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Abstract

Recent research addressed the importance of
optimizing L2 cache utilization in the design of
main memory indexes and proposed the so-called
cache-conscious indexes such as the CSB+-tree.
However, none of these indexes took account of
concurrency control, which is crucial for running
the real-world main memory database
applications involving index updates and taking
advantage of the off-the-shelf multiprocessor
systems for scaling up the performance of such
applications. Observing that latching index nodes
for concurrency control (CC) incurs the so-called
coherence cache misses on shared-memory
multiprocessors thus limiting the scalability of
the index performance, this paper presents an
optimistic, latch-free index traversal (OLFIT) CC
scheme based on a pair of consistent node read
and update primitives. An experiment with
various index CC implementations for the B+-
tree and CSB+-tree shows that the proposed
scheme shows the superior scalability on the
multiprocessor system as well as the
performance comparable to that of the sequential
execution without CC on the uniprocessor
system.

1. Introduction
With the price of server DRAM modules continues to
drop, the main memory DBMS (MMDBMS) emerges as
an economically viable alternative to the disk-resident

DBMS (DRDBMS) in many problem domains.
MMDBMS can show orders-of-magnitude higher
performance than DRDBMS not only for read
transactions but also for update transactions. However,
such a significant performance gain of MMDBMS over
DRDBMS does not come automatically by just placing
the database in memory but requires MMDBMS-specific
optimization techniques. For example, the so-called
differential logging scheme improves the update and
recovery performance of MMDBMS significantly by
enabling fully parallel access to multiple log and backup
partition disks [LKC01]. Such a degree of parallelism was
not achieved with the conventional, DRDBMS-oriented
logging and recovery schemes such as ARIES [MH+92].

For the efficient processing of read-intensive
transactions, recognizing the ever-widening speed gap
between CPU and memory, recent research addressed the
problem of optimizing L2 cache utilization in the design
of main memory indexes and query processing. It has
been shown that the T-tree, proposed in the 80’s [LC86],
shows poor L2 cache utilization with today’s computer
architecture [RR99]. The so-called cache-conscious index
structures such as the CSB+-tree ([RR00]) reduce the
cache misses and thereby improve the search performance.
The CSB+-tree keeps only one child pointer of the B+-
tree per node, almost doubling the fanout of the tree.
Recognizing the pointer elimination is not effective for
the R-tree whose MBR key is much bigger than a pointer,
the CR-tree focuses on efficiently compressing the MBR
keys to pack more entries per node [KCK01]. The pkT-
tree and pkB-tree significantly reduce cache misses by
storing partial key information in the index in the face of
nontrivial key sizes [BMR01].

While all of these cache-conscious indexes effectively
improve the search performance by increasing the index
fanout and reducing the so-called cold and capacity cache
misses, they were studied without much consideration of
concurrency control (CC), which is crucial for running the
real-world main memory database applications involving
index updates and taking advantage of the off-the-shelf
multiprocessor platforms for scaling up the performance
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of such applications. One naïve approach to this problem
is to use the conventional, disk-resident index CC
schemes such as lock coupling [BS77], which involves
latching nodes during the index traversal. However, this
naïve approach leads to the poor scalability because
latching involves memory write and thus incurs the so-
called coherence cache misses on the shared-memory
multiprocessor systems [CSG99].

The so-called physical versioning was proposed for
the T-tree to be used in the Dalì main memory storage
system [RS+97]. Its key idea is to create a new version of
the node for the updater so that the index readers do not
interfere with the updaters. The major advantage of this
scheme is the latch-free traversal of indexes. As a result, a
high degree of concurrency comparable to that of no
concurrency control can be achieved for read transactions.
Incorporation of the updated version into the index
involves obtaining latches either at the tree-level or both
on the tree and on the node to update. The major problem
with this scheme is the high cost of creating versions. The
index performance degrades sharply with the increasing
update ratio. The scalability of update performance is also
very poor, even on the dual processor platform where the
reported experiment was conducted.

To the best of our knowledge, this paper is the first
that addresses the importance of minimizing memory
writes in the CC of main memory indexes to achieve the
multiprocessor scalability of index search and update
performance. After discussing the coherence cache miss
overhead associated with latching index nodes, we
propose a new CC scheme that supports the latch-free
index traversal for B+-tree variants. Called an optimistic,
latch-free index traversal (OLFIT) CC, for each node, this
scheme maintains a latch, a version number, and a link to
the next neighbor node at the same level. The next node
link is borrowed from the Blink-Tree ([LY81]) to facilitate
the split handling. The index traversal involves consistent
node reads starting from the root. Here, the consistency
means that no update occurs between the start and the end
of a node read. To ensure the consistency of node reads
without latching, every node update first obtains the node
latch, updates the node content, increments the version
number, and releases the latch. The node read begins with
reading the version number into a register and ends with
verifying if the node latch is free and the current version
number is equal to the register-stored one. If these two
conditions are true, the read is consistent. Otherwise, the
node read is retried until the conditions become true.

To verify the superior scalability of the OLFIT
scheme, we implemented the OLFIT and a few
representative index CC algorithms for the B+-tree and
CSB+-tree: lock coupling, tree-level latching, physical
versioning with the node-level latch, and physical
versioning with the tree-level latch. We chose not only the
CSB+-tree but also the B+-tree because the latter shows
reasonably good cache performance while not losing good
update performance. The result of our experimental study

on an eight-CPU shared-memory multiprocessor system
shows that for the pure read workload, the OLFIT and the
physical versioning schemes show almost the same
scalable performance as that of no concurrency control.
However, the OLFIT is the only scheme that shows
almost linear scalability of update performance with the
increasing number of processors.

This paper is organized as follows. Section 2 presents
the background of our study, and section 3 presents the
basic idea of this paper and formulates our problem.
Section 4 and 5 describe the node and tree operations of
OLFIT, respectively. Section 6 presents the result of the
experiment conducted to compare OLFIT with other
representative index CC algorithms. Section 7 concludes
this paper.

2. Background

2.1 Memory Hierarchy and Cache Misses

Today’s computer systems use fast cache memory to fill
the speed gap between CPU and main memory. For
example, on the SUN Enterprise 5500 with 400MHz
UltraSparc II CPU and EDO DRAM, L2 cache hit takes
about 8 processor clocks, while L2 cache miss takes about
100 processor clocks [Sun97].

For the shared-memory multiprocessor system, which
is the most common form of parallel computing
environment, there is an additional type of overhead
associated with synchronizing multiple caches and
memory [CSG99]. The so-called coherence cache misses
occur when one processor updates a specific cache block
and the copies of that block that happen to be cached in
other processors are invalidated. The L1 and L2 cache
misses occur when these other processors attempt to
access the updated block later. The overhead associated
with the cache coherence is severe if multiple processors
repeatedly update the same data. Note that the coherence
cache misses do not occur for read-only applications
where each processor simply reads data.

2.2 Cache-Conscious Index Structures

The T-tree, a balanced binary tree with many elements in
a node, was proposed in the mid-80’s when the speed gap
between CPU and memory was not significant. Its
traversal pattern of comparing the search key with the two
end keys of a node (or only one key in the enhanced
version) leads to poor L2 cache behavior on today’s
computer systems [RR99]. Recognizing the reasonably
good cache performance of the B+-tree, Rao and Ross
proposed a variant called CSB+-tree that further enhances
the cache utilization by eliminating most of child pointers
[RR00]. This pointer elimination, given the node size in
the order of the cache block size, almost doubles the
fanout and thus leads to significant reduction in the tree
height and the cache misses during the index traversal.

However, because the CSB+-tree stores child nodes in
the contiguous memory called the node group, it increases



the update cost. The so-called, full CSB+-tree avoids this
problem by preallocating the memory for the full node
group and handling the node split by shifting nodes in the
full node group.

2.3 Concurrency Control of Index

The lock coupling involves latching index nodes heavily
[BS77]. The index traversal proceeds from one node to its
child by holding the latch on the node while requesting
the latch on a child. The requested latch is a shared or an
exclusive mode, depending on the action to be performed
on the target node. The latch on the node is released after
the child is latched. One variant of lock coupling is the
optimistic descent algorithm. Upon insertion, the
algorithm first traverses to a leaf with the optimistic
assumption that the target leaf is a safe node. If the
assumption is not true, it tries again without the optimistic
assumption.

The Blink-Tree removes the need for lock coupling by
linking each node to its right neighbor [LY81]. If a node
is split by an insertion, the split node is linked with its
neighbors. In the original B+-tree without links, the index
traversal from one node to its child should hold the latch
on the child before releasing the latch on the node to
prevent the split of the child. However, in the Blink-Tree,
the index traversal can release the latch on the node
before holding the latch on the child because it can reach
the split node from the child through the links.

The tree-level locking is a naïve approach that latches
the whole tree in the shared mode for search and in the
exclusive mode for update. This approach leads to severe
degradation of concurrency on multiprocessors.

The physical versioning is a scheme that traverses the
index nodes without latching through versioning [RS+97].
However, the index update involves significant overhead
of memory allocation and write. For every update,
updaters allocate a new version of a node, copy the
content of the old version to the new one, and update the
new one. It then atomically swaps the old version and the
new one. When node latches are used, the node to update
and its parent are latched. A garbage collector deallocates
the old version of the node when there are no readers that
are reading it. We consider two variants of the physical
versioning: one that places latches on nodes, and another
with a tree latch only.

3. Motivation and Problem Formulation

3.1 Coherence Cache Misses Caused by Latching

For the node-level CC of main-memory index, latches are
typically placed inside the index node. A latching
operation, whether it is for acquiring or releasing a latch
or whether it is a shared-mode or an exclusive-mode,
involves a memory write. With the conventional index CC
schemes, the invalidation of the cache block containing
the latch occurs even if the index is not updated. It is
possible to separate latches from index nodes, but such

separation does not bring any advantage because the
cache blocks containing the latches are subject to the
coherence cache miss anyway.

Figure 1 illustrates how the coherence cache misses
occur with the index tree consisting of nodes n1 to n7. For
the simplicity, let’s assume that each node corresponds to
a cache block and contains a latch. Let the processor p1
traverse the path n1, n2, and n4 upon the cold start of the
main memory query processing system, and then these
nodes are replicated in the cache c1 of p1. Latches are
held and released on n1, n2, and n4 on the way. Let p2
traverse the path n1, n2, and n5, then these nodes are
copied into c2 and the nodes n1 and n2 cached in c1 are
invalidated by p2 latching on these nodes. Note that these
cache invalidation occurs even if there is enough room in
the cache c1. If p3 traverses the path n1, n3, and n6, then
the n1 in c2 gets invalidated. Finally, if p4 traverses the
path n1, n3, and n7, the n1 and n3 in c3 get invalidated.

3.2 Analysis for Problem Formulation

To show the problem of latching index nodes for
concurrency control, we first analyze the probability of
coherence cache misses. We assume that index nodes are
latched once before accessing them. This is a good
approximation even for the lock coupling that acquires a
latch and releases it soon during the traversal because the
interval between the acquisition and the release is very
short. We also assume that the size of the cache memory
is infinite and each node has been already cached in a
processor to isolate the effect of capacity and cold cache
misses, respectively. Finally, we assume that all
processors perform the same task and the probability of a
node being accessed by a specific processor is identical to
its probability of being accessed by another processor.

A cached node is invalidated if another processor,
other than the one that caches the node, accesses the node.
Therefore, the probability that the coherence cache miss
occurs for a node cached in a processor is the same as the
probability that another processor accesses the same node.
Let p denote the number of processors in the system. Then,
the (p – 1) processors among the p processors can
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Figure 1. Coherence Cache Miss Caused by Latching



invalidate the node cached in a specific processor. Since
each processor has the same probability of accessing the
node, the probability of coherence cache miss is:

p

p 1− (1)

This formula leads to a conclusion that the probability
of coherence cache misses increases with the number of
processors. Thus, if we don’t pay attention to the
coherence cache miss, even the infinite cache memory
may not be very helpful for reducing the memory access
cost.

We showed that if we can read nodes consistently
without latching them as we propose in the OLFIT
scheme, we can save many cache misses caused by
latching during index search. Now we will show that we
can also save many cache misses with latch-free traversal
during index updates. We support this claim by showing
that even during index inserts, many nodes are only read
without updating them.

If we denote the maximum fanout of nodes as fM, the
probability that a leaf node split by an insert operation is
as follows [JS93]:

Mf69.0

1

If we denote the level of a node as l, and the height of
the tree as h, since a split of a child is an insert of entry
into its parent node, the probability of update at a level l
is:
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Figure 2 shows the graph calculated from the equation
(2) as well as the relative frequency of the actual updates
at a specific level l measured when 1 million keys are
inserted into a B+-tree with 10 million keys. We choose
fM = 15, because it is the maximum fanout of the B+-tree
whose node size is two cache blocks. This B+-tree will be
used as the basis of our experimental evaluation to be
presented in section 6. With fM = 15, h =

 000,000,10log 69.015× = 7. The conclusion that we can

draw from Figure 2 is that most accesses to non-leaf
nodes are read-only even when all index operations are
insertions.

3.3 Optimistic, Latch-Free Index Traversal CC

The purpose of the index CC is to guarantee that index
readers reach the correct leaf nodes without interfering
with concurrent index updaters, and that index updaters
do not interfere with each other. One of the key criteria
for judging whether a concurrency control scheme is good
is the degree of parallelism that it provides. The objective
of this subsection is to draw the rationale for the latch-free
traversal for both the index readers and updaters.

In the previous analysis, we found that most of actual
B+-tree index node updates occur at the leaf level or near
the leaf level. Namely, the probability that the update at

the leaf node of the B+-tree propagates to the upper level
nodes decreases sharply with the distance from the leaf. In
this regard, the conventional index CC schemes that latch
the nodes during the traversal are too conservative when
applied to the in-memory B+-tree or the CSB+-tree,
which is significantly deeper than the disk-resident B+-
tree because its node size is given in the order of up to a
few times of the L2 cache block size. Most of latches are
needlessly acquired and released by both index readers
and updaters, especially for the upper level nodes, even if
the probability of actually updating such nodes is
extremely low.

The duration of holding a latch is very short. If we
consider that the number of leaf nodes is a lot bigger than
the typical number of processors available in today’s
multiprocessor platforms, the probability of the conflict
among the concurrent index readers and updaters is also
extremely low. So the latches on leaf nodes are also
acquired too pessimistically.

In the disk-resident database systems, the cost of
latching may not be significant because of the dominant
cost of disk access. However, in the main-memory
database systems, the latching cost is a dominant portion
of the processing cost of read transactions, and also is a
nontrivial portion of the processing cost of update
transactions. Thus the latching overhead is one of the
primary factors limiting the scalability of the index
performance on the multiprocessor platform. This will be
proved later in the experimental evaluation by the poor
scalability of the lock coupling scheme on the
multiprocessor platform.

Based on these observations, we propose the OLFIT,
an index CC scheme that traverses down the index
optimistically without latching any nodes. The index
updaters start acquiring the latch from the leaf node after
reaching the leaf node to update. The latch acquisition
proceeds upward if the update of a node leads to the node
split or the node deletion.

To guard the latch-free index traversal from
interfering with node updates and also to guard the node
updates from interfering with other node updates, we
include the version number and the latch in the B+-tree
index node and provide a pair of node read and update
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primitives that use this information. Updaters hold a latch
on a node before the update, increment the version
number, and release the latch after the update. This
guarantees that the updater changes a node from a
consistent state into another consistent state. Readers read
the node latch to check if there is any updater and read the
version number twice before and after reading the node to
verify whether the nodes they read are in a consistent state.
Readers retry reading until the verification succeeds.
However, the probability of retrial is very low because of
the first and the second observations that we made in the
above.

In the following two sections, we first present the pair
of node read and update operations used by the OLFIT
scheme, and then present how the index-level traversal
and update work.

4. Node Operations for OLFIT

Figure 3 shows the structure of the B+-tree node used by
the OLFIT. The latch and the version are added for
the OLFIT. The level represents the level of the node in
the tree and the size represents the number of entries in
the node. The usage of the high key and the link ptr
is explained in the section 5. In the following algorithms
for reading and updating nodes, we assume reading and
writing of words are atomic, as are in most of the modern
architectures.

Algorithm UpdateNode
U1. Acquire latch.
U2. Update the content.
U3. Increment version.
U4. Release latch.

Update operations on one node are isolated and
serialized using the latch on the node. Updaters acquire
the latch on the node for the exclusive access before
updating the content of the node: version, level,
size, keys, ptrs, high key, and link ptr. The
latch is released after the update. Updaters also
increment the version before releasing the latch.
Differently from node reads, node updaters always
succeed and there is no need for retry. The U3 step of
incrementing the version is intended to enable readers
to read the node without latching and verify whether the
node they read is in a consistent state or not.

Algorithm ReadNode
R1. Copy the value of version into a register R.
R2. Read the content of the node.

R3. If latch is locked, go to R1.
R4. If the current value of version is different from

the copied value in R, go to R1.

The steps R3 and R4 of ReadNode guarantee readers only
read a node in a consistent state without holding any
latches. Readers can pass both R3 and R4 only if the data
read in R2 is in a consistent state, otherwise readers start
again from R1. In other words, if the content of a node
read in R2 is in an inconsistent state, either the condition
in R3 or the condition in R4 becomes true and the reader
cannot pass both R3 and R4.

An implementation of ReadNode and UpdateNode
can be directly derived from the algorithm description if
we just implement latching using one of the atomic read-
and-write operations such as test-and-set and
compare-and-swap that are universally available on the
modern computer architectures. However, since
consuming two words for the latch and the version per
every node is expensive given the node size in the order
of one or two cache blocks, we combine these two words
into a single word named ccinfo in the Figure 4. The
LSB of ccinfo is used for the latch and other bits are
used for the version number. This combination enables
further optimization of using only one conditional jump
for checking the conditions of R3 and R4 in ReadNode
algorithm.

In Figure 4, the operation compare-and-swap(A, B,
C) is an atomic operation that compares the values of A
and B, and if they are equal, replaces the value of A by the
value of C and returns the original value of A. Turn-on-
LSB(word) and turn-off-LSB(word) are bit
operations that turn on and off the LSB of a word,
respectively.

The procedure update_node in Figure 4 is an
implementation of the algorithm UpdateNode. The step 2
of the procedure latch copies the value of ccinfo with
its LSB turned off. The step 3 of the procedure latch
checks whether the LSB of ccinfo is turned on or not by
comparing the value of ccinfo and the value of t copied
in the step 2, and atomically turns on the LSB of ccinfo
by replacing the value of ccinfo by t with its LSB
turned on. The procedure unlatch releases the latch and
increments the version number by increasing ccinfo.
Since the LSB of ccinfo is turned on in the procedure
latch, the increment in the procedure unlatch turns off
the latch and increments the version number
simultaneously.

The procedure read_node in Figure 4 is an
implementation of the algorithm ReadNode. The step 4 of
read_node checks conditions in R3 and R4 of
ReadNode simultaneously, because if t is equal to
ccinfo, the LSB of the current ccinfo must be turned
off and other bits must have not been changed since step 2.

version keys and ptrs high key link ptr

level
size

latch

Figure 3. Node Structure of B+Tree for OLFIT



5. Tree Operations for OLFIT

5.1 Dealing with node split

Since the OLFIT does not use lock coupling while
traversing down a tree index, concurrent updaters may
split the target child node of the traversal before the
traversal reaches the child node. Moreover, since no latch
is held while reading a node, concurrent updaters may
also split the node currently being read. To deal with this
problem, we use the technique of using a high key and a
link pointer proposed by [LY81] and improved by
[Sag85]. All splits are done from the left to the right and
to each node, a high key and a link pointer are added. The
high key is the upper bound of the key values in the node
and the link pointer is the pointer to the right neighbor of
the node. The purpose of the link pointer is to provide an
additional method for reaching a node and whether to
follow the link pointer or not can be determined by the
high key. With this link pointer, since splits are done from
the left to the right and each node has its high key and its
link pointer to the right neighbor, all nodes split from a
node are reachable from the node and the correct child
node can be reached in the presence of concurrent splits
of nodes.

5.2 Tree traversal algorithm

Figure 5 shows the pseudo code for the tree traversal. The
find_next(node, key) primitive finds the next node
to traverse. If the key is greater than the high key of the
node, this operation returns the link pointer. Otherwise, it
returns the pointer to the appropriate child node to
traverse down.

The procedure read_node is embedded in the
procedure traverse of Figure 5. The while loop of the
read_node is removed by assigning the value of next to
the variable node only if the value of next is computed
from a node in a consistent state.

5.3 Dealing with node deletion

The updater can delete a node being read if the node is
empty. To deal with this case, when a node becomes
empty, the updater only removes links directed to the
node and registers the node into a garbage collector. The
value of the link pointer in the empty node is preserved
until the node is actually deallocated. The garbage
collector actually deallocates the registered node when
there are no index operations that can read the node. To
determine whether there is any operation that can read the
node or not, we use the algorithm originally proposed for
the physical versioning [RS+97]. However, the overhead
is quite different, because the physical versioning uses the
garbage collector on every update, while we use it only
when an updater removes an empty node.

5.4 Putting together with transaction-duration locking

To support the serializability of transactions by
transaction-duration locking, both the locking protocol of
ARIES/KVL [Moh90] and that of ARIES/IM [ML92] can
be combined with our OLFIT algorithm without any
modification. The OLFIT replaces only the latching
protocols of ARIES/KVL and ARIES/IM.

5.5 Adaptation to CSB+-tree

In the CSB+-tree, nodes with the same parent are
clustered in a contiguous space called node group and
non-leaf nodes of the CSB+-tree store only the pointer to
the child node group instead of storing all pointers to
child nodes. CSB+-tree nodes for the OLFIT only store
high keys without link pointers because the right neighbor
in the same node group can be located without a pointer.
Only one link pointer to the right node group is stored for
each node group to locate the right neighbors in other
node groups. The link pointer has its own latch and
version, because the link pointer does not belong to any
node in the node group. Here, the CSB+-tree means the
full CSB+-tree. Extensions to other variations of the
CSB+-tree are straightforward.

procedure latch(word) {
1. do {
2. t:= turn-off-LSB(word);
3. } while (compare-and-swap

(word, t, turn-on-LSB(t)) ≠ t);
}

procedure unlatch(word) {
word:= word + 1;

}

procedure update_node(node) {
1. latch(node.ccinfo);
2. // Update the content of node
3. unlatch(node.ccinfo);
}

procedure read_node(node) {
1. do {
2. t:= turn-off-LSB(node.ccinfo);
3. // Read the content of node
4. } while (t ≠ node.ccinfo)
}

Figure 4.Implementation of UpdateNode and ReadNode

procedure traverse(root, key){
1. node:= root;
2. while (node is not a leaf) {
3. t:= turn-off-LSB(node.ccinfo);
4. next:= find_next(node, key);
5. if (node.ccinfo = t) node:= next;
6. }
7. return node;
}

Figure 5. Pseudocode of Tree Traversal



The split operation of the CSB+-tree is different from
that of the B+-tree because nodes with the same parent are
clustered in a node group. When a node splits, if the node
group is not full, all right siblings in the node group shift
right to make a room for the split. In this case, the node to
split, all shifting nodes, and the parent node are latched
before the split. If the node group is full, the node group
splits into two node groups. In this case, the node to split,
the shifting nodes, the parent node, the nodes to be moved
into the new node group, and the link pointer to the right
node group are latched.

6. Experimental Evaluation
To verify the superior scalability of the OLFIT scheme
experimentally, we implemented five index CC schemes
for the B+-tree and the full CSB+-tree: lock coupling with
node latches (LC), tree-level locking with a tree latch (TL),
physical versioning with node latches (VN), physical
versioning with a tree latch (VT), and OLFIT (OL)
proposed in this paper. The performance of index
operations without concurrency control (NO) is also
measured for the 100% search and the single thread
experiment. For the lock coupling, we used the optimistic
descent algorithm in [BS77], and for the physical
versioning schemes, we adapted the algorithm for the T-
tree in [RS+97] to the B+-tree and to the full CSB+-tree.

We ran our experiment on a Sun Enterprise 5500
server with 8 CPUs (UltraSPARC II, 400MHz) running
Solaris 7. Each CPU has 8MB L2 cache whose cache line
size is 64 bytes. We ran each concurrency control scheme
with following workloads: 100% search, 100% insert,
50% insert + 50% delete and a mixture of search, insert
and delete with varying update ratio. We do not show the
graph of 100% insert due to lack of space. The graph is
very similar to that of 50% insert + 50% delete.

For the fair comparison with the physical versioning
schemes that require substantial memory allocation for
updates, we used memory pools to reduce the overhead of
system calls for memory allocation. We created the same
number of memory pools as the number of processors in
the system, and assigned one to each thread to minimize
the contention for the memory allocation.

For each experiment, we used non-unique indexes that
allow duplicate key values, and the indexes are initialized
by the insertion of 10 million uniformly distributed 4-
bytes integer keys and associated pointers. The size of
pointers is 4 bytes because we ran our experiment in the

32-bit addressing mode. After the initialization, the height
of B+-trees is 7 and the height of full CSB+-trees is 6, and
their sizes are about 140 MB and 190 MB, respectively.
Indexes are about 70% full because they are initialized by
insertions [JS93].

We chose 128 bytes for the size of index nodes
because the 128-byte node produces the best performance
when the indexes are built by insertions. The eight-thread
performance of the OLFIT with varying node size is
shown in Figure 6. The 128-byte node is the best as
shown in the graph because with 70% full nodes on
average, there is a high probability of accessing only the
first 64-byte block of 128-byte nodes.

Table 1 shows the maximum fanout of nodes when
each concurrency control scheme is applied. TL and VT
allow the largest fanout because they need no concurrency
control information on nodes. LC and VN allow the
smaller fanout because they need a latch on each node,
and OL allows the smallest fanout because it needs a latch,
a version, a high key and a link pointer on each node.

6.1 Pure search performance

Figure 7 shows the scalability of the search performance
of the experimented CC schemes. We measured the
throughput of exact match search varying the number of
threads that perform the search operations. The x-axis
shows the number of threads performing search
operations, and the y-axis shows the aggregated
throughput.

The OLFIT (OL) and the physical versioning schemes
(VN, VT) are similar to the no concurrency control (NO).
The gap between these schemes and no concurrency
control is the cost of the interaction with the garbage
collector. The gap between OL and NO on the CSB+-Tree
is wider than on the B+-tree, because of the different cost
of checking the high key. For the B+-tree, high keys need
not be specially treated on non-leaf nodes because
traversing to the right neighbor and traversing down to
one of the children are not different. However, for the
CSB+-tree, traversing to the right and traversing
downward are different: positions of children are
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OL LC TL VN VT

Leaf 14 15 15 15 15
B+-tree

Non-leaf 14 15 16 15 16

Leaf 14 15 15 15 15
CSB+-tree

Non-leaf 28 29 30 29 30

Table 1. Max Node Fanout of Various CC Schemes



computed from the pointer to the child node group while
the position of the right neighbor is computed from the
position of the current node. This special treatment on
high keys consumes slightly more time and makes the
small gap from the physical versioning schemes.

The tree-level locking (TL) becomes worse as the
number of threads increases due to the contention at the
tree latch and two more coherence cache misses generated
by holding and releasing the tree latch. The performance
of the lock coupling (LC) is worst and the gap from the no
concurrency control widens almost linearly with the
number of threads, because the lock coupling generates
many coherence cache misses by latching many nodes.

6.2 Pure update performance

Figure 8 shows the scalability of the update performance
of the experimented CC schemes. We measured the
update throughput, varying the number of threads that
perform updates. The x-axis shows the number of threads,
and the y-axis shows the aggregated throughput. Half of
operations are insertions and the other half are deletions.

In Figure 8, only OLFIT (OL) shows a scalable
performance. The physical versioning schemes (VT, VN)

show poor update performance due to the high cost of
versioning, especially for the CSB+-tree where the whole
node group must be versioned for each update. Differently
from [RS+97], VN is better than VT in update
performance because we changed the algorithm of VN that
was originally proposed for the T-tree in the process of
adapting it to the B+-tree. In [RS+97], if structure
modifications take place, VN holds a tree latch. We
eliminated the need for the centralized tree latch from VN
because the split of the B+-tree is different from the
rotation of the T-tree and the centralized tree latch is not
needed for structure modifications. The centralized tree
latch degenerates the update performance significantly as
the number of threads increases.

Although the physical versioning with node latches
(VN) and the lock coupling (LC) do not produce good
performance, their performance increases slowly as the
number of threads increases. However, the physical
versioning with a tree latch (VT) and the tree-level
locking (TL) degrades due to the contention on the
centralized tree latch as the number of threads increases.
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6.3 Performance with varying update ratio

Figure 9 and Figure 10 show the throughput of a single
thread and eight threads, respectively, for the mixed
workload with varying update ratio. The workload
consists of a sequence of one million operations, each of
which is randomly decided to be search, insert, or delete
based on the given update ratio. Updates are evenly
divided into inserts and deletes.

In Figure 9 showing the result of sequential execution,
the OLFIT (OL) and the tree-level locking (TL) are
similar to the no concurrency control (NO). The lock
coupling (LC) shows worse performance than OL and TL
due to the overhead of latching. The physical versioning
schemes (VN, VT) show good performance for no updates,
but as the update ratio increases, their throughput drops
sharply due to the high overhead of versioning. As shown
in Figure 9 (b), the versioning overhead is even heavier
for the CSB+-tree because in the CSB+-tree, nodes with
the same parent are grouped in a contiguous space and
versions are created per node group basis.

Figure 10 shows the result with eight threads. When
the ratio of update is zero, the performance of the physical

versioning schemes (VN, VT) is comparable to that of the
OLFIT (OL). However, as the update ratio increases, OL
becomes significantly better than any other concurrency
control algorithms.

The performance gap between OL and other schemes
is wider with eight threads than with a single thread. The
gap widens partly due to the large amount of coherence
cache misses generated by other algorithms and partly due
to the contention at the centralized tree latch in the case of
TL and VT. Note that VT is slightly better than TL but it
approaches to TL as the update ratio further increases and
eventually crosses TL due to the high cost of versioning.

The performance drops more sharply for the CSB+-
tree than the B+-tree with the update ratio mainly because
of the higher split cost of the CSB+-tree. In the CSB+-tree,
when a node splits, if the node group that contains the
node is not full, all the right neighbors of the node in the
same node group are shifted right, and if the node group is
full, half of nodes in the group are moved into a new node
group. Note that VN and VT are even worse than TL as the
update ratio exceeds 20% due to the high cost of
versioning.
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7. Conclusion and Future Work
This paper addressed the importance of considering the
cache effect, especially, the coherence cache miss
overhead associated with latching main-memory index
nodes for the concurrency control on multiprocessor
platforms, and proposed a new optimistic index CC called
OLFIT for the B+-tree and the CSB+-tree. Observing that
most of latches are held too conservatively for the cache-
conscious main-memory index, this scheme completely
eliminates latching during the index traversal. Even the
index update does not incur any latching operation until
the traversal reaches the node to update. Latches are
requested upward upon the split of nodes.

To prevent the index updates from interfering with
index reads and other updates, the OLFIT first provides a
pair of consistent node read and update operations. Based
on this pair, we presented the design of the tree search and
update operations. An experiment comparing the OLFIT
with various representative index CC schemes for the B+-
tree and the CSB+-tree shows that the OLFIT shows
superior update scalability on the eight-CPU
multiprocessor system while showing the read scalability
comparable to those of the no concurrency control.

Although we presented the OLFIT algorithm for the
B+-tree and the CSB+-tree, it can be easily adapted to
other cache-conscious index schemes such as the CR-tree,
the cache-conscious version of the R-tree. For the future
work, we are integrating the OLFIT with P*TIME, a
highly parallel transact in memory engine, to investigate
the impact of the OLFIT in the real main memory
database applications.
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