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ABSTRACT
While multi-version concurrency control (MVCC) supports
fast and robust performance in in-memory, relational databases,
it has the potential problem of a growing number of ver-
sions over time due to obsolete versions. Although a few TB
of main memory is available for enterprise machines, the
memory resource should be used carefully for economic and
practical reasons. Thus, in order to maintain the necessary
number of versions in MVCC, versions which will no longer
be used need to be deleted. This process is called garbage
collection. MVCC uses the concept of visibility to define
garbage. A set of versions for each record is first identified
as candidate if their version timestamps are lower than the
minimum value of snapshot timestamps of active snapshots
in the system. All such candidates, except the one which
has the maximum version timestamp, are safely reclaimed
as garbage versions. In mixed OLTP and OLAP workloads,
the typical garbage collector may not effectively reclaim
record versions. In these workloads, OLTP applications
generate a high volume of new versions, while long-lived
queries or transactions in OLAP applications often block
garbage collection, since we need to compare the version
timestamp of each record version with the snapshot times-
tamp of the oldest, long-lived snapshot. Thus, these work-
loads typically cause the in-memory version space to grow.
Additionally, the increasing version chains of records over
time may also increase the traversal cost for them. In this
paper, we present an efficient and effective garbage collec-
tor called HybridGC in SAP HANA. HybridGC integrates
three novel concepts of garbage collection: timestamp-based
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group garbage collection, table garbage collection, and inter-
val garbage collection. Through experiments using mixed
OLTP and OLAP workloads, we show that HybridGC ef-
fectively and efficiently collects garbage versions with negli-
gible overhead.
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1. INTRODUCTION
Commercial database management systems (DBMSs) in-

cluding SAP HANA employ multi-version concurrency con-
trol (MVCC) due to robust and better performance for var-
ious workloads [10]. In MVCC, updates (including deletes)
by a transaction to a record generate new versions rather
than updating the existing record in place, and thus, a se-
ries of versions are maintained for each record.

SAP HANA supports snapshot isolation [3], which is a
popular MVCC protocol where a transaction can read a
snapshot of committed versions, i.e., a snapshot of the ver-
sions that were created by committed transactions. There
are two variants of snapshot isolation supported in SAP
HANA [19]: statement-level snapshot isolation (Stmt-SI)
and transaction-level snapshot isolation (Trans-SI). In Stmt-
SI, which is the default isolation level of SAP HANA and
widely used by the vast majority of enterprise applications of
SAP, all reads logically occur at the beginning of the state-
ment. In Trans-SI, all reads logically occur at the beginning
of the transaction. In Stmt-SI, each statement has its own
snapshot associated with a new snapshot timestamp, while,
in Trans-SI, each transaction has its own snapshot with a
new snapshot timestamp.

While MVCC supports fast and robust performance, it has
the potential problem of a growing number of versions over
time due to obsolete versions. Although a few TB of main
memory is available for enterprise machines, the memory
resource should be used carefully for economic and practical
reasons [2]. Thus, in order to maintain the necessary number
of versions in MVCC, versions which will no longer be used
need to be deleted. This process is called garbage collection.
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MVCC uses the concept of visibility to define garbage.
Specifically, in typical commercial DBMSs supporting MVCC,
a set of versions for each record is first identified as a can-
didate if their version timestamps are lower than the mini-
mum value (a.k.a. the global minimum timestamp) of snap-
shot timestamps of active snapshots in the system. All such
candidates, except the one which has the maximum version
timestamp, are safely reclaimed as garbage versions. One
can guarantee that such record versions will no longer be
visible to any active snapshots. Figure 1 shows how the
typical garbage collector identifies garbage versions. First,
the global minimum timestamp is set to 3. Thus, the con-
ventional garbage collector identifies v11 only as garbage,
since its version timestamp (=1) is lower than 3, and there
exists v12 whose version timestamp 2 is also lower than 3.
However, notice that both v13 and v14 are invisible to any
active transaction, and thus, they should be subject to being
“garbage collected.”

Figure 1: An example of record versions.

In mixed OLTP and OLAP workloads, the typical garbage
collector may not effectively reclaim record versions. In
these workloads, OLTP applications generate a high volume
of new versions, while long-lived queries (under Stmt-SI) or
transactions (under Trans-SI) in OLAP applications often
block garbage collection, since we need to compare the ver-
sion timestamp of each record version with the snapshot
timestamp of the oldest, long-lived snapshot. Thus, these
workloads typically cause the in-memory version space to
grow. Additionally, the increasing version chains of records
over time may also increase the traversal cost for them. We
also observe other types of garbage collection blockers in
real customer systems. Long-duration cursors or Trans-SI
transactions due to either application logic or developers’
mistakes can easily block garbage collection. For example,
we collected statistics on cursor durations from a real ERP
system. Out of 408,664 distinct queries executed in the sys-
tem, the life times of six cursors were more than one hour!

Figure 2 shows the impact of the long-lived snapshot when
there exists no optimized garbage collector. This real screen
shot is taken from the HANA system load view, which visu-
alizes the status of key performance indicators in the system
over time. Especially, the light blue color, marked as ”Ac-
tive Commit ID Range”, denote the difference between the
last CID value and the minimum global snapshot timestamp
value. If the value increases, this means that there is at least
one long-live snapshot in the system. The number of record
versions, marked as ”Active Versions” in blue color, keeps
increasing over time. As a result, the system’s memory con-
sumption, marked as ”Used Memory”with green color, keeps
growing.

Conventional workarounds for this version space overflow

Figure 2: A real example of version space overflow
problem.

problem are as follows. 1) The system flushes old versions
out to disk. 2) The system closes problematic cursors or
Trans-SI transactions by force and returns errors to clients.
This is implemented in SAP HANA, especially to handle
application developers’ mistakes. 3) The system implicitly
closes cursors earlier than the explicit cursor close request; as
soon as the query results are materialized or the system can
guarantee that there is no more request to access the version
space, the system implicitly closes cursors. This workaround
is also supported in SAP HANA for a limited set of cases.

In order to collect more garbage versions, unlike the tra-
ditional garbage collector which uses the global minimum
timestamp, we propose an interval garbage collector that
uses visible intervals among consecutive timestamps of each
record version. Here, the visible interval [s, e) for a record
v represents a set of snapshot timestamps to which v can
be visible. The traditional garbage collector uses the global
minimum timestamp and is thus unable to collect record ver-
sions which are invisible to any active or future snapshots.
For example, v13, and v14 are invisible to any active trans-
actions. Visible intervals for the record 1 of Figure 1 are {[1,
2), [2, 4), [4, 5), [5, 99), [99, ∞)}. Consider the interval for
v13, [4, 5). No active snapshot timestamp is included in this
interval. Thus, v13 is invisible to any active snapshot and
can be reclaimed as garbage. Similarly, v14 whose visible
interval is [5, 99) is also reclaimed as garbage if we use this
interval-based decision.

Garbage collection may incur non-negligible overhead for
normal transaction processing. In order to efficiently collect
garbage, we propose the concept of the group garbage version
collector. Typically, a set of versions generated by the same
transaction can form a group, and thus, the garbage collector
checks whether this group can be reclaimed as a whole. The
group garbage collector can also be implemented using either
the timestamp-based decision or the interval-based decision.

Figure 3 shows the taxonomy of 4-quadrants of garbage
collectors containing two dimensions. Along the dimension
of garbage granularity, a garbage version can be either a sin-
gle record version or a group version. Along the dimension of
comparison unit, there exist timestamp-based and interval
garbage collectors. Thus, we can have four types of garbage
collectors (ST, SI, GT, and GI). Note that existing garbage
collectors belong to ST.

In addition to granularity and comparison unit, we can ex-
ploit semantic optimization for efficiently collecting garbage
versions. Under Stmt-SI or some special cases of Trans-SI
(e.g. pre-compiled stored procedures), one can reclaim more
garbage versions by identifying the tables which are not rele-
vant to the currently long-running snapshots. In this paper,
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Figure 3: The taxonomy of garbage collectors.

this type of garbage collector is called the table garbage col-
lector (TG).

In order to execute effective and efficient garbage collec-
tion, we propose the novel concept of hybrid garbage col-
lector which executes GT, TG, and SI in this order. GT
is a light-weight garbage collector since it examines group
garbage versions only. TG is also effective under Stmt-SI
and relatively lighter than SI. Although the SI can reclaim
more garbage versions, it can be heavier than the others.
Thus, we propose an efficient algorithm for SI to identify
garbage versions using visible intervals.

In summary, this paper makes the following key contribu-
tions.

• We propose the novel concept of interval garbage col-
lection. For this, we formally model the garbage col-
lection problem as the consecutive interval intersection
problem. Then, we provide an efficient merge-based
solution to this problem.

• We propose the novel concept of group garbage collec-
tion. This granular garbage collection enables us to ef-
ficiently determine a set of record versions as garbage.
Furthermore, this concept can be applied to typical,
minimum snapshot timestamp-based garbage collec-
tion as well as interval garbage collection.

• We propose the novel concept of table garbage collec-
tion. This exploits the semantic information that ver-
sions in tables which are irrelevant to current snap-
shots can be reclaimed at any time.

• We present a hybrid garbage collector which combines
three different flavors of garbage collectors. Thus, we
can effectively and efficiently collect garbage versions
with negligible performance overhead.

• We implement the hybrid garbage collector in SAP
HANA and perform extensive experiments using a mod-
ified TPC-C benchmark which includes long-running
queries. Experimental results confirm that the hybrid
garbage collector effectively collects garbage versions
and considerably reduces the latency of long-running
OLAP queries.

The rest of this paper is organized as follows. Section 2
reviews some background information in SAP HANA. In
Section 3, we propose the concept of the interval garbage col-
lector. Section 4 presents the concepts of the group garbage
version, table garbage collection, and the hybrid garbage col-
lection for SAP HANA. In Section 5, we present the results
of performance evaluations, and Section 6 reviews related
work. Section 7 concludes the paper.

2. PRELIMINARIES
In this section, we first explain the architecture of SAP

HANA. We then explain how SAP HANA manages the ver-
sion space.

2.1 SAP HANA In-memory Database
SAP HANA is an ACID-compliant and in-memory rela-

tional DBMS, designed to efficiently handle both of OLTP
and OLAP workloads together in a single system [16,18,19].
SAP HANA has both an in-memory column store and an
in-memory row store for high-performance OLAP and high-
performance OLTP, respectively.

In order to seamlessly integrate the column store and row
store from transaction and query processing perspectives,
the unified transaction manager and the unified query pro-
cessor are built on top of the two different stores. For ex-
ample, the unified transaction manager provides durability
based on logging and checkpointing to a common persis-
tency, and it also provides snapshot isolation based on the
common commit timestamp.

For supporting snapshot isolation, the transactions across
the row store and the column store are centrally controlled
by the unified transaction manager although each store has
its own version space layout. While the garbage collection
scheme proposed in this paper can also be applied to the
column store, the rest of this paper is described based on
its implementation at the row store for convenience of the
description.

2.2 Version Management in HANA RowStore
The in-memory area in the SAP HANA row store con-

sists of the table space and the version space. Since the row
store implements the snapshot isolation based on MVCC,
the newly added version is appended to the version space,
instead of performing the in-place update directly to the ta-
ble space. Later on, by garbage collection, the added data is
moved to the table space once it is certain that there is no
potential reader to the original data maintained in the ta-
ble space. In this way, the table space maintains the oldest
versions of the existing records while the version space main-
tains newer record versions until they are reclaimed or their
record images are copied to the table space by a garbage
collector.

In particular, on every INSERT/UPDATE/DELETE op-
eration, a record version (or a version entry—we use the
terms interchangeably) is created at the version space. A
single record version consists of a version header and its
payload. The version header stores the creator’s operation
type, the changed record’s identifier (RID), the table ID
which the record belongs to, and a few pointers to maintain
version chains. The payload stores the new record image for
the UPDATE operation. For the INSERT operation, the
new record image is directly inserted into the table space
since there is no older image for the particular record.

In the version space, the record versions having the same
RID are linked with each other in the latest-first order. Dif-
ferently from organizing the version entries in the oldest-first
order, the latest-first ordering in the version chain can re-
duce the cost of traversing version chains for future queries
and transactions. This is more likely to access more recent
versions by the nature of snapshot isolation. The pointer
to the latest record version of each version chain is main-
tained by a central hash table, called RID hash table, for
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Figure 4: Version management in the HANA row store.

fast RID-to-version-chain lookup. In order to reduce the
cost of checking whether a particular record has its own ver-
sion chain, each record in the table space stores the so-called
is versioned flag. This flag is set only when the record in
the table space has additional record versions in the version
space. If this flag is not set, looking up the hash table can
be skipped.

The RID hash table is implemented as a chained hash
structure. Basically, it is an array of hash buckets, each of
which stores the pointer to the corresponding version chain.
However, if multiple version chains are associated to a single
hash bucket, the hash bucket creates additional linked list
to maintain the pointers to the multiple version chains. As
the result, if a single hash bucket contains 10 version chains,
then the query accessing the hash bucket may encounter 5
additional pointer traversals in average and 10 additional
pointer traversals in the worst case just to find the corre-
sponding version chain. Since every pointer traversal in this
additional chain may lead to hardware-level cache misses,
this cost can significantly affect the overall performance, es-
pecially for short-running queries and transactions where
the version space access cost takes a non-trivial portion of
its execution time. Remark that the row store is currently
implemented using the RID hash table, considering that an
efficient garbage collector can reduce the probability of the
hash collisions. The detailed experimental analysis on the
performance impact of such hash collisions is given in Sec-
tion 5.

The record versions created by the same transaction are
associated as a group by pointing to the same data object,
called TransContext. When a transaction issues a write op-
eration for the first time, it creates a TransContext object.
All the next record versions created by the transaction point
to the same TransContext object. The TransContext object
points to NULL until the corresponding transaction starts to
commit. On transaction commit, once the set of write trans-
actions to be committed together is decided by the group
commit logic, another object called GroupCommitContext
is created, and thus the TransContext objects for all con-
current transactions committing together point to the same
GroupCommitContext object. After that, if the commit ID
(CID) is decided for the group commit operation, the CID
is written to the GroupCommitContext object, and the CID
becomes immediately visible to all related TransContext ob-
jects and version entries which share the same CID value.

This atomic, indirect CID assignment scheme is more effi-
cient than the approach of directly copying the CID values
to the record versions. The indirect CID assignment is done
in an atomic way without relying on any latch or lock, and
thus is efficient.

The expected penalty in the atomic indirect CID assign-
ment is that the accessing the CID value of a record ver-
sion may have to follow an additional pointer, but this cost
can be minimized by asynchronously propagating the CID
value from the GroupCommitContext object to the individ-
ual record versions. For efficient backward CID propagation,
backward links from the GroupCommitContext object to in-
dividual record version are also maintained.

Figure 4 illustrates the version space management scheme
in the row store. We assume the records R1, R2, and R3

are already in a user table. The transaction T1 generates
the record versions V21 and V31 and commits with creating
TransContext T1. The transaction T2 generates the record
versions V12 and commits with creating TransContext T2.
Since T1 and T2 are committed together by the same group
commit operation, they share the same GroupCommitCon-
text C1. Then, the transaction T3 generates the record ver-
sion V13 and V33 and commits with creating TransContext
T3 and GroupCommitContext C2.

3. VARIANTS OF GARBAGE COLLECTOR
In the paper, we classify garbage collectors into four vari-

ants according to the comparison unit and the granularity.

3.1 Timestamp vs Interval Garbage Collector
Conventional, timestamp-based garbage collectors iden-

tify a version record by comparing its timestamp with ac-
tive snapshot timestamps. Specifically, a set of versions for
each record is first identified as a candidate if their version
timestamps are lower than the global minimum timestamp
in the system. All such candidates, except the one which
has the maximum version timestamp, are safely reclaimed
as garbage versions. Such record versions will no longer be
visible to any active snapshots.

Before we explain interval garbage collectors, we formally
model the interval-based garbage collection as the consec-
utive interval intersection problem. First, we define some
terminology and introduce the consecutive intersection prob-
lem. We then propose an efficient merge-based solution to
this problem.

1310



Consider an integer t and an ordered sequence S of inte-
gers. Without loss of generality, we assume that S always
contains a number which is larger than or equal to any t.
Then, the least greater number (LGN) for t with respect to
S is defined as the smallest number in S such that the num-
ber is greater than or equal to t. We denote the least greater
number by LGN(t,S). Suppose that t=10, and S = [1, 4, 6,
8, 12, 14]. Then, LGN(t,S) = min{12, 14} = 12. If t =15,
LGN(t,S) = ∞.

Definition 1 (Consecutive interval intersection).
Given two ordered sequences of integers, S and T , find the
subset T∩ of T satisfying the following condition.

T∩ = {t|t ∈ T,LGN(t + 1, T ) ≤ LGN(t, S)} (1)

Consider S = [90, 92, 95, 96, 99] and T = [91, 93, 94, 95,
98]. We can compute LGN(t + 1, T ) and LGN(t,S) for each
t. Finally, we can compute T∩ = {93, 94}.

Suppose that S is an ordered sequence of snapshot times-
tamps, and T is an ordered sequence of record versions for a
record. Then, the elements in T∩ are identified as garbage.
Here, [t,LGN(t + 1, T )) is called visible interval for t.

Now, we explain how to compute T∩. The naive way
to compute T∩ uses nested loops. That is, for each record
version t, we perform a set intersection operation for every
snapshot timestamp in S. Then, the time complexity is
O(|T | × |S|).

In order to minimize the garbage collection overhead, we
now propose a merge-based solution. Algorithm 1 shows a
merge-based garbage collector. It computes T∩ in Eq. (1)
in O(|T | + |S|). We denote the i-th element of T by T [i].
In order to merge two ordered sequences, we maintain two
index variables, i and j. For each element T [i], we move
j until S[j] ≥ T [i] (Lines 3 ∼ 4). Then, S[j] should be
LGN(T [i], S). If S[j] ≥ T [i + 1], then T [i] is identified as
garbage. Otherwise, we skip T [i] by incrementing i since it
is not garbage.

Algorithm 1 MergeBasedGC(S, T )

Input: Two ordered sequence of integers S, T .
Output: T∩.
1: i ← 0, j ← 0
2: while i < |T |-1 do
3: if S[j] < T [i] then
4: j ← j + 1
5: else if T [i + 1] ≤ S[j] then

/∗T [i + 1] represents LGN(T [i] + 1, T ).∗/
6: T∩ ← T∩ ∪ T [i]
7: i ← i + 1
8: else
9: i← i + 1

10: end if
11: end while
12: return T∩

3.2 Single vs Group Garbage Collector
The granularity for garbage collectors can be either a sin-

gle record version or a group of record versions. All record
versions generated by transactions belonging to the same
GroupCommitContext have the same version timestamp.
Thus, if we group record versions by their timestamp, we

can efficiently check whether a (version) group is reclaimed
as garbage. That is, we can directly apply the timestamp-
based garbage collector to both the single version and the
version group. Such garbage collectors are classified as ST
and GT, respectively.

Now, we explain how we can apply the interval garbage
collector to the version group. For this purpose, we propose
the novel concept of immediate successor subgroup.

The immediate successor subgroup in a group Gi consists
of record versions in Gi which have the immediate succes-
sors in the next group Gi+1. Then, we can apply the inter-
val garbage collector to an ordered sequence of immediate
successor subgroups. In this scheme, we need an efficient,
systematic mechanism to move a record version in Gi to
form its immediate successor subgroup, which is beyond of
the scope of our paper and would be an interesting future
topic of research.

Figure 5 shows an ordered sequence of k groups. Each
group Gi has one immediate successor subgroup denoted
by sgi. Note that the version v1 belongs to sg1 since its
immediate successor is in G2, while the version v2 does not.
However, if we generate the immediate successor of v2 and
insert the successor into G2, then v2 belongs to sg1. Note
that sgk does not contain any record version since Gk is the
last group in the ordered sequence.

Figure 5: An ordered sequence of k groups contain-
ing immediate successor subgroup.

Now, we can apply the interval garbage collector to both
the single version and the version group. Such garbage col-
lectors are classified as SI and GI, respectively. In the next
section, we explain how these garbage collectors are imple-
mented in SAP HANA.

4. IMPLEMENTATION IN SAP HANA
This section describes how the proposed interval garbage

collector and the group garbage collector are implemented
in SAP HANA together with the additional practical opti-
mizations. Specifically, we describe GT, SI, and the table
garbage collectors implemented in SAP HANA.

4.1 Global Group Garbage Collector
GT is implemented as the global garbage collector in SAP

HANA, considering the following two optimization strate-
gies: (1) efficiently select the minimum global snapshot times-
tamp value and (2) efficiently detect a group of garbage ver-
sions.

As the first optimization strategy, the so-called global snap-
shot timestamp tracker (global STS tracker) is maintained
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globally in the system. The global STS tracker is an ordered
list of reference-counted snapshot timestamp values. When
a snapshot starts, it acquires its snapshot timestamp value
from the transaction manager according to the definition
of snapshot isolation. If the acquired snapshot timestamp
value is already in the tracker, we simply increment the refer-
ence count of the corresponding snapshot timestamp object
by one. Otherwise, a new snapshot timestamp object is in-
serted into the tracker. Then, if the snapshot associated with
a query or a transaction finishes its processing, the reference
count of the corresponding snapshot timestamp decrements
by one. When the reference count becomes zero, the cor-
responding snapshot object is deleted from the global STS
tracker. Since each active snapshot maintains a pointer to
the corresponding snapshot timestamp object in the global
STS tracker as shown in Figure 6, we can directly access the
snapshot timestamp object without scanning the entire list
in the tracker. Note that the snapshot timestamp values in
the global STS tracker are maintained in increasing order.
When the global garbage collector needs to find the global
minimum snapshot timestamp value at a certain time point,
accessing the head of the list without scanning the entire
tracker is sufficient.

Figure 6: Global Snapshot Timestamp Tracker.

As the second optimization strategy, we exploit the Group-
CommitContext and the TransContext objects, described in
Section 2. Since (1) record versions created by the same
transaction are associated with the same TransContext ob-
ject, and (2) the transactions which are committed together
and share the same CID value are associated as a group with
the same GroupCommitContext object, we can efficiently
find the group of record versions that share the same CID
by just accessing the GroupCommitContext object. The
GroupCommitContext objects are also maintained by an or-
dered list of their CID values as shown in Figure 7. Then, the
global group garbage collector can identify a set of garbage
versions as a group by just checking the GroupCommitCon-
text object list without traversing the individual record ver-
sions. If the global garbage collector encounters a Group-
CommitContext object which has a larger CID value than
the minimum global snapshot timestamp, then the global
garbage collector finishes its iteration of the GroupCommit-
Context object list. After the group garbage collector fin-
ishes the identification of groups of garbage versions, the
corresponding record versions, TransContext objects, and
GroupCommitContext objects are physically deleted in the
background.

4.2 Interval Garbage Collector
For the simplicity of implementation in SAP HANA, the

group garbage collector uses only the timestamp-based deci-
sion, while the single garbage collector uses only the interval-
based decision. The interval garbage collector consists of

Figure 7: Global Group Garbage Collection.

the following four steps. (1) The full set of active snap-
shot timestamps is retrieved by scanning the whole snap-
shot timestamp values maintained by the global STS tracker.
Let’s denote the ordered set of active snapshot timestamp
values by S (following the same notation at Definition 1).
(2) At the second step, the interval garbage collector scans
the existing GroupCommitContext objects and finds Group-
CommitContext objects whose CID values are larger than
the minimum value of S and smaller than the maximum
value of S. We denote the set of the identified GroupCom-
mitContext objects by P . (3) At the third step, by iterat-
ing GroupCommitContext objects in P in the highest-CID-
first order, the interval garbage collector accesses the record
versions reachable from the GroupCommitContext objects.
(4) Finally, for each reachable record version, the interval
garbage collector identifies (and reclaim, if exists) garbage
versions in its version chain, following Algorithm 1. The CID
values in the version chain compose T in Algorithm 1, and
the interval garbage collector reclaims the record versions
whose CID values exist in T∩.

Instread of accessing version chains starting from the avail-
able GroupCommitObject list as described above, it is an
alternative implementation option to reach to the version
chains starting from the RID hash table, which is more use-
ful when we need to logically partition the version space to
execute the interval garbage collector by multiple threads in
parallel.

4.3 Table GC: Semantic Optimization
In addition to the interval garbage collector and group

garbage collector, we present another optimization dimen-
sion for garbage collection by exploiting semantic informa-
tion of executed snapshots. In this optimized garbage col-
lection, called table garbage collection (TG), TG leverages
the target tables that will be accessed by a given snapshot
a priori. In general, it is not possible to predict the com-
plete set of the tables to be accessed by the snapshot at the
time when a snapshot timestamp is assigned to it. How-
ever, under Stmt-SI, which is the default isolation mode in
SAP HANA and widely used in SAP enterprise applications,
the complete set of the accessed tables within that snapshot
can be retrieved by just accessing its compiled query plan.
Even under Trans-SI, in certain scenarios (e.g. pre-compiled
stored procedure execution), it is possible to identify the ta-
bles to be accessed within the snapshot a priori. Therefore,
it is possible to restrict the negative impact of long-live snap-
shots only to their relevant tables.
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If a table garbage collector is invoked, it performs the fol-
lowing three steps: (1) discovering long-lived snapshots and
their scopes, (2) moving snapshot timestamp objects from
the global STS tracker to relevant, per-table STS trackers,
(3) reclaiming versions by traversing the version space based
on the per-table minimum snapshot timestamps. In the first
step, it checks whether there is any long-lived (determined
based on the pre-defined time threshold) snapshot in the
system by accessing the system monitor which keeps track
of every active snapshot’s status If any long-live snapshot is
found, then it checks again whether the complete set of the
target tables of the detected long-lived snapshots is already
determined. In the second step, the snapshot timestamp
of the classified snapshot is copied to one or more relevant
per-table snapshot timestamp trackers (per-table STS track-
ers), each of which maintains only the timestamps of the
snapshots relevant to the given table. Then, the snapshot
timestamp of such snapshot is removed from the global STS
tracker. Finally, the table garbage collector decides the min-
imum snapshot timestamps from the available per-table STS
trackers and then, based on the per-table minimum snapshot
timestamp, the table garbage collector is able to reclaim ver-
sions which could not be reclaimed by the global garbage
collector alone. During this visibility check, depending on
the table ID stored in the record version, it is determined
which minimum snapshot timestamp is compared with the
record version’s CID.

In the example of Figure 8, suppose that the snapshots S1

and S2 are identified as long-lived snapshots. Assume that
their scopes are Table 1 and Table 2, respectively. For the
record versions which are not relevant to Table 1 and Table
2, 2100 is used as the minimum snapshot timestamp. For
the record versions relevant to Table 1 or Table 2, 2057 is
used as the minimum snapshot timestamp.

Figure 8: Per-table snapshot timestamp trackers for
table garbage collection.

Although it is also possible to apply this semantic opti-
mization to a finer-granular object such as partitions (by
additionally leveraging the partition-pruning results of the
queries), only the table-level semantic optimization is im-
plemented in SAP HANA for now. In practice, this ta-
ble garbage collection is used more widely even for Trans-
SI, particularly for internal transactions, because there is
an API that application programmers can explicitly declare
which tables will be accessed by the transactions. If the
transaction tries to access a non-declared table object, an
error is reported to the transaction. In addition to the in-
ternal transaction case, if a Trans-SI transaction is used in a

pre-compiled stored procedure, it is also possible to identify
the tables to be accessed within the snapshot a priori.

For mixed OLTP and OLAP workload, the table garbage
collector is particularly useful in a database system such as
SAP HANA which uses separate row and column stores. By
the table garbage collection, the long-lived OLAP queries
running on column store tables do not affect the garbage
collection of the other row store tables which deals with
a large number of versions rapidly created by the OLTP
workloads.

4.4 HybridGC: Putting It Altogether
Finally, we propose a hybrid garbage collector which com-

bines the global group garbage collector, the table garbage
collector, and the interval garbage collector. The three garbage
collectors are invoked independently, having its own invoca-
tion period. When the table garbage collector or the interval
garbage collector is invoked, it internally executes the global
group garbage collector first. For the remaining versions af-
ter the implicitly invoked group garbage collection, the table
garbage collector or the interval garbage collector tries to re-
claim them.

Figure 9 shows three regions of the version space by the
three different version garbage collectors in HybridGC. The
set of versions marked by the region A is reclaimed at once
by the global group garbage collector. The region B is in-
spected by the table garbage collector, while the region C
is inspected by the interval garbage collector. While the
interval-garbage collector eventually scans all existing ver-
sion chains which are available when the interval garbage col-
lector starts, the table garbage collector scans only a subset
of the GroupCommitContext objects whose commit times-
tamps are less than the minimum value of the global STS
tracker. Note that the global garbage collector and the in-
terval garbage collector need to be slightly changed when
they are used together with the table garbage collector be-
cause the table garbage collector could move some snapshot
timestamp values from the global STS tracker to the per-
table STS trackers. That is, the global garbage collector
should calculate its global minimum snapshot timestamp by
considering not only the global STS tracker but also the ex-
isting per-table STS trackers. The interval garbage collector
also needs to consider existing per-table STS trackers as well
as the global STS tracker. To deal with the situation where
there are too many per-table STS trackers, the union of the
global STS tracker and the available per-table STS trackers
is pre-materialized and maintained separately to fast extract
the minimum value for the global garbage collector or the
entire snapshot timestamp set for the interval garbage col-
lector.

All the proposed garbage collectors can be easily executed
in parallel by multiple threads. For example, by logically
partitioning the GroupCommitContext object list or by log-
ically partitioning the version space based on table ID or
RID.

5. EXPERIMENTS
We evaluate the performance of three different garbage

collectors, which are implemented in SAP HANA row store
The garbage collectors considered are as follows: (1) GT,
a global group garbage collector which uses the timestamp-
based decision; (2) GT+TG, a garbage collector that uses
the combination of GT + TG; (3) HG(=HybridGC in Sec-
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Figure 9: Hybrid garbage collection.

tion 4.4), the hybrid garbage collector which executes the
three garbage collectors GT+TG+SI in this order.

Our main objective is to show that the hybrid garbage col-
lector 1) effectively collects garbage and 2) efficiently works
with negligible overhead. The detailed goals of the experi-
ment are as follows:

• HG reclaims the version space more effectively than
the two alternatives (Section 5.2).

• HG improves the OLTP performance especially for the
SAP HANA row store by reducing the number of hash
collisions in the version space (Section 5.3).

• HG improves query performance during incremental
query processing (Section 5.4).

• HG effectively collects garbage in the presence of Trans-
SI transactions, while the other alternatives do not.
(Section 5.5).

• The overhead of HG is negligible (Section 5.6).

5.1 Experiment Setup
We used the TPC-C benchmark with 100 warehouses with

the following minor modifications: 1) In order to avoid net-
work performance effect, the TPC-C logic was embedded
inside the database server using HANA SQLScript, which
is the stored procedure supported by SAP HANA. 2) In or-
der to see the behaviors of the garbage collectors while the
record versions are generated rapidly, we allocated a dedi-
cated worker thread for each warehouse and let the thread
access the home warehouse only. Note that this modifica-
tion does not simplify the work of garbage collectors because
the worker thread information or the database partition in-
formation is not exploited by the garbage collectors in this
experiment. 3) In order to emulate mixed OLTP and OLAP
workloads, we added an emulated OLAP workload by us-
ing a long-duration cursor (under Stmt-SI) or long-duration
transactions (under Trans-SI).

All TPC-C transactions were executed under the Stmt-SI
mode except the experiment in Section 5.5. In all the ex-
periments, the garbage collectors are triggered periodically
with 1 second for GT, 3 seconds for TG, and 10 seconds for
SI. The impact of the garbage collection period is discussed
in Section 5.6. In order to measure how effective garbage
collectors are, we use the number of record versions. We use

the throughput (=committed statements/sec) for measuring
efficiency of each garbage collector.

All the experiments were performed on a single 4-socket
machine having 1TB of main memory and 60 physical CPU
cores in total (120 logical cores with hyper-threading).

5.2 Impact on Version Space Size
To see the impact of a long-duration cursor to the version

space size, we executed a simple scan query on the STOCK
table without closing its cursor until the TPC-C benchmark
finishes (each worker thread terminates after executing a
fixed number of iterations in TPC-C). We measured the
number of record versions maintained by each garbage col-
lector.

Figure 10 shows the number of record versions existing in
the version space over time. While the number of record
versions keeps growing for GT and GT+TG, the number of
record versions in HG remained almost constant in spite of
the long-duration cursor. This indicates that SI effectively
collects garbage versions while the other two do not in the
presence of the long-lived query. GT+TG reclaims more
record versions than GT alone because the long-duration
cursor is defined only for the table STOCK in this experi-
ment.

Figure 10: The number of record versions with a
long-duration cursor.

Remark that the version growth ratio in GT decreases
over time while GT+TG shows almost linear growth in
terms of the number of the record versions. This was because
the version generation speed from the TPC-C benchmark
decreased as the number of the hash collisions at the ver-
sion space increases. This issue will be discussed in detail in
Section 5.3. Similarly, the graphs of HG and GT+TG ter-
minate earlier than GT because the given number of TPC-C
iterations at HG or GT+TG finishes earlier than GT.

Figure 11 shows the accumulated number of record ver-
sions reclaimed by each of GT, TG and SI when HG is used
in the experiment of Figure 10. Due to the long-duration
cursor, GT did not reclaim any record version but TG and
SI respectively reclaimed 379 million versions and 118 mil-
lion versions during the 1000 seconds of the TPC-C run time.
The number of reclaimed versions by SI in Figure 11 is equiv-
alent to the number of remaining versions at GT+TG in
Figure 10 and this indicates that HG could reclaim more
versions than GT+TG by the work of SI.

5.3 Impact on OLTP Performance
In order to see the impact of the long-duration cursor to

the OLTP performance, we measured the throughput of the
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Figure 11: The accumulated number of reclaimed
versions per garbage collector under HG.

TPC-C transactions in the same experiment with the one in
Section 5.2.

Figure 12 shows the throughput of the TPC-C transac-
tions in terms of the number of executed statements per sec-
ond. The overall performance using GT alone dropped over
time while the long-duration cursor is available for the ta-
ble STOCK. This is due to the characteristics of the chained
hash implementation in SAP HANA row store. As explained
in Section 2, if the number of the version chains in the ver-
sion space increases, the chained hash need to maintain addi-
tional hash entries in a separate linked list, which incurs the
additional navigation cost to find the corresponding version
chain for a given RID.

Figure 12: TPC-C throughput with a long-duration
cursor.

To confirm the correlation between the TPC-C through-
put drop and the hash collision ratio, we additionally mea-
sured the hash collision ratio during the same experiment
with the one in Figure 13. The hash collision ratio is defined
as the number of the version chains assigned to a single hash
bucket on average. For example, the hash collision ratio of
10 means that 10 version chains are assigned to a single
bucket in the hash table on average. The TPC-C transac-
tions are relatively short, and thus, the increase in the hash
collision ratio affected the overall performance significantly.
Note that, in GT+TG, the number of the record versions
keeps increasing as shown in Figure 10, but it does not lead
to the increase of the collision ratio at the version space
hash because TPC-C generates only the UPDATE workload
to the STOCK table and the UPDATE record version does
not create a new version chain.

Figure 13: Hash collision ratio in the experiment of
Figure 12.

5.4 Impact to Incremental Query Processing
Performance

In this section, we check whether the garbage collectors
affect the performance of the incremental query processing.
In order to emulate incremental query processing, the long-
duration cursor incrementally and periodically fetches its
query results to the client. While the query is supposed to
return 5 million result records in total and eventually, 10
thousands of the result records are returned to the client
at a time by the FETCH call of the returned cursor. The
next FETCH operation is called after 5 seconds of sleep
time, emulating the application-side processing logic for the
received chunk of the result records.

Figure 14 shows the latency of the individual FETCH
operations of a cursor over time. HG showed almost con-
stant latency even though FETCH operations are repeated
within a cursor while the latency increased over time in GT
or GT+TG. It is expected that two performance penalties
are involved in case of GT and GT+TG: (1) the hash col-
lision in the RID hash table and (2) the cost of traversing
the record versions within a single version chain. Unlike
OLTP-style workloads which access more recent record ver-
sions (the time gap between the snapshot timestamp as-
signment operation and the version access operation is rel-
atively short), the second cost could become more promi-
nent for long-running, incremental query processing because
it should access older record versions as its own snapshot
timestamp becomes relatively older.

Figure 14: Latency of individual FETCH operations
in a cursor.

To verify our analysis, we also measured the number of
the record versions traversed by a single FETCH operation.
Figure 15 shows as a similar trend as Figure 14. This con-
firms that the latency of an individual FETCH operation is
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mostly affected by the number of record versions traversed
for the FETCH operation.

Figure 15: The number of the record versions tra-
versed by individual FETCH operations in a cursor.

By the similar reason, not only for the incremental query
processing, we can expect the same performance impact for
the queries executed within Trans-SI transactions because
the snapshot timestamp is assigned at the time of the trans-
action start but the queries can be executed later with the
assigned snapshot timestamp. This will be further discussed
in Section 5.5.

5.5 Impact of Trans-SI Transactions
So far, we have run the experiments only under Stmt-SI.

To see the impact of Trans-SI transaction, instead of using
the long-duration cursor as in the previous experiments, we
ran the following Trans-SI transaction repeatedly: (1) start a
Trans-SI transaction, (2) sleep 10 minutes (emulating other
query processing or application logic inside the transaction
boundary), (3) execute the simple scan-based query for the
STOCK table, (4) commit the transaction.

Figure 16 shows the latency of the query executed within
the Trans-SI transaction. TG did not show any gain com-
pared with GT since TG was unable to predict the target
tables that the Trans-SI transaction would access, as ex-
plained in Section 4. On the contrary, SI can effectively col-
lect garbage versions regardless of whether GT is blocked
by Stmt-SI cursors or Trans-SI transactions. As a result,
HG performs the best, showing the shortest query latency
among the three.

Figure 16: The latency of the queries executed in
the Trans-SI transactions.

Figure 17 shows the number of record versions in the ver-
sion space. There are three saw-like plots in the figure.
This experiment confirms that HG maintains the small-
est number of record versions in the version space. Note
that the number of the record versions drops sharply almost
periodically (approximately, every 10 minutes(=every 600

seconds)) since the global snapshot timestamp is reclaimed
from the global snapshot timestamp tracker at the transac-
tion end time under Trans-SI.

Figure 17: The number of record versions.

5.6 Overhead of Garbage Collection
Finally, to check the amount of overhead incurred by HG,

we measure the TPC-C transaction throughput while vary-
ing the invocation period of the three different garbage col-
lectors. Figure 18 and Figure 19 show the TPC-C trans-
action throughput in terms of the executed statements per
second with increasing the garbage collectors’ invocation pe-
riod from 1 second, which is the minimum value configurable
in SAP HANA. Note that the period of TG was varied by
fixing the GT’s period as 1 second under the configuration
GT+TG, while the period of SI was varied by fixing the
GT’s period to 1 second and the TG’s periods to 3 seconds
under the configuration HG. Figure 18 represents experi-
ments without any long-duration snapshot and Figure 19
represents the experiment with the long-duration cursor for
the table STOCK.

In Figure 18, when there is no long-duration snapshot,
varying the period of SI or TG did not affect the TPC-C
throughput because most of versions are reclaimed by GT
which is running by 1 second regardless of the period of SI
or TG. When the periods of SI, TG, and GG are fixed to
1 second (as shown in the left-most point of each graph),
HG showed about 0.8% of performance overhead compared
to GT and GG+TG showed about 0.3% of overhead. This
is because, compared to GT, SI or TG additionally checks
whether there is any long-duration cursor or whether there
is any intermediate record versions that can be reclaimed
by them. Remark that, as the triggering period of GT in-
creases, the overall performance sharply dropped due to the
hash collision issue already discussed in Section 5.3.

Figure 18: TPC-C throughput with varying the
garbage collectors’ invocation periods (without any
long-duration snapshot).
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In Figure 19, when there is a long-duration cursor on
the table STOCK, GT almost failed to reclaim. Thus, the
throughput under GT remained almost constant regardless
of its invocation period. If TG were called less frequently,
then the performance under GT+TG would eventually con-
verge to the performance of GT. This is why the throughput
under GT+TG slowly decreased over time. Under HG, the
TPC-C throughput was almost insensitive to its invocation
period.

Figure 19: TPC-C throughput with varying the
garbage collectors’ invocation periods (with a long-
duration cursor)

6. RELATED WORK
We first review existing garbage collection schemes in multi-

version concurrency control. Then, we explain the funda-
mental difference between garbage collector for MVCC and
those for programming languages. We finally explain the
current implementation status and future plan for garbage
collection in SAP HANA.

6.1 Garbage Collection in MVCC Database Sys-
tems

HyPer [15], one of the most recent in-memory database
implementations, updates data in-place, i.e., the latest record
image is directly applied into a table space. It also stores
versions as before-image deltas in undo buffers which can be
used for transaction rollback as well as for reconstructing a
needed record version. HyPer also provides for light-weight
lock-free garbage collection of versions within a transaction’s
undo log buffers comparing each transaction’s commit times-
tamp with the oldest transactionID. This, however, is a vari-
ant of GT where each group corresponds to only a single
transaction.

In Hekaton [6], there is no distinction between the ta-
ble space and the version space. All the record versions
are maintained at a single space. The versions of the same
record are linked with each other but in the oldest-first order
according to the figure in the paper (differently from HANA
row store or Hyper). Regarding garbage collection, the pa-
per describes “any version whose end timestamp is less than
the current oldest active transaction in the system is not vis-
ible to any transaction and can be safely discarded.” This
indicates that their garbage collector belongs to ST. In ad-
dition to its background garbage collection process, Hekaton
uses a cooperative mechanism [6] where the threads running
the transaction workload can try to reclaim garbage ver-

sions when the thread traverses version chains. Compared
to the latest-first version chain maintenance, it seems that
this cooperative garbage collection mechanism could make
more sense in their oldest-first version chain maintenance
scheme because there is a higher probability of encountering
garbage versions until the right version entry is found during
the query processing.

Silo [20] uses a variant of single-version concurrency con-
trol which supports read-only snapshot transactions by addi-
tionally maintaining per-epoch snapshot versions. Because
versions in a snapshot are claimed only when its epoch pre-
cedes the oldest transaction’s epoch. This can be regarded
as a variant of GT where each group corresponds to a set of
transactions within an epoch.

Loesing et al. [12] propose a shared-data architecture in a
distributed environment. They also use load-link and store-
conditional primitives to implement efficient MVCC. The
paper mentions potential growth of garbage records. How-
ever, again, [12] also uses the minimum snapshot timestamp.
Thus, their garbage scheme also belongs to ST.

To the best of our knowledge, most of well-known DBMSs
employing the multi-version concurrency control rely on the
global garbage collection. It appears that the need and
the concept of SI are already known to some implemen-
tors [9,17]. However, the algorithm available in [17] is more
expensive than the merge-based SI presented in this paper
because [17] requires linear search on the active snapshot
timestamps whenever it checks the visibility of a given ver-
sion. [9] describes the need of SI but we could not find any
further information about its implementation.

6.2 Garbage Collection under Programming
Language Runtime

In the area of programming language runtime, there have
been a number of research studies seeking to achieve lock-
free access to shared objects by creating multiple versions
of them if the object is being read by one or more threads.
The created old versions can be reclaimed only after all the
pre-existing readers finish their access to the old versions.
That is, in this context, the garbage versions are defined
as versions that are not referred to from anywhere or by
the term of the ”reachability” [6]. For example, in order
to identify not-referenced object versions, [1,5,21] maintain
reference counters to individual versions. [14] proposed the
so-called hazard pointers to bookkeep the set of active ref-
erences instead of using the reference counters. [7, 13] sug-
gested to decide the reachability to an object version by
checking whether all the active threads have reached a qui-
escence point [13] or a sufficient number of epochs [7].

Differently from the garbage collection in programming
language runtime, the garbage collection under the database
multi-version concurrency control relies on the concept of
visibility rather than reachability because it must consider
the set of versions which can potentially be accessed by the
active statements or transactions in the future, not only the
versions currently being accessed. Thus, the detailed mech-
anism is inherently different.

6.3 SAP HANA In-Memory Row Store
The MVCC implementation of SAP HANA row store was

inherited from P*TIME [4, 8] since P*TIME is used as one
of the key components of SAP HANA. As SAP HANA keeps
evolving into a platform to handle both OLTP and OLAP
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workloads together, its garbage collection scheme has been
revisited and optimized as presented in this paper. Among
the proposed garbage collection optimizations, GT and TG
have already been available in the product versions [11] while
SI was only available in a pre-production version at the time
of writing this paper. For HANA column store, TG is al-
ready incorporated and the other optimizations are also to
be applied.

7. CONCLUSION
In this paper, we presented an efficient and effective garbage

collector called HybridGC in SAP HANA. We empirically
showed that HybridGC effectively reclaimed garbage ver-
sions while incurring negligible overhead.

We first proposed the novel notion of interval-based garbage
collection by formally modelling the garbage collection prob-
lem as the consecutive interval intersection problem. We
then proposed an efficient, merge-based solution to this prob-
lem. We next proposed the novel notion of group garbage
collection, which enables us to efficiently determine a set
of record versions as garbage. We also explained how this
granular garbage collection can be applied to the timestamp-
based garbage collector as well as the interval-based garbage
collector. We next proposed the novel notion of table garbage
collection, which exploits semantic information such that
versions in tables irrelevant to current active snapshots can
be reclaimed at any time. We finally proposed HybridGC
which combines these three different flavours of garbage col-
lectors.

Through experiments using mixed OLTP and OLAP work-
loads, we showed that HybridGC effectively and efficiently
collected garbage versions. Overall, we believe that our com-
prehensive study for garbage collection lays a foundation for
future research in various MVCC systems.
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