
  

17 Sep 2016 | 10 min. (2035 words)

What is a skip list?
In short, skip lists are a linked-list-like structure which allows for fast search. It
consists of a base list holding the elements, together with a tower of lists
maintaining a linked hierarchy of subsequences, each skipping over fewer
elements.

Skip list is a wonderful data structure, one of my personal favorites, but a trend in
the past ten years has made them more and more uncommon as a single-
threaded in-memory structure.

My take is that this is because of how hard they are to get right. The simplicity
can easily fool you into being too relaxed with respect to performance, and while
they are simple, it is important to pay attention to the details.

In the past �ve years, people have become increasingly sceptical of skip lists’
performance, due to their poor cache behavior when compared to e.g. B-trees,
but fear not, a good implementation of skip lists can easily outperform B-trees
while being implementable in only a couple of hundred lines.

How? We will walk through a variety of techniques that can be used to achieve
this speed-up.

Skip Lists: Done Right

Theme Bleak by zutrinken Published with Hugo

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

1 of 17 02/02/2017 10:53 AM

 

These are my thoughts on how a bad and a good implementation of skip list
looks like.

Advantages

A naïve (but common) implementation

Our skip list consists of (in this case, three) lists, stacked such that the n‘th list
visits a subset of the node the n - 1‘th list does. This subset is de�ned by a
probability distribution, which we will get back to later.

Skip lists perform very well on rapid insertions because there are no
rotations or reallocations.

*

They’re simpler to implement than both self-balancing binary search trees
and hash tables.

*

You can retrieve the next element in constant time (compare to logarithmic
time for inorder traversal for BSTs and linear time in hash tables).

*

The algorithms can easily be modi�ed to a more specialized structure (like
segment or range “trees”, indexable skip lists, or keyed priority queues).

*

Making it lockless is simple.*
It does well in persistent (slow) storage (often even better than AVL and
EH).

*

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

2 of 17 02/02/2017 10:53 AM

 

If you rotate the skip list and remove duplicate edges, you can see how it
resembles a binary search tree:

Say I wanted to look up the node “30”, then I’d perform normal binary search
from the root and down. Due to duplicate nodes, we use the rule of going right if
both children are equal:

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

3 of 17 02/02/2017 10:53 AM

 

Self-balancing Binary Search Trees often have complex algorithms to keep the
tree balanced, but skip lists are easier: They aren’t trees, they’re similar to trees in
some ways, but they are not trees.

Every node in the skip list is given a “height”, de�ned by the highest level
containing the node (similarly, the number of decendants of a leaf containing the
same value). As an example, in the above diagram, “42” has height 2, “25” has
height 3, and “11” has height 1.

When we insert, we assign the node a height, following the probability
distribution:

p(n) = 21-n

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

4 of 17 02/02/2017 10:53 AM

 

To obtain this distribution, we �ip a coin until it hits tails, and count the �ips:

By this distribution, statistically the parent layer would contain half as many
nodes, so searching is amortized O(log n) .

Note that we only have pointers to the right and below node, so insertion must
be done while searching, that is, instead of searching and then inserting, we
insert whenever we go a level down (pseudocode):

uint generate_level() {

uint n = 0;

while coin_flip() {

 n++;

 }

return n;

}

1

2

3

4

5

6

7

8

-- Recursive skip list insertion function.

define insert(elem, root, height, level):

if right of root < elem:

-- If right isn't "overshot" (i.e. we are going to long), we go right.

return insert(elem, right of root, height, level)

else:

if level = 0:

-- We're at bottom level and the right node is overshot, hence

-- we've reached our goal, so we insert the node inbetween root

-- and the node next to root.

old ← right of root

right of root ← elem

right of elem ← old

else:

if level ≤ height:

-- Our level is below the height, hence we need to insert a

-- link before we go on.

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

5 of 17 02/02/2017 10:53 AM

 

The above algorithm is recursive, but we can with relative ease turn it into an
iterative form (or let tail-call optimization do the job for us).

As an example, here’s a diagram, the curved lines marks overshoots/edges where
a new node is inserted:

Waste, waste everywhere
That seems �ne doesn’t it? No, not at all. It’s absolute garbage.

There is a total and complete waste of space going on. Let’s assume there are n
elements, then the tallest node is approximately h = log n, that gives us
approximately 1 + Σ 2 n ≈ 2n.

2n is certainly no small amount, especially if you consider what each node
contains, a pointer to the inner data, the node right and down, giving 5 pointers
in total, so a single structure of n nodes consists of approximately 6n pointers.

old ← right of root

right of root ← elem

right of elem ← old

-- Go a level down.

return insert(elem, below root, height, level - 1)

18

19

20

21

22

23

2

k ←0..h
-k

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

6 of 17 02/02/2017 10:53 AM

 

But memory isn’t even the main concern! When you need to follow a pointer on
every decrease (apprx. 50% of all the links), possibly leading to cache misses. It
turns out that there is a really simple �x for solving this:

Instead of linking vertically, a good implementation should consist of a singly
linked list, in which each node contains an array (representing the nodes above)
with pointers to later nodes:

If you represent the links (“shortcuts”) through dynamic arrays, you will still
often get cache miss. Particularly, you might get a cache miss on both the node
itself (which is not data local) and/or the dynamic array. As such, I recommend
using a �xed-size array (beware of the two negative downsides: 1. more space
usage, 2. a hard limit on the highest level, and the implication of linear
upperbound when h > c. Furthermore, you should keep small enough to �t a
cache line.).

Searching is done by following the top shortcuts as long as you don’t overshoot
your target, then you decrement the level and repeat, until you reach the lowest
level and overshoot. Here’s an example of searching for “22”:

In pseudocode:

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

7 of 17 02/02/2017 10:53 AM

 
O(1) level generation
Even William Pugh did this mistake in his original paper. The problem lies in the
way the level is generated: Repeating coin �ips (calling the random number
generator, and checking parity), can mean a couple of RNG state updates
(approximately 2 on every insertion). If your RNG is a slow one (e.g. you need
high security against DOS attacks), this is noticable.

The output of the RNG is uniformly distributed, so you need to apply some
function which can transform this into the desired distribution. My favorite is this
one:

define search(skip_list, needle):

-- Initialize to the first node at the highest level.

 level ← max_level

 current_node ← root of skip_list

loop:

-- Go right until we overshoot.

while level'th shortcut of current_node < needle:

 current_node ← level'th shortcut of current_node

if level = 0:

-- We hit our target.

return current_node

else:

-- Decrement the level.

 level ← level - 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

define generate_level():

-- First we apply some mask which makes sure that we don't get a level

-- above our desired level. Then we find the first set bit.

 ffz(random() & ((1 << max_level) - 1))

1

2

3

4

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

8 of 17 02/02/2017 10:53 AM

 

This of course implies that you is no higher than the bit width of the
 output. In practice, most RNGs return 32-bit or 64-bit integers, which

means this shouldn’t be a problem, unless you have more elements than there
can be in your address space.

Improving cache e�ciency
A couple of techniques can be used to improve the cache e�ciency:

Memory pools

Our nodes are simply �xed-size blocks, so we can keep them data local, with high
allocation/deallocation performance, through linked memory pools (SLOBs),
which is basically just a list of free objects.

The order doesn’t matter. Indeed, if we swap “9” and “7”, we can suddenly see
that this is simply a skip list:

max_level

random()

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

9 of 17 02/02/2017 10:53 AM

 

We can keep these together in some arbitrary number of (not necessarily
consecutive) pages, drastically reducing cache misses, when the nodes are of
smaller size.

Since these are pointers into memory, and not indexes in an array, we need not
reallocate on growth. We can simply extend the free list.

Flat arrays
If we are interested in compactness and have a insertion/removal ratio near to 1,
a variant of linked memory pools can be used: We can store the skip list in a �at
array, such that we have indexes into said array instead of pointers.

Unrolled lists
Unrolled lists means that instead of linking each element, you link some number
of �xed-size chuncks contains two or more elements (often the chunk is around
64 bytes, i.e. the normal cache line size).

Unrolling is essential for a good cache performance. Depending on the size of the

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

10 of 17 02/02/2017 10:53 AM

 

objects you store, unrolling can reduce cache misses when following links while
searching by 50-80%.

Here’s an example of an unrolled skip list:

The gray box marks excessive space in the chunk, i.e. where new elements can be
placed. Searching is done over the skip list, and when a candidate is found, the
chunk is searched through linear search. To insert, you push to the chunk (i.e.
replace the �rst free space). If no excessive space is available, the insertion
happens in the skip list itself.

Note that these algorithms requires information about how we found the chunk.
Hence we store a “back look”, an array of the last node visited, for each level. We
can then backtrack if we couldn’t �t the element into the chunk.

We e�ectively reduce cache misses by some factor depending on the size of the
object you store. This is due to fewer links need to be followed before the goal is
reached.

Self-balancing skip lists

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

11 of 17 02/02/2017 10:53 AM

 

Various techniques can be used to improve the height generation, to give a better
distribution. In other words, we make the level generator aware of our nodes,
instead of purely random, independent RNGs.

Self-correcting skip list
The simplest way to achieve a content-aware level generator is to keep track of
the number of node of each level in the skip list. If we assume there are n nodes,
the expected number of nodes with level l is 2 n. Subtracting this from actual
number gives us a measure of how well-balanced each height is:

When we generate a new node’s level, you choose one of the heights with the
biggest under-representation (see the black line in the diagram), either randomly
or by some �xed rule (e.g. the highest or the lowest).

Perfectly balanced skip lists
Perfect balancing often ends up hurting performance, due to backwards level
changes, but it is possible. The basic idea is to reduce the most over-represented
level when removing elements.

An extra remark

-l

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

12 of 17 02/02/2017 10:53 AM

 

Skip lists are wonderful as an alternative to Distributed Hash Tables. Performance
is mostly about the same, but skip lists are more DoS resistant if you make sure
that all links are F2F.

Each node represents a node in the network. Instead of having a head node and a
nil node, we connect the ends, so any machine can search starting at it self:

If you want a secure open system, the trick is that any node can invite a node,
giving it a level equal to or lower than the level itself. If the node control the key
space in the interval of A to B, we partition it into two and transfer all KV pairs in
the second part to the new node. Obviously, this approach has no privilege
escalation, so you can’t initialize a sybil attack easily.

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

13 of 17 02/02/2017 10:53 AM

 

data-structures optimizations algorithms

skip-lists programming

  

Conclusion and �nal words
By apply a lot of small, subtle tricks, we can drastically improve performance of
skip lists, providing a simpler and faster alternative to Binary Search Trees. Many
of these are really just minor tweaks, but give an absolutely enormous speed-up.

The diagrams were made with Dia and TikZ.

Skip Lists: Done Right · Ticki's blog http://ticki.github.io/blog/skip-lists-done-right/

14 of 17 02/02/2017 10:53 AM

