
KISS-Tree: Smart Latch-Free In-Memory Indexing
on Modern Architectures

Thomas Kissinger, Benjamin Schlegel, Dirk Habich, Wolfgang Lehner
Database Technology Group

Technische Universität Dresden
01062 Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Growing main memory capacities and an increasing num-
ber of hardware threads in modern server systems led to
fundamental changes in database architectures. Most im-
portantly, query processing is nowadays performed on data
that is often completely stored in main memory. Despite
of a high main memory scan performance, index structures
are still important components, but they have to be designed
from scratch to cope with the specific characteristics of main
memory and to exploit the high degree of parallelism. Cur-
rent research mainly focused on adapting block-optimized
B+-Trees, but these data structures were designed for sec-
ondary memory and involve comprehensive structural main-
tenance for updates.

In this paper, we present the KISS-Tree, a latch-free in-
memory index that is optimized for a minimum number of
memory accesses and a high number of concurrent updates.
More specifically, we aim for the same performance as mod-
ern hash-based algorithms but keeping the order-preserving
nature of trees. We achieve this by using a prefix tree that
incorporates virtual memory management functionality and
compression schemes. In our experiments, we evaluate the
KISS-Tree on different workloads and hardware platforms
and compare the results to existing in-memory indexes. The
KISS-Tree offers the highest reported read performance on
current architectures, a balanced read/write performance,
and has a low memory footprint.

1. INTRODUCTION
Databases heavily leverage indexes to decrease access

times for locating single records in large relations. On clas-
sic disk-based database systems, the B+-Tree [2] is typi-
cally the structure of choice. B+-Trees are suited for kinds
of those systems because they are optimized for block-based
disk accesses. However, modern server hardware is equipped
with high capacities of main memory. Therefore, database
architectures move from classic disk-based systems towards
databases that keep the entire data pool (i.e., relations and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Eighth International Workshop on Data Management on
New Hardware (DaMoN 2012) , May 21, 2012, Scottsdale, AZ, USA
Copyright 2012 ACM 978-1-4503-1445-9 ...$10.00.

16bit

10bit

6bit

Level 1

Level 2

Level 3

virtual

on-demand &
compact pointers

compressed

4 KB 4 KB 4 KB 4 KB 4 KB 4 KB …

Thread-Local Memory Management Subsystem

Figure 1: KISS-Tree Overview.

indexes) in-memory and use secondary memory (e.g., disks)
only for persistence. While disk block accesses constituted
the bottleneck for disk-based systems, modern in-memory
databases shift the memory hierarchy closer to the CPU
and face the “memory wall” [13] as new bottleneck. Thus,
they have to care for CPU data caches, TLBs, main mem-
ory accesses and access patterns. This essential change also
affects indexes and forces us to design new index structures
that are now optimized for these new design goals. More-
over, the movement from disks to main memory dramatically
increased data access bandwidth and reduced latency. In
combination with the increasing number of cores on modern
hardware, parallel processing of operations on index struc-
tures imposes a new challenges for us, because the overhead
of latches became a critical issue. Therefore, building future
index structures in a latch-free way is essential for scalability
on modern and future systems.

In this paper, we present the KISS-Tree [1] that is an
order-preserving latch-free in-memory index structure for
currently maximum 32bit wide keys and arbitrary values.
It is up to 50% faster compared to the previously reported
read performance on the same architecture1 and exceeds its
update performance by orders of magnitude. The KISS-Tree
is based on the Generalized Prefix Tree [3] and advances it
by minimizing the number of memory accesses needed for
accessing a key’s value. We achieve this reduction by taking
advantage of the virtual memory management functionality
provided by the operating system and the underlying hard-
ware as well as compression mechanisms. Figure 1 shows an
overview of the KISS-Tree structure. As shown, the entire

1Due to the unavailability of source code and binaries, we
refer to the figures published in [5].

…

… …
…

Key
Value

Key
Value

Key
Value

Key
Value

Key
Value

Key
Value …

SIMD Blocking

Cache line Blocking

Page Blocking

(a) FAST.

0 1 2 14 15 …

0 1 2 14 15 … 0 1 2 14 15 …

… … …

0 1 2 14 15

Key

Value

Key

Value

Key

Value

Key

Value

4bit

4bit

4bit …

…

(b) Prefix Tree (k′ = 4).

1 31

1 14 26 14 15

… … …

0 2

Key

Value

Key

Value

Key

Value

Key

Value

I I

I I I I I

5bit

5bit

2bit

…

(c) CTrie.

Figure 2: Existing In-Memory Index Structures.

index structure comprises only three tree levels. Each level
leverages different techniques to find a trade-off between per-
formance and memory consumption on the respective level.

2. RELATED WORK
In-memory indexing is a well investigated topic in

database research since years. Early research mainly fo-
cused on reducing the memory footprint of traditional data
structures and making the data structures cache-conscious.
For example, the T-Tree [8] reduces the number of pointers
of traditional AVL-trees [6] while the CSB+-Tree [11] is an
almost pointer-free and thus cache-conscious variant of the
traditional B+-Tree [2]. These data structures usually offer
a good read performance. However, they struggle with prob-
lems when updates are performed by multiple threads in par-
allel. All block-based data structures require comprehensive
balancing operations when keys are removed or added. This
implicates complex latching schemes [7] that cause an oper-
ation to latch across multiple index nodes and hence blocks
other read/write operations even if they work on different
keys. Even if there is no node splitting/merging required,
B+-Tree structures have to latch coarse-grained at page-
level, which increases contention. Moreover, it is not possi-
ble to apply optimistic latch-free mechanisms, for instance
atomic instructions, without the help of hardware trans-
actional memory(HTM). To overcome this critical point,
PALM [12] took a synchronous processing approach on the
B+-Tree. Instead of processing single operations directly,
the operations are buffered and each thread processes the
operations for its assigned portion of the tree. This approach
eliminates the need for any latches on tree elements, but still
suffers from the high structural maintenance overhead of the
B+-Tree.

The FAST approach [5] gears even more in the direction
of fast reads and slow updates. FAST uses an implicit data
layout, as shown in Figure 2(a), which gets along without
any pointers and is optimized for the memory hierarchy of
todays CPUs. The search itself is performed using a highly
optimized variant of binary search. The fastest reported
numbers for read performance on modern CPUs were pub-
lished for this approach. However, FAST achieves only a
very low update performance because each update requires
a rebuild of the entire data structure.

The Generalized Prefix Tree [3] takes a different approach
than the B+-Tree. Here, the path inside the tree does not
depend on the other keys present in the index, it is only de-
termined by the key itself. Each node of the tree consists of

a fixed number of pointers; the key is split into fragments of
an equal length k′ where each fragment selects one pointer
of a certain node. Starting from the most significant frag-
ment, the path through the nodes is then given by following
the pointers that are selected by the fragments, i.e., the i-th
fragment selects the pointer within the node on level i. Fig-
ure 2(b) shows an exemplary prefix tree with k′ = 4. The
first tree level differentiates the first 4 bits of the key, the sec-
ond level the next 4 bits, and so on. Prefix trees do not have
to care for cache line sizes because there is only one memory
access per tree level necessary. Also the number of memory
accesses is limited by the length of the key, for instance, a
32bit key involves a maximum of 8 memory accesses. In or-
der to reduce the overall tree size and the memory accesses,
a prefix tree allows dynamic expansion and only unrolls tree
levels as far as needed like shown on the left hand side of
the example. Because of the dynamic expansion, the prefix
tree has to store the original key besides the value in the
content node at the end of the path. The characteristics
of the prefix tree allow a balanced read/update performance
and parallel operations, because there is not much structural
maintenance necessary.

A weak point of the prefix tree is the high memory over-
head that originates from sparely occupied nodes. The
CTrie [10] removes this overhead by compressing each node.
This is achieved by adding a 32bit bitmap (limits the k′ to
5) to the beginning of each node, which indicates the occu-
pied buckets in that node. Using this bitmap, the node only
has to store the buckets in use. Due to the compression,
nodes grow and shrink. Thus, the CTrie raises additional
costs for updates, because growing and shrinking nodes re-
quires data copying. To allow efficient parallel operations
on the CTrie, it was designed latch-free. Synchronization
is done via atomic compare-and-swap instructions, like it is
possible in the basic prefix tree. However, because nodes
and buckets inside nodes are moving as a result of the com-
pression, the CTrie uses I-nodes for indirection as depicted
in Figure 2(c). This indirection creates a latch-free index
structure, but doubles the number of memory accesses per
key.

Another approach was introduced by Burst Tries [4].
Burst Tries utilize existing index structures and combine
them to a heterogeneous index. The index starts on the
topmost levels as a Prefix Tree and changes over to another
structure like the B+-Tree. This combination lets the Burst
Trie take advantage from the individual characteristics of
the base structures.

3. KISS-TREE STRUCTURE
The KISS-Tree is an in-memory index structure that is

based on the generalized prefix tree and improves it in terms
of reduced memory accesses and memory consumption. Fig-
ure 1 shows an overview of the KISS-Tree. Like in the gener-
alized prefix tree, the 32bit key is split into fragments flevel
that identify the bucket within the node on the correspond-
ing level. While the prefix tree uses an equal fragment length
on each tree level, the KISS-Tree splits the key into exactly
three fragments, each of a different length. This results in
three tree levels, where each level implements different tech-
niques for storing the data. The fragment sizes for each
level play an important role because of the individual char-
acteristics of each level. In the following, we describe the
characteristics of each level and the reason for the respec-
tive fragment size in detail.

3.1 Level 1–virtual level
The first level uses a fragment length of 16. Therefore, this

level differentiates the 16 most significant bits of the key.
The technique we deploy here is direct addressing. Direct
addressing means that there is no memory access necessary
to obtain the pointer to the node on the next level. Instead,
the pointer is directly calculated from the fragment f1. In
order to make direct addressing possible, the next tree level
has to store all nodes sequentially. The major advantage
we gain from direct addressing is that we neither have to
allocate any memory for the first level nor have to issue a
memory access when descending the tree. Thus, we call this
level the virtual level.

3.2 Level 2–on-demand level
The fragment size for the second level is set to 10. Thus,

we use the next 10 bits of the key to determine the bucket
inside a node on this level, which contains a pointer to the
corresponding node on the next level. On this level, we de-
ploy two techniques. The first technique is the on-demand
allocation, provided by the platform and the operating sys-
tem. Todays computers know two address spaces, which are
the virtual and the physical address space. All applications
that are running get their own virtual address space that is
transparently mapped to the shared physical one. This map-
ping is done by a piece of hardware known as the memory
management unit (MMU). The MMU uses the page direc-
tory that is maintained by the operating system to translate
virtual addresses into physical addresses. If an application
tries to access a virtual address that is either not mapped
to physical memory or is write protected, the MMU gen-
erates an interrupt and invokes kernel routines to handle
this interrupt. The kernel has two options to handle this
interrupt. Either it terminates the application or physically
allocates a new piece of memory. The second choice is called
on-demand allocation. Here, we explicitly ask the kernel to
allocate a large consecutive segment of memory in the vir-
tual address space and do not allocate any physical memory
at all. Thus, the second level is entirely virtually allocated
at startup and does not consume any physical memory at
this point of time. As soon as we write something to a node
on the second level, the physical memory for this node is
allocated by the operating system and actually consumes
memory. The benefit we gain from the on-demand alloca-
tion is that we fulfill the requirements given by the first
level (sequentially stored nodes) and actually do not have to

16bit (𝑓1)

10bit

6bit

…

Thread-Local Memory Management Subsystem

Decimal Key: 42

0000 0000 0000 0000 0000 0000 00 10 1010

10bit (𝑓2) 6bit (𝑓3)

0 1023 … 0 1023 … 23 … 0 1023 … …

Value Value Value Value

Virtual Page

Physically
allocated Page

1

2

3

4

5

Figure 3: Update Operation on KISS-Tree.

waste the real physical memory for that. The critical point
for on-demand allocation is the granularity of the memory
mappings. For instance, if we write a 4Byte pointer on this
level, the operating system has to allocate physical memory
at the size of memory pages. The smallest available size for
memory pages is currently 4KB on common architectures.
Thus, when writing a small pointer, on-demand allocation
has to map 4KB contiguous virtual address space to 4KB
contiguous physical address space. To summarize, the com-
plete second level is virtually allocated on index creation via
one mmap call and does not claim any physical memory at
this point of time. Only if a pointer is written to this level,
the corresponding 4KB page gets physically allocated. Con-
current allocations of 4KB pages are solely handled by the
operating system.

Because of the allocation granularity of 4KB, it makes
sense to use 4KB nodes on this level. A node on this level
consists of 210 = 1024 buckets because of the fragment
length of 10. Thus, we need 4Byte pointers inside these
buckets to get a node size of 4KB. Here we deploy our second
technique called compact pointer. Compact pointers reduce
standard 64bit pointer to 32bit pointer. The compaction is
possible, because nodes on the third level are of one of the
26 = 64 distinct sizes and the maximum number of child
nodes of all nodes on the second level is 226. Thus, we are
able to use the first 6 bits of a compact pointer for storing
the size of the next node, which is later translated to an
offset. The remaining 26 bits are used for storing the block
number.

Using compact pointers for achieving a node size of 4KB
on the second level has the effect that as soon as one pointer
is written to a node, the entire node becomes physically
allocated and consumes memory. The maximum number of
nodes that are possible on this level are 216. This means
that in the worst case scenario, the second level consumes
256MB of memory for 216 keys. We investigate this issue of
memory consumption further in Section 6.

3.3 Level 3–compressed nodes
On the last level, we use a fragment size of 6. Thus,

the lowest 6 bits of the key determine the bucket inside a
node on this level. Because the last level has the largest
number of possibly present nodes (226 at maximum), we
apply a compression to the nodes on this level, which is
similar to the compression scheme used for the CTrie. The
compression works by adding a 64bit bitmap in front of each
node. Because there is a maximum of 26 = 64 buckets in a

64

64

2

2

1

1

1
63

64

1
63

64

64

64

2

2

1

1

1
63

64

RCU-Aware Free Lists

Global Memory

Thread-Local Memory

Figure 4: Memory Management.

node on the last level, the bitmap indicates which buckets
are actually in use. Thus, we only have to store these buckets
in use beyond the bitmap instead of storing all 64 buckets
even if only a fraction of them has content. All buckets in
a node on this level contain the value for the corresponding
key. For duplicates and transactional isolation, it is also
possible to store additional information as content.

Compression leads to nodes that shrink and grow over
time. To handle this resizing and allowing latch-free
compare-and-swap operations for updates, we use read-copy-
updates (RCU) [9]. RCU creates copies of nodes and merges
changes to this private copy. This allows readers to read con-
sistent data from the original node, while the updated node
is created. When the updated node becomes ready, we use
an atomic compare-and-swap operation to exchange the cor-
responding pointer on the second level with a pointer to the
new node. In order to allow arbitrary values and avoid lost
updates, we do not make any in-place updates.

4. OPERATIONS
In this section, we describe how common index operations

like updates and reads are processed on the KISS-Tree. The
KISS-Tree also supports deletions and iterations, which are
trivial to derive from the described operations.

4.1 Updates
We demonstrate the update respectively insertion of a key

with the help of the KISS-Tree (8Byte Rids as values) de-
picted in Figure 3. At the beginning, the tree contains three
key-value pairs and one physically allocated page on the sec-
ond level. In this example, we insert the decimal key 42 into
the KISS-Tree. The update operation starts with splitting
the key into the three fragments f1,f2, and f3 each of their
respective length (step 1 in the figure). The first 16bit long
fragment f1 is used to identify the corresponding node on the
second level (step 2). Because all nodes on the second level
are of equal size and are sequentially stored, we can directly
calculate the pointer to that node. Following the second
step, we use the 10bit fragment f2 to determine the bucket
inside the second level node. Because the entire node is not
physically allocated, the node contains only zero pointer2,

2The virtual memory is allocated via mmap, which initializes
newly allocated pages for security reasons with zero

which indicates an empty bucket. The insert operation now
remembers the zero pointer for the later compare-and-swap
operation. Afterwards, we have to request a new node from
the memory management subsystem that is able to store the
nodes bitmap and exactly one value (step 3). In step 4, we
prepare the new node for tree linkage. Therefore, we set
the corresponding bit in the bitmap, which is determined
by f3. In our specific example, we have to set the 42th bit.
Afterwards, we write the actual value after the bitmap. Fi-
nally, we try to exchange the pointer on the second level
with the compact pointer to the new level three node using
a compare-and-swap instruction (step 5). If the compare-
and-swap is successful, the operation finished and the first
4KB node on level two is now backed with physical memory;
otherwise the entire update operation has to repeat.

4.2 Reads
Assuming that the previously inserted decimal key 42 is

now present in the KISS-Tree depicted in Figure 3, we now
show how to read it again. We take f1 to calculate the
absolute address of the corresponding node on the second
level and identifiy the bucket in this node using f2. Because
we read a non-zero pointer from this bucket, the bucket is in
use and we translate the compact pointer to a 64bit pointer
to the next node on the third level. To check whether the
key is present, we test the 42th bit of the nodes bitmask.
Because the bit is set, we apply a bitmask to the bitmap to
unset all bits behind the 42th bit. Now we count the number
of set bits using a population count instruction to obtain
the bucket inside the compressed node, which contains the
requested value.

4.3 Batched Reads
Especially on large KISS-Trees that do not fit into the

CPU cache anymore, the memory latency plays an impor-
tant role and decreases the performance of reads. In order
to reduce the latency, we applied batched reads for latency
hiding. With batched reads, each thread working on the tree
executes multiple read operations at once. The number of si-
multaneous operations is the batch size. Executing multiple
operations at once changes the way of processing. Instead
of reading the nodes of level two and three alternately, the
batched reads operation reads only the second level nodes
at first, followed by the third level nodes. This gives us
the advantage that nodes are potentially still in the cache
when reading them multiple times. Moreover, we can issue
prefetch instructions to bring the third level nodes in the
cache while still reading level two nodes. The disadvantage
of batching reads is an increased latency, which is traded for
a higher throughput. However, certain database operations,
like joins, are able to profit a lot from batch processing.

5. MEMORY MANAGEMENT
The memory management subsystem is tightly coupled to

the KISS-Tree, because it is a critical component regarding
the overall index performance. Especially the RCU mecha-
nism deployed on the third level requires a responsive mem-
ory allocation. During the startup of the system, the mem-
ory management allocates consecutive virtual memory seg-
ments (physical memory is claimed on-demand) for each of
the 64 node sizes possible on the third level as depicted at the
bottom of Figure 4. Each segment consists of a maximum of
226 blocks of the respective node size. We need the blocks of

(a) Throughput for Reading Sequences. (b) Throughput for Reading Uniform Data.

(c) Throughput for Updating Sequences (d) Throughput for Updating Uniform Data

Figure 5: Read/Update Throughput for Sequences and Uniform Data.

each size to be in a row, because of the block-oriented com-
pact pointers used on level two. In order to allow fast parallel
access to the memory management subsystem, each thread
allocates only a small number of blocks from each segment of
the global memory and maintains them on its own (thread-
local memory). This allows threads to administrate their
memory independent from each other and removes synchro-
nization bottlenecks. Only if a thread runs out of memory, it
requests a new set of blocks from the global memory, which is
synchronized via atomic operations. Moreover, every thread
uses its own free lists for memory recycling. Those free lists
have to be aware of the RCU mechanism, in order to prevent
the recycling of a node that is still read by another thread.
For our experiments, we used an active and an inactive free
list per node size and thread. Freshly freed memory pieces
are stored in the inactive free list and memory allocation
requests are served by the active one. As soon as a grace
period is detected, the memory management switches over
to the inactive free list.

6. EVALUATION
In this section, we evaluate the KISS-Tree performance

and memory usage for different workloads, tree sizes, up-
date rates, and platforms. Moreover, we compare the re-
sults to the generalized prefix tree and the CTrie. We used
32bit keys and 64bit values as they are common for rids.
All experiments, we conducted, were executed on an Intel
i7-2600 (3.4GHz clock rate, 3.8GHz max. turbo frequency,
4 cores, Hyper-Threading, 2 memory channels, 8MB LLC)
equipped with 16GB RAM (DDR3-1333) running Ubuntu
Linux 11.10.

In the first experiment, we compared the read/write
throughput of the KISS-Tree, generalized prefix tree with

Figure 6: Throughput for different Update-Rates.

k′ = 4 (PT-4), and CTrie for different tree sizes. We
used all of the eight available hardware threads on the plat-
form. For all experiments, we use a sequence and a uni-
formly distributed workload. Both workloads describe the
upper respectively lower boundary for throughput and for
instance, skewed distributions lie in between. The tree size
reaches from 64 thousand (compute-bound) up to 64 mil-
lion (memory-bound) keys present in the trees. All the
three tree implementations are using batching for read op-
erations as described in Section 4.3. Figure 5(a) shows the
read throughput for sequences (keys are randomly picked
from the sequence range). The KISS-Tree shows the highest
throughput for small as well as for large trees. Figure 5(b)
visualizes the throughput for uniformly distributes keys.
Here, the KISS-Tree also shows the best performance, but
the throughput for small trees is lower because the locality

Figure 7: Comparison of Memory Consumptions.

Figure 8: Throughput on different Platforms.

of data got worse. The main observation is that the KISS-
Tree with the least memory accesses per read operation(2-3)
has the highest throughput compared to the CTrie which
requires up to 14 memory accesses. Figure 5(c) and Fig-
ure 5(d) show the update throughputs for both key distri-
butions. The CTrie shows the worst results because of the
high number of memory accesses per key. We measured the
highest throughput for the PT-4, because it is able to do
in-place updates where the KISS-Tree has to create copies
of third level nodes. We see this effect when comparing the
sequence workload to the uniform workload. With the se-
quence workload, all third level nodes contain 64 values that
have to be copied for an update. The uniform workload on
the other hand creates only sparely used nodes on the third
level, which results in a better update performance. More-
over, we observe a lot of compare-and-swap failures on small
trees for the sequence workload, because threads work on the
same third level nodes. To summarize the first experiment,
the KISS-Tree clearly shows the best read performance and
an update performance that is able to keep pace with the
CTrie and the PT-4.

With the second experiment, we investigate the overall
throughput for workloads with different update rates on the
KISS-Tree and the PT-4. Figure 6 shows the respective
results. While the throughput of the PT-4 moves smoothly
between 0% and 100% update rate, the behaviour of the
KISS-Tree heavily depends on the key distribution. This is
mainly caused by the RCU update mechanism, which has to
copy entire nodes and so occupies the memory channels what
also effects the other read operations. The one extreme is
the uniform workload that does not require much overhead
for copying nodes. Thus, the KISS-Tree is always faster
than the PT-4. As worst case we identified the sequence

Processor #threads #channels LLC(MB) Freq.(GHz)

1x i7-2600 8 2 8MB 3.4
1x i7-3960X 12 4 15MB 3.3
4x E7-4830 4x16 4x4 4x24MB 2.13

Table 1: Evaluation Hardware

workload, where update operations always have to copy 64
values. Here, the overall throughput drops below the one
of the PT-4 at an update rate of about 20%. To show the
behavior between both extremes, we added the odd sequence
key distribution, which only includes odd keys. This ends
up in 32 values per third level node and a throughput that
is better or equal to the PT-4.

The next experiment addresses the memory consumption
of the KISS-Tree, PT-4, and CTrie for different key distribu-
tions and tree sizes. Figure 7 visualizes the measurements.
For the sequence workload, the KISS-Tree turns out to have
a very low memory consumption that is almost equal to
the actual data size. The CTrie shows the highest memory
usage, because the compression and the I-Nodes add ad-
ditional overhead to the structure compared to the PT-4.
When looking at the measurements for the uniform work-
load, the KISS-Tree wastes a lot of memory on small trees.
This is caused by the second level nodes that are allocated at
a 4KB granularity. For instance, a KISS-Tree that contains
4 million uniformly distributed keys uses 256MB on the fully
expanded second level. This is the worst case scenario for
memory consumption; with an increasing number of keys,
the KISS-Tree starts to save a lot of memory compared to
the other trees. The measurements for the uniform work-
load also show the worst case scenario for the uncompressed
PT-4, which consists of very sparely used nodes. Here, the
compression of the CTrie saves memory.

Finally, our last experiment investigates the performance
of the KISS-Tree on the three different platforms listed in
Table 1. Figure 8 contains the measurements for uniformly
distributes keys. The experiment shows that the read per-
formance scales with the total number of hardware threads
and the clock rate. A problem we observed is the update
performance on the massive parallel NUMA system. With
64 hardware threads updating a small tree, we have a high
probability that threads try to update the same third level
nodes. For this reason, updating a small KISS-Tree does
not scale well on massive parallel hardware. As soon as the
tree becomes larger, the scalability is given, because threads
work on different nodes.

7. CONCLUSION AND FUTURE WORK
With the movement from disk-based database systems to-

wards pure in-memory architectures, the design goals for
index structures essentially changed. The new main opti-
mizations targets are cache-awareness, memory access min-
imization and latch-freedom. Thus, classic disk-block opti-
mized structures like B+-Trees are not suited for modern
in-memory database architectures anymore. In this paper,
we introduced the KISS-Tree, which addresses exactly these
kinds of optimizations. With the KISS-Tree, we accom-
plished to reduce the number of memory accesses to 2–3 by
deploying multiple techniques on the individual tree levels.
The techniques are direct addressing, on-demand allocation,

compact pointer and compression. The evaluation revealed
that the minimization of memory accesses is the most bene-
ficial optimization for large indexes. In combination with la-
tency hiding through batched reads, we were able to outper-
form existing tree-based in-memory index structures. More-
over, the KISS-Tree provides a high update rate, because
it does not involve comprehensive structural maintenance
and exploits parallelism with the help of optimistic compare-
and-swap instructions. Regarding memory consumption, we
showed that the KISS-Tree has very low indexing overhead,
especially for large trees, and even consumes less memory
than the actual data for sequential workloads.

Our future work will mostly focus on improving the up-
date performance and adding support for larger keys. The
critical point for the update performance is that we have to
copy entire nodes for existing keys. This occupies the mem-
ory channels and increases the probability for the compare-
and-swap to fail. To fix this issue, we will have to make
changes in the second tree level. One possible solution for
this problem would be the inclusion of version numbers into
the compact pointers on the second level, so that each up-
date changes the pointer. This way, we increase the update
throughput that is independent of the workload.

The current main drawback of this KISS-Tree is, that it
misses support for large integers or varchars. Therefore, we
have to look for solutions to apply other techniques on the
additionally required levels or consider combinations with
other index structures. We expect those additional levels to
deploy compression mechanisms for sparely occupied nodes
as well as a vertical compression of node chains. Another
important point for research is to push the performance on
NUMA systems. NUMA architectures are completely differ-
ent from SMP machines because there are additional costs
for accessing memory on foreign sockets and especially the
cache utilization on different sockets. Moreover, the cache-
coherency has to be taken into account.

8. ACKNOWLEDGMENTS
This work is supported by the German Research Foun-

dation (DFG) in the Collaborative Research Center 912
“Highly Adaptive Energy-Efficient Computing”.

9. REFERENCES
[1] Dexter project.

http://wwwdb.inf.tu-dresden.de/dexter.

[2] R. Bayer and E. McCreight. Organization and
maintenance of large ordered indexes, pages 245–262.
Software pioneers, New York, NY, USA, 2002.

[3] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer,
D. Habich, and W. Lehner. Efficient in-memory
indexing with generalized prefix trees. In BTW, pages
227–246, 2011.

[4] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: a
fast, efficient data structure for string keys. ACM
Trans. Inf. Syst., 20(2):192–223, Apr. 2002.

[5] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. Fast: fast architecture sensitive tree search
on modern cpus and gpus. In SIGMOD, pages
339–350, 2010.

[6] D. E. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,

1973.

[7] P. L. Lehman and s. B. Yao. Efficient locking for
concurrent operations on b-trees. ACM Trans.
Database Syst., 6:650–670, December 1981.

[8] T. J. Lehman and M. J. Carey. A study of index
structures for main memory database management
systems. VLDB ’86, pages 294–303, San Francisco,
CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[9] P. E. McKenney and J. D. Slingwine. Read-copy
update: Using execution history to solve concurrency
problems.

[10] A. Prokopec, P. Bagwell, and M. Odersky. Lock-free
resizeable concurrent tries. LCPC, 2011.

[11] J. Rao and K. A. Ross. Making b+- trees cache
conscious in main memory. SIGMOD Rec.,
29:475–486, May 2000.

[12] J. Sewall, J. Chhugani, C. Kim, N. Satish, and
P. Dubey. Palm: Parallel architecture-friendly
latch-free modifications to b+ trees on many-core
processors. PVLDB, 4(11):795–806, 2011.

[13] W. A. Wulf and S. A. McKee. Hitting the memory
wall: implications of the obvious. SIGARCH Comput.
Archit. News, 23(1):20–24, Mar. 1995.

APPENDIX
In the appendix, we conducted as set of experiments that
investigate the behavior of batched reads and scalability as
well as a comparison to the CSB+-Tree.

A. BATCHED READS EVALUATION
In this section, we evaluate the performance of batched

reads. Compared to standard read operations, batched reads
process multiple read operations per thread at once to hide
the latency of memory accesses. All of the following experi-
ments were conducted on an Intel i7-2600 processor, which
corresponds to the machine used in Section 6.

Figure 9: Relative Performance Gain through
Batched Reads for Sequences.

In first two experiments, we measured the throughput of
standard read operations and batched read operations for
different tree sizes. Figure 9 shows the relative performance
gain of batched reads over standard reads for sequential keys
(keys randomly picked from the sequence range). We ob-
serve that this performance gain strongly depends on to size
of the tree. A small tree, for instance, takes not much ad-
vantage from batched reads, because most of the data is in

the L1 cache of the CPU. Thus, we are unable to hide any
latency. As soon as the L1 cache is exhausted, batched reads
are able to hide latency between the L1 cache and the L2
cache. With more and more growing tree sizes, we hit the
point where even the L2 cache and the LLC are exhausted.
Thus, we have a high latency from the memory controller to
the L1 cache, which gives us the highest performance gain
for batched reads.

Figure 10: Relative Performance Gain through
Batched Reads for Uniform Data.

Figure 10 visualizes the measurements for a uniform key
distribution. On small trees that fit in the L1 cache of the
CPU, we observe a performance loss by batching reads be-
cause prefetch instructions induce an additional overhead.
When looking at trees of medium size, the performance
gain is higher compared to the sequential keys. This is the
case because prefetch instructions are unlikely to fetch same
cache lines twice. Thus, batched reads are able to hide more
latency.

Figure 11: Throughput as a Function of Batch Size.

In the final experiment, we measured the throughput for
different batch sizes. The batch size is the number of read
operations that are simultaneously processed by a thread.
The results are depicted in Figure 11. The experiment re-
vealed that even small batch sizes dramatically increase the
read throughput. With a batch size of eight, batched reads
achieve the maximum throughput, which remains steady un-
til it starts to slowly decrease with large batch sizes.

B. SCALABILITY

Figure 12: Scalability for Sequences (64M Keys).

To investigate the scalability of the KISS-Tree, we mea-
sured the throughput of different operations with a variable
number of threads. The hardware we used for this exper-
iment was an Intel i7-2600, which has four physical cores
with Hyper-Threading (a total of 8 hardware threads) avail-
able. The experiment depicted in Fig. 12 revealed that a
standard read operation scales with the number of physical
cores. As soon as the physical cores are exhausted, the per-
formance gain drops, because threads have to share cores.
We observe another behavior for batched reads, which scale
only well with the first three threads. This happens, be-
cause the batched operations have a better utilization of the
memory controllers, which become the bottleneck with an
increasing number of threads. The same effect can be ob-
served, when comparing updates of sequential and uniform
data. Because the sequential workload requires the copying
of full nodes on the third level, the memory controllers be-
come the limiting factor. However, the update operation of
the uniform workload scales well with all available hardware
threads.

C. COMPARISON TO THE CSB+-TREE
In this section, we compare the KISS-Tree to the CSB+-

Tree implementation from [11]. This 32bit CSB+-Tree im-
plementation neither implements concurrency control nor
batched reads. Therefore, we measured the single-threaded
throughput for simple uniformly distributed reads on an
Intel i7-2600. The CSB+-Tree implementation performs
about 3 million operations per second and thread with a
tree size of 64 million keys. The KISS-Tree achieves 18.4
million operations per second and thread, which is more
than 6 times faster.

