If it has outstand-
ing wait-for dependencies (its WaitForCounter is greater than
zero), it waits. Once its WaitForCounter is zero, T precommits,
that is, acquires an end timestamp and sets its state to Validating.

4.3.2 Preparation Phase
Pessimistic transactions require no validation – that’s taken care
of by locks. However, a pessimistic transaction T may still have
outstanding commit dependencies when reaching this point. If so,
T waits until they have been resolved and then proceeds to write
to the log and commit. If a commit dependency fails, T aborts.

4.3.3 Postprocessing Phase
Postprocessing is the same as for optimistic transactions. Note that
there is no need to explicitly release write locks; this is automati-
cally done when the transaction updates Begin and End fields.

4.4 Deadlock Detection
Commit dependencies are only taken on transactions that have
already precommitted and are completing validation. As discussed
earlier (Section 2.7) commit dependencies cannot cause or be
involved in a deadlock.
Wait-for dependencies, however, can cause deadlocks. To detect
deadlocks we build a standard wait-for graph by analyzing the
wait-for dependencies of all transactions that are currently
blocked. Once the wait-for graph has been built, any algorithm for
finding cycles in graphs can be used. Our prototype uses Tarjan’s
algorithm [25] for finding strongly connected components.
A wait-for graph is a directed graph with transactions as nodes
and waits-for relationships as edges. There is an edge from trans-
action T2 to transaction T1 if T2 is waiting for T1 to complete.
The graph is constructed in three steps.
1. Create nodes. Scan the transaction table and for each transac-

tion T found, create a node N(T) if T has completed its normal
processing and is blocked because of wait-for dependencies

2. Create edges from explicit dependencies. Wait-for depend-
encies caused by bucket locks are represented explicitly in
WaitingTxnLists. For each transaction T1 in the graph and
each transaction T2 in T1’s WaitingTxnList, add an edge from
T2 to T1.

3. Create edges from implicit dependencies. A wait-for de-
pendency on a read-locked version V is an implicit representa-
tion of wait-for dependencies on all transaction holding read
locks on V. We can find out which transactions hold read
locks on V by checking transaction read sets. Edges from im-
plicit dependencies can be constructed as follows. For each
transaction T1 in the graph and each version V in T1’s Read-
LockSet: if V is write locked by a transaction T2 and T2 is in
the graph, add an edge from T2 to T1.

While the graph is being constructed normal processing continues
so wait-for dependencies may be created and resolved and trans-
actions may become blocked or unblocked. Hence, the final graph
obtained may be imprecise, that is, it may differ from the graph
that would be obtained if normal processing stopped. But this
doesn’t matter because if there truly is a deadlock neither the
nodes nor the edges involved in the deadlock can disappear while
the graph is being constructed. There is a small chance of detect-
ing a false deadlock but this is handled by verifying that the trans-
actions participating in the deadlock are still blocked and the edg-
es are still covered by unresolved wait-for dependencies.

4.5 Peaceful Coexistence
An interesting property of our design is that optimistic and pessi-
mistic transactions can be mixed. The change required to allow
optimistic transactions to coexist with pessimistic transactions is
straightforward: optimistic update transactions must honor read
locks and bucket locks. Making an optimistic transaction T honor
read locks and bucket locks requires the following changes:
1. When T write locks a version V, it uses only a 54-bit transac-

tion ID and doesn’t overwrite read locks.
2. When T updates or deletes a version V that is read locked, it

takes a wait-for dependency on V.
3. When T inserts a new version into a bucket B, it checks for

bucket locks and takes out wait-for dependencies as needed.

305

5. EXPERIMENTAL RESULTS
Our prototype storage engine implements both the optimistic and
the pessimistic scheme. We also implemented a single-version
storage engine with locking for concurrency control. The imple-
mentation is optimized for main-memory databases and does not
use a central lock manager, as this can become a bottleneck [19].
Instead, we embed a lock table in every index and assign each
hash key to a lock in this partitioned lock table. A lock covers all
records with the same hash key which automatically protects
against phantoms. We use timeouts to detect and break deadlocks.
The experiments were run on a two-socket Intel Xeon X5650 @
2.67 GHz (Nehalem) that has six cores per socket. Hyper-
Threading was enabled. The system has 48 GB of memory, 12
MB L3 cache per socket, 256 KB L2 cache per core, and two
separate 32 KB L1-I and L1-D caches per core. This is a NUMA
system and memory latency is asymmetric: accessing memory on
the remote socket is approximately 30% slower than accessing
local memory. We size hash tables appropriately so there are no
collisions. The operating system is Windows Server 2008 R2.
Each transaction generates log records but these are asynchro-
nously written to durable storage; transactions do not wait for log
I/O to complete. Asynchronous logging allows us to submit log
records in batches (group commit), greatly reducing the number of
I/O operations. The I/O bandwidth required is also moderate:
Each update produces a log record that stores the difference be-
tween the old and new versions, plus 8 bytes of metadata. Even
with millions of updates per second, the I/O bandwidth required is
within what even a single desktop hard drive can deliver. This
choice allows us to focus on the effect of concurrency control.
Traditional disk-based transaction processing systems require
hundreds of concurrently active transactions to achieve maximum
throughput. This is to give the system useful work to do while
waiting for disk I/O. Our main-memory engine does not wait for
disk I/O, so there is no need to overprovision threads. We ob-
served that the CPU is fully utilized when the multi-programming
level equals the number of hardware threads; allowing more con-
current transactions causes throughput to drop. We therefore lim-
ited the number of concurrently active transactions to be at most
24, which matches the number of threads our machine supports.
We experiment with three CC schemes: the single-version locking
engine (labeled “1V”), the multi-version engine when transactions
run optimistically (“MV/O”) and the multi-version engine where
transactions run pessimistically (“MV/L”).

5.1 Homogeneous Workload
We first show results from a parameterized artificial workload. By
varying the workload parameters we can systematically explore
how sensitive the different schemes are to workload characteris-
tics. We focus on short update transactions which are common for
OLTP workloads. The workload consists of a single transaction
type that performs R reads and W writes against a table of N rec-
ords with a unique key. Each row is 24 bytes, and reads and writes
are uniformly and randomly scattered over the N records.
The memory footprint of the database differs for each concurren-
cy control scheme. In 1V, each row consumes 24 bytes (payload)
plus 8 bytes for the “next” pointer of the hash table. Both MV
schemes additionally use 16 bytes to store the Begin and End
fields (cf. Figure 1), but the total consumption depends on the
average number of versions required by the workload. Comparing

the two MV schemes, MV/L has the biggest memory footprint,
due to the additional overhead of maintaining a bucket lock table.

5.1.1 Scalability (Read Committed)
We first show how transaction throughput scales with increasing
multiprogramming level. For this experiment each transaction
performs 10 reads and 2 writes (R=10 and W=2) against a table
with N=10,000,000 rows. The isolation level is Read Committed.

Figure 4: Scalability under low contention

Figure 4 plots transaction throughput (y-axis) as the multipro-
gramming level increases (x-axis). Under low contention,
throughput for all three schemes scales linearly up to six threads.
After six threads, we see the effect of the higher access latency as
the data is spread among two NUMA nodes, and beyond twelve
threads we see the effect of HyperThreading.
For the 1V scheme, HyperThreading causes the speed-up rate to
drop but the system still continues to scale linearly, reaching a
maximum of over 2M transactions/sec. The multiversion schemes
have lower throughput because of the overhead of version man-
agement and garbage collection. Creating a new version for every
update and cleaning out old versions that are no longer needed is
obviously more expensive than updating in place.
Comparing the two multiversion schemes, MV/L has 30% lower
performance than MV/O. This is caused by extra writes for track-
ing dependencies and locks, which cause increased memory traf-
fic. It takes MV/L 20% more cycles to execute the same number
of instructions and the additional control logic translates into 10%
more instructions per transaction.

5.1.2 Scaling under Contention (Read Committed)
Records that are updated very frequently (hotspots) pose a prob-
lem for all CC schemes. In locking schemes, high contention
causes transactions to wait because of lock conflicts and dead-
locks. In optimistic schemes, hotspots result in validation failures
and write-write conflicts, causing high abort rates and wasted
work. At the hardware level, some data items are accessed so
frequently that they practically reside in the private L1 or L2
caches of each core. This stresses the hardware to the limits, as it
triggers very high core-to-core traffic to keep the caches coherent.
We simulate a hotspot by running the same R=10 and W=2 trans-
action workload from Section 5.1.1 on a very small table with just
N=1,000 rows. Transactions run under Read Committed. Figure 5
shows the throughput under high contention. Even in this admit-
tedly extreme scenario, all schemes achieve a throughput of over a
million transactions per second, with MV/O slightly ahead of both
locking schemes. 1V achieves its highest throughput at six
threads, then drops and stays flat after 8 threads.

306

Figure 5: Scalability under high contention

5.1.3 Higher IsolationLlevels
The experiments in the previous section ran under Read Commit-
ted isolation level, which is the default isolation level in many
commercial database engines [23], as it prevents dirty reads and
offers high concurrency. Higher isolation levels prevent more
anomalies but reduce throughput. In this experiment, we use the
same workload from Section 5.1.1, we fix the multiprogramming
level to 24 and we change the isolation level.

Table 3: Throughput at higher isolation levels, and
percentage drop compared to Read Committed (RC)

In Table 3, we report the transaction throughput from each
scheme and isolation level. We also report the throughput drop as
a percentage of the throughput when running under the Read
Committed isolation level.
The overhead for Repeatable Read for both locking schemes is
very small, less than 2%. MV/O needs to repeat the reads at the
end of the transaction, and this causes an 8% drop in throughput.
For Serializable, the 1V scheme protects the hash key with a lock,
and this guarantees phantom protection with very low overhead
(2%). Both MV schemes achieve serializability at a cost of 10%–
19% lower throughput: MV/L acquires read locks and bucket
locks, while MV/O has to repeat each scan during validation.
Under MV/O, however, a transaction requesting a higher isolation
level bears the full cost of enforcing the higher isolation. This is
not the case for locking schemes.

5.2 Heterogeneous Workload
The workload used in the previous section represents an extreme
update-heavy scenario. In this section we fix the multiprogram-
ming level to 24 and we explore the impact of adding read-only
transactions in the workload mix.

Figure 6: Impact of read-only transactions (low contention)

Figure 7: Impact of read-only transactions (high contention)

5.2.1 Impact of Short Read Transactions
In this experiment we change the ratio of read and update transac-
tions. There are two transaction types running under Read Com-
mitted isolation: the update transaction performs 10 reads and 2
writes (R=10 and W=2), while the read-only transaction performs
10 reads (R=10 and W=0).
Figure 6 shows throughput (y-axis) as the ratio of read-only trans-
actions varies in the workload (x-axis) in a table with 10,000,000
rows. The leftmost point (x=0%) reflects the performance of the
update-only workload of Section 5.1.1 at 24 threads. As we add
read-only transactions to the mix, the performance gap between
all schemes closes. This is primarily because the update activity is
reduced, reducing the overhead of garbage collection.
The MV schemes outperform 1V when most transactions are
read-only. When a transaction is read-only, the two MV schemes
behave identically: transactions read a consistent snapshot and do
not need to do any locking or validation. In comparison, 1V has to
acquire and release short read locks for cursor stability even for
read-only transactions which impacts performance.
In Figure 7 we repeat the same experiment but simulate a hotspot
by using a table of 1,000 rows. The leftmost point (x=0%) again
reflects the performance of the update-only workload of Section
5.1.12 under high contention at 24 threads. The MVCC schemes
have a clear advantage at high contention, as snapshot isolation
prevents read-only transactions from interfering with writers.
When 80% of the transactions are read-only, the MVCC schemes
achieve 63% and 73% higher throughput than 1V.

 Read
Committed

Repeatable Read Serializable

 tx/sec tx/sec % drop
vs RC tx/sec % drop

vs RC

1V 2,080,492 2,042,540 1.8% 2,042,571 1.8%

MV/L 974,512 963,042 1.2% 877,338 10.0%

MV/O 1,387,140 1,272,289 8.3% 1,120,722 19.2%

307

5.2.2 Impact of Long Read Transactions
Not all transactions are short in OLTP systems. Users often need
to run operational reporting queries on the live system. These are
long read-only transactions that may touch a substantial part of the
database. The presence of a few long-running queries should not
severely affect the throughput of “normal” OLTP transactions.
This experiment investigates how the three concurrency control
methods perform in this scenario. We use a table with 10,000,000
rows and fix the number of concurrently active transactions to be
24. The workload consists of two transaction types: (a) Long,
transactionally consistent (Serializable), read-only queries that
touch 10% of the table (R=1,000,000 and W=0) and (b) Short
update transactions with R=10 and W=2.

Figure 8: Update throughput with long read transactions

Figure 9: Read throughput with long read transactions

Figures 8 and 9 show update and read throughput (y-axis) as we
vary the number of concurrent long read-only transactions in the
system (x-axis). At the leftmost point (x=0) all transactions are
short update transactions, while at the rightmost point (x=24) all
transactions are read-only. At x=6, for example, there are 6 read-
only and 24-6=18 short update transactions running concurrently.
Looking at the update throughput in Figure 7, we can see that 1V
is twice as fast as the MV schemes when all transactions are short
update transactions, at x=0. (This is consistent with our findings
from the experiments with the homogeneous workload in Section
5.1.) However the picture changes completely once a single long
read-only transaction is present in the system. At x=1, update
throughput drops 75% for the single version engine. In contrast,
update throughput drops only 5% for the MV schemes, making
MV twice as fast as 1V. The performance gap grows as we allow
more read-only transactions. When 50% of the active transactions

are long readers, at x=12, MV has 80X higher update throughput
than 1V. In terms of read throughput (Figure 8), both MV
schemes consistently outperform 1V.

5.3 TATP Results
The workloads used in the previous sections allowed us to high-
light fundamental differences between the three concurrency con-
trol mechanisms. However, real applications have higher demands
than randomly reading and updating values in a single index. We
conclude our experimental evaluation by running a benchmark
that models a simple but realistic OLTP application.
The TATP benchmark [24] simulates a telecommunications appli-
cation. The database consists of four tables with two indexes on
each table to speed up lookups. The benchmark runs a random
mix of seven short transactions; each transaction performs less
than 5 operations on average. 80% of the transactions executed
only query the database, while 16% update, 2% insert, and 2%
delete items. We sized the database for 20 million subscribers and
generated keys using the non-uniform distribution that is specified
in the benchmark. All transactions run under Read Committed.

 1V MV/L MV/O
Transactions per second 4,220,119 3,129,816 3,121,494

Table 4: TATP results
Table 4 shows the number of committed transactions per second
for each scheme. Our concurrency control mechanisms can sus-
tain a throughput of several millions of transaction per second on
a low-end server machine. This is an order of magnitude higher
than previously published TATP numbers for disk-based systems
[19] or main memory systems [14].

6. RELATED WORK
Concurrency control has a long and rich history going back to the
beginning of database systems. Several excellent surveys and
books on concurrency control are available [4], [16], [26].
Multiversion concurrency control methods also have a long histo-
ry. Chapter 5 in [4] describes three multiversioning methods: mul-
tiversion timestamp ordering (MVTO), two-version two-phase
locking (2V2PL), and a multiversion mixed method. 2V2PL uses
at most two versions: last committed and updated uncommitted.
They also sketch a generalization that allows multiple uncommit-
ted versions and readers are allowed to read uncommitted ver-
sions. The mixed method uses MVTO for read-only transactions
and Strict 2PL for update transactions.
The optimistic approach to concurrency control originated with
Kung and Robinson, but they only considered single-version da-
tabases [17]. Many multiversion concurrency control schemes
have been proposed [2], [5], [6], [8], [9], [13], [18], [20], but we
are aware of only two that take an optimistic approach: Multiver-
sion Serial Validation (MVSV) by Carey [11], [12] and Multiver-
sion Parallel Validation (MVPV) by Agrawal et al [1]. While the
two schemes are optimistic and multiversion, they differ signifi-
cant from our scheme. Their isolation level is repeatable read;
other isolation levels are not discussed. MVSV does validation
serially so validation quickly becomes a bottleneck. MVPV does
validation in parallel but installing updates after validation is done
serially. In comparison, the only critical section in our method is
acquiring timestamps; everything else is done in parallel. Acquir-
ing a timestamp is a single instruction (an atomic increment) so
the critical section is extremely short.

308

Snapshot isolation (SI) [3] is a multiversioning scheme used by
many database systems. Several commercial database systems
support snapshot isolation to isolate read-only transactions from
updaters: Oracle [22], Postgres [21] and SQL Server [23] and
possibly others. However, SI is not serializable and many papers
have considered under what circumstances SI is serializable or
how to make it serializable. Cahill et al published a complete and
practical solution in 2008 [9]. Their technique requires that trans-
actions check for read-write dependencies. Their implementation
uses a standard lock manager and transactions acquire “locks” and
check for read-write dependencies on every read and write. The
“locks” are non-blocking and used only to detect read-write de-
pendencies. Whether their approach can be implemented efficient-
ly for a main-memory DBMS is an open question. Techniques
such as validating by checking repeatability of reads and predi-
cates have already been used in the past [7].
Oracle TimesTen [22] and IBM’s solidDB [10] are two commer-
cially available main-memory DBMSs. TimesTen uses single-
version locking with multiple lock types (shared, exclusive, up-
date) and multiple granularities (row, table, database). For main-
memory tables, solidDB also uses single-version locking with
multiple lock types (shared, exclusive, update) and two granulari-
ties (row, table). For disk-based tables, solidDB supports both
optimistic and pessimistic concurrency control. .

7. CONCLUDING REMARKS
In this paper we investigated concurrency control mechanisms
optimized for main memory databases. The known shortcomings
of traditional locking led us to consider solutions based on multi-
versioning. We designed and implemented two MVCC methods,
one optimistic using validation and one pessimistic using locking.
For comparison purposes we also implemented a variant of single-
version locking optimized for main memory databases. We then
experimentally evaluated the performance of the three methods.
Several conclusions can be drawn from the experimental results.

 Single-version locking can be implemented efficiently and
without lock acquisition becoming a bottleneck.

 Single-version locking is fragile; it performs well when
transactions are short and contention is low but suffers under
more demanding conditions.

 The MVCC schemes have higher overhead but are more
resilient, retaining good throughput even in the presence of
hotspots and long read-only transactions.

 The optimistic MVCC scheme consistently achieves higher
throughput than the pessimistic scheme.

8. ACKNOWLEDGMENTS
We thank Phil Bernstein, Marcel van der Holst and Dimitris Tsi-
rogiannis for their contributions. This work was supported in part
by a grant from the Microsoft Jim Gray Systems Lab.

9. REFERENCES
[1] D. Agrawal, A. J. Bernstein, P. Gupta, S. Sengupta: Distrib-

uted Multi-Version Optimistic Concurrency Control with
Reduced Rollback, Distributed Computing, 1987.

[2] D. Agrawal, S. Sengupta: Modular Synchronization in Mul-
tiversion Databases: Version Control and Concurrency Con-
trol, SIGMOD, 1989.

[3] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton,
Elizabeth J. O'Neil, Patrick E. O'Neil: A Critique of ANSI
SQL Isolation Levels. SIGMOD, 1995.

[4] Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman:
Concurrency Control and Recovery in Database Systems.
Addison-Wesley 1987, ISBN 0-201-10715-5.

[5] Paul M. Bober, Michael J. Carey: Multiversion Query Lock-
ing, VLDB, 1992.

[6] Paul M. Bober, Michael J. Carey: On Mixing Queries and
Transactions via Multiversion Locking, ICDE, 1992.

[7] Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, Alan
Fekete: One-Copy Serializability with Snapshot Isolation un-
der the Hood. ICDE, 2011.

[8] Albert Burger, Vijay Kumar, Mary Lou Hines: Performance
of Multiversion and Distributed Two-Phase Locking Concur-
rency Control Mechanisms in Distributed Databases, Infor-
mation Sciences, 96(1), 1997.

[9] Michael J. Cahill, Uwe Röhm, Alan David Fekete: Serializa-
ble Isolation for Snapshot Databases. TODS, 34(4), 2009.

[10] IBM solidDB, information available at http://www.ibm.com/.
[11] Michael J. Carey: Multiple Versions and the Performance of

Optimistic Concurrency Control. Tech. Rep. 517, Computer
Sciences Dept., Univ. of Wisconsin-Madison, 1983.

[12] Michael J. Carey, Waleed A. Muhanna: The Performance of
Multiversion Concurrency Algorithms, TODS, 4(4), 1985.

[13] Theo Härder, Erwin Petry: Evaluation of a Multiple Version
Scheme for Concurrency Control, Information Systems,
12(1), 1987.

[14] IBM SolidDb Performance on Intel Systems, white paper at
http://download.intel.com/business/software/testimonials/do
wnloads/xeon5500/ibm.pdf.

[15] Ryan Johnson, Ippokratis Pandis, Anastasia Ailamaki: Im-
proving OLTP Scalability using Speculative Lock Inher-
itance. PVLDB, 2(1), 2009.

[16] Vijay Kumar (Ed.): Performance of Concurrency Control
Mechanisms in Centralized Database Systems. Prentice-Hall
1996, ISBN 0-13-065442-6.

[17] H. T. Kung, John T. Robinson: On Optimistic Methods for
Concurrency Control. TODS, 6(2), 1981.

[18] Sanjay Kumar Madria, Mohammed Baseer, Vijay Kumar,
Sourav S. Bhowmick: A Transaction Model and Multiver-
sion Concurrency Control for Mobile Database Systems, Dis-
tributed and Parallel Databases, 22(2-3), 2007.

[19] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, Ana-
stasia Ailamaki: Data-Oriented Transaction Execution.
PVLDB, 3(1), 2010.

[20] Christos H. Papadimitriou, Paris C. Kanellakis: On Concur-
rency Control by Multiple Versions, TODS, 9(1), 1984.

[21] PostgreSQL 8.4.2 Documentation, Ch. 13 Concurrency Con-
trol, available from www.postgresql.org.

[22] Oracle TimesTen In-Memory Database, information availa-
ble at http://www.oracle.com.

[23] SQL Server 2008 Books Online: Isolation Levels in the Da-
tabase Engine, available at http://msdn.microsoft.com/en-
us/library/ms189122.aspx.

[24] Telecommunication Application Transaction Processing
(TATP) Benchmark Description, available at
http://tatpbenchmark.sourceforge.net/.

[25] Robert Tarjan: Depth-First Search and Linear Graph Algo-
rithms, SIAM J. of Computing, 1(2), 1972.

[26] Alexander Thomasian: Concurrecy control: Methods, Per-
formance and Analysis, ACM Computing Surveys, 30(1),
1998.

[27] http://www.cs.wisc.edu/~sblanas/proofsketch.pdf

309

