
A Comparison of Adaptive Radix Trees and Hash
Tables

Victor Alvarez #1, Stefan Richter #2, Xiao Chen #3, Jens Dittrich #4

Information Systems Group, Saarland University
1 alvarez@cs.uni-saarland.de

2 stefan.richter@infosys.uni-saarland.de
3 s9xochen@stud.uni-saarland.de

4 jens.dittrich@cs.uni-saarland.de

Abstract—With prices of main memory constantly decreasing,
people nowadays are more interested in performing their compu-
tations in main memory, and leave high I/O costs of traditional
disk-based systems out of the equation. This change of paradigm,
however, represents new challenges to the way data should be
stored and indexed in main memory in order to be processed
efficiently. Traditional data structures, like the venerable B-tree,
were designed to work on disk-based systems, but they are no
longer the way to go in main-memory systems, at least not in their
original form, due to the poor cache utilization of the systems
they run on. Because of this, in particular, during the last decade
there has been a considerable amount of research on index data
structures for main-memory systems. Among the most recent and
most interesting data structures for main-memory systems there
is the recently-proposed adaptive radix tree ARTful (ART for
short). The authors of ART presented experiments that indicate
that ART was clearly a better choice over other recent tree-based
data structures like FAST and B+-trees. However, ART was not
the first adaptive radix tree. To the best of our knowledge, the
first was the Judy Array (Judy for short), and a comparison
between ART and Judy was not shown. Moreover, the same set
of experiments indicated that only a hash table was competitive
to ART. The hash table used by the authors of ART in their
study was a chained hash table, but this kind of hash tables
can be suboptimal in terms of space and performance due to
their potentially high use of pointers. In this paper we present
a thorough experimental comparison between ART, Judy, two
variants of hashing via quadratic probing, and three variants of
Cuckoo hashing. These hashing schemes are known to be very
efficient. For our study we consider whether the data structures
are to be used as a non-covering index (relying on an additional
store), or as a covering index (covering key-value pairs). We
consider both OLAP and OLTP scenarios. Our experiments
strongly indicate that neither ART nor Judy are competitive to
the aforementioned hashing schemes in terms of performance,
and, in the case of ART, sometimes not even in terms of space.

I. INTRODUCTION

In the last decade the amount of main memory in commod-
ity servers has constantly increased — nowadays, servers with
terabytes of main memory are widely available at affordable
prices. This memory capacity makes it possible to store most
databases completely in main memory, and has triggered a
considerable amount of research and development in the area.
As a result, new high performance index structures for main
memory databases are emerging to challenge hash tables —
which have been widely used for decades due to their good
performance. A recent and promising structure in this domain
is the adaptive radix tree ARTful [1], which we call just ART

from now on. This recent data structure was reported to be
significantly faster than existing data structures like FAST [2]
and the cache-conscious B+-tree CSB+ [3]. Moreover, it was
also reported that only a hash table is competitive to ART.
Thus, ART was reported to be as good as a hash table while
also supporting range queries. Nonetheless, three important
details were not considered during the experimental compari-
son of ART with other data structures that we would like to
point out: (1) To the best of our knowledge, the first adaptive
radix tree in the literature was the Judy Array [4], which we
simply call Judy from now on. A comparison between ART
and Judy was not offered by the original study [1], but given
the strong similarities between the two structures, we think
that there ought to be a comparison between the two. (2) The
hash table used by the authors of ART for the experimental
comparison was a chained hash table. This kind of hashing
became popular for being, perhaps, the very first iteration of
hashing, appearing back in the 50s. Nevertheless, it is still
popular for being the default method in standard libraries of
popular programming languages like C++ and Java. However,
nowadays chained hashing could be considered suboptimal in
performance and space because of the (potentially) high over-
head due to pointers, and other hashing schemes are preferred
where performance is sought — like quadratic probing [5],
[6]. Moreover, rather recently, Cuckoo hashing [7] has seen a
considerable amount of research [8], and it has been reported
to be competitive [7] in practice to, for example, quadratic
probing. Thus, we believe that the experimental comparison
between ART and hashing was not complete. This brings
us to our last point, hash functions. (3) Choosing a hash
function should be considered as important as choosing a
hashing scheme (table), since it highly determines the per-
formance of the data structure. Over decades there has been
a considerable amount of research focusing only on hash
functions — sometimes on their theoretical guarantees, some
other times on their performance in practice. The authors of
ART chose Murmur [9] as a hash function — presumably due
to the robustness (ability of shuffling data) shown in practice,
although nothing is known about its theoretical guarantees, to
the best of our knowledge. In our own experiments we noticed
that Murmur hashing is indeed rather robust, but for many
applications, or at least the ones considered by the authors of
ART, that much robustness could be seen as an overkill. Thus,
it is interesting to see how much an easier (but still good) hash
function changes the picture.

A. Our contribution

The main goal of our work is to extend the experimental
comparison offered by the authors of ART by providing a
thorough experimental evaluation of ART against Judy, two
variants of quadratic probing, and three variants of Cuckoo
hashing. We provide different variants of the same hashing
scheme because some variants are tuned for performance,
while other are tuned for space efficiency. However, it is
not our intention to compare ART against structures already
considered (covered) in the original ART paper [1] again. Con-
sequently, just as in the micro-benchmarks presented in [1], we
only focus on keys from an integer domain. In this regard, we
would like to point out that the story could change if keys
were arbitrary strings of variable size. However, a thorough
study on indexing strings in main memory deserves a paper
on its own, and is thus out of scope of this work.

For each considered hash table we test two different hash
functions, Murmur hashing [9], for reference, completeness,
and compatibility with the original study [1], and the well-
known multiplicative hashing [5], [6], [10] — which is perhaps
the easiest-to-compute hash function with still good theoretical
guarantees. Our experiments strongly indicate that neither
ART nor Judy are competitive in terms of performance to
well-engineered hash tables, and in the case of ART, some-
times not even in terms of space. For example, for one billion
indexed keys, one non-covering variant of Cuckoo hashing is
at least 4.8× faster for insertions than ART, at least 2.8×
faster for lookups, and it sometimes requires just half the space
of ART, see Figures 2, 3, and 4. We also hope to convey
more awareness as of how important it is to consider newer
hashing approaches (hashing schemes and hash functions)
when throughput performance and/or memory efficiency are
crucial.

The remainder of the paper is organized as follows. In
Section II we give a general description of adaptive radix trees
— highlighting key similarities and differences between ART
and Judy. In Section III we give a detailed description of the
hashing schemes and hash functions used in our study. In IV
we present our experiments. Finally, in Section V we close
the paper with our conclusions. Our presentation is given in a
self-contained manner.

II. RADIX TREES

In this section we give a general description of the (adap-
tive) radix trees included in our study. In general, a radix
tree [6] (also called prefix tree, or trie) is a data structure to
represent ordered associative arrays. In contrast to many other
commonly used tree data structures such as binary search trees
or standard B-Trees, nodes in radix trees do not cover complete
keys; instead, nodes in a radix tree represent partial keys, and
only the full path from the root to a leaf describes the complete
key corresponding to a value. Furthermore, operations on radix
trees do not perform comparisons on the keys in the nodes but
rather, operations like looking up for a key work as follows:
(1) Starting from the root, and for each inner node, a partial
key is extracted on each level. (2) This partial key determines
the branch that leads to the next child node. (3) The process
repeats until a leaf or an empty branch is reached. In the first
case, the key is found in the tree, in the second case, it is not.

In a radix tree, the length of the partial keys determines
the fan-out of the nodes because for each node there is exactly
one branch for each possible partial key. For example, let us
assume a radix tree that maps 32-bit integer keys to values of
the same type. If we chose each level to represent a partial key
of one byte, this results in a 4-level radix tree having a fan-out
of 256 branches per node. Notice that for all levels, all keys
under a certain branch have a common prefix and unpopulated
branches can be omitted. For efficiency, nodes in a radix tree
are traditionally implemented as arrays of pointers to child
nodes; when interpreting the partial key as an index to the
array of child pointers, finding the right branch on a node is as
efficient as one array access. However, this representation can
easily lead to excessive memory consumption and bad cache
utilization for data distributions that lead to many sparsely
populated branches, such as uniform random distribution. In
the context of our example, each node would contain an array
of 256 pointers, even if only a single child node exists; leading
to high memory overhead. This is the reason why radix trees
have usually been considered as a data structure that is only
suitable for certain use cases, e.g., textual data, and not for
general purposes. For example, radix trees are often used for
prefix search on skewed data; like in dictionaries. Still, radix
trees have many interesting and useful properties: (1) Shape
depends only on the key space and length of partial keys, but
not on the contained keys or their insertion order. (2) Do not
require rebalancing operations. (3) Establish an order on the
keys and allow for efficient prefix lookups. (4) Allow for prefix
compression on keys.

The aforementioned memory overheads that traditional
radix trees potentially suffer from leads to the natural question
of whether the situation can be somehow alleviated. To the
best of our knowledge, the Judy Array [4] is the first variant
of a radix tree that adaptively varies its node representation
depending on the key distribution and/or cardinality of the
contained data. Judy realizes adaptivity by introducing several
compression techniques. These techniques prevent excessive
memory footprints on sparsely populated trees, and improve
cache utilization. According to the inventors, Judy offers per-
formance similar to hash maps, supports efficient range queries
like a (comparison-based) tree structures, and prefix queries
like traditional radix trees. All this while also providing better
memory efficiency than all aforementioned data structures.

Very recently, in 2013, the ARTful index [1] was intro-
duced as a new index structure for main memory database
systems. ART is also an adaptive radix tree, and has similar
purposes as Judy — high performance at low memory cost.
However, unlike Judy, ART was not designed as an associative
array, but rather ART is tailored towards the use case of an
index structure for a database system — on top of a main
memory storage. In the following we will discuss both, Judy
arrays and ART, highlighting their similarities and differences.

A. Judy

Judy can be characterized as a variant of a 256-way radix
tree. There are three different types of Judy arrays: (1) Judy1:
A bit array that maps integer keys to true or false and hence can
be used as a set. (2) JudyL: An array that maps integer keys to
integer values (or pointers) and hence can be used as an integer
to integer map. (3) JudySL: An array that maps string keys of

7 42 83 239

Partial Keys Fat Pointer to children

7x1b 7x16b

... ...

Count

(a) JudyL Linear Node

0-1F 20-3F 40-5F 60-7F 80-9F A0-BF C0-DF E0-FF

Bitmap, divided into 8 segments, interleaved with pointers to lists of child pointer

Lists of 1-32 Fat Pointer to children, each 16b

(b) JudyL Bitmap Node

7 42 83 207

Header Partial Keys Child Pointer

2-16b 4x1b 4x8b

(c) ART Node4

Header Child Indexes Child Pointer

2-16b 256x1b 48x8b

... ...

0 1 2 3 255

(d) ART Node48

Figure 1: Comparison of node types (64-bit).

arbitrary length to integer values (or pointers) and hence can
be used as a map from byte sequences to integers.

For a meaningful comparison with the other data structures
considered by us, we will only focus on JudyL for the
remainder of this work, and thus consider Judy and JudyL
as synonyms from now on. In the following, we give a brief
overview of the most important design decisions that contribute
to the performance and memory footprint of JudyL.

The authors of Judy observed that cache misses have a
tremendous impact on the performance of any data structure,
up to the point where cache miss costs dominate the runtime.
Hence, to offer high performance across different data dis-
tributions, one major design concern of Judy was to avoid
cache-line fills (which can result in cache misses) at almost
any cost. Observe that the maximum number of cache-line
fills in a radix tree is determined by the number of tree levels.
Moreover, the maximum number of tree levels is determined
by the maximum key length divided by the partial key size.
For every tree level in a standard radix tree, we need to access
exactly one cache line that contains the pointer to the child
node under the index of that partial key.

Judy addresses memory overheads of traditional radix
trees under sparse data distributions and simultaneously avoids
cache-line fills through a combination of more than 20 dif-
ferent compression techniques. We can roughly divide these
techniques into two categories: horizontal compression and
vertical compression. Due to space constraints, we only give
a brief overview of the most important ideas in Judy. A full
description of the ideas can be found in [4].

Horizontal compression. Here the problem of many large,
but sparsely populated nodes, is addressed. The solution of-
fered by Judy is to adapt node sizes dynamically and indi-
vidually with respect to the actual population of the subtree
underneath each node. Hence, Judy can compress unused
branches out of nodes. For example, Judy may use smaller
node types that have e.g., only seven children. However,
in contrast to uncompressed (traditional) radix nodes with
256 branches, the slots in compressed nodes are not directly

addressable through the index represented by the current partial
key. Consequently, compressed nodes need different access
methods, such as comparisons, which can potentially lead
to multiple additional cache-line fills. Judy minimizes such
effects through clever design of the compressed nodes. There
are two basic types of horizontally compressed nodes in Judy:
linear nodes and bitmap nodes, which we briefly explain: (1) A
linear node is a space efficient implementation for nodes with
very small number of children. In Judy, the size of linear
nodes is limited to one cache line.1 Linear nodes start with
a sorted list that contains only the partial keys for branches
to existing child nodes. This list is then followed by a list of
the corresponding pointers to child nodes in the same order,
see Figure 1a. To find the child node under a partial key, we
search the partial key in the list of partial keys and follow
the corresponding child pointer if the partial key is contained
in the list. Hence, linear nodes are similar to the nodes in a
B-tree w.r.t. structure and function. (2) A bitmap node is a
compressed node that uses a bitmap of 256 bits to mark the
present child nodes. This bitmap is divided into eight 32-bit
segments, interleaved with pointers to the corresponding lists
of child pointers, see Figure 1b. Hence, bitmap nodes are the
only structure in Judy that involve up to two cache-line fills.
To lookup the child under a partial key, we first detect if the
bit for the partial key is set. In that case, we count the leading
set bits in the partial bitmap to determine the index of the
child pointer in the pointer list. Bitmap nodes are converted to
uncompressed nodes (256 pointers) as soon as the population
reaches a point where the additional memory usage amortizes.2

To differentiate between node types, Judy must keep some
meta information about every node. In contrast to most other
data structures, Judy does not put meta information in the
header of each node, because this can potentially lead to one
additional cache-line fill per access. Instead, Judy use what
the authors of Judy call Judy pointers. These pointers are

1Judy’s 10-year-old design assumes cache-line size of 16 machine words,
which is not the case for modern main-stream architectures.

2The concrete conversion policies between nodes types are out of the scope
of this work.

fat pointers of two machine words size (i.e., 128bit on 64bit
architectures) that combine the address of a node with the
corresponding meta data, such as: node type, population count,
and key prefix. Judy pointers avoid additional cache-line fills
by densely packing pointers with the meta information about
the object they point to.

Vertical compression. In Judy arrays vertical compression
is mainly achieved by skipping levels in the tree when an
inner node has only one child. In such cases, the key prefix
corresponding to the missing nodes is stored as decoding infor-
mation in the Judy pointer. This kind of vertical compression
is commonly known in the literature as path compression.
Yet another technique for vertical compression is immediate
indexing. With immediate indexing, Judy can store values
immediately inside of Judy pointers instead of introducing a
whole path to a leaf when there is no need to further distinguish
between keys.

B. ART

This newer data structure shares many ideas and design
principles with Judy. In fact, ART is also a 256-radix tree
that uses (1) different node types for horizontal compression,
and (2) vertical compression also via path compression and
immediate indexing — called lazy expansion in the ART paper.
However, there are two major differences between ART and
Judy: (1) There exist four different node types in ART in
contrast to three types in Judy. These node types in ART are
labeled with respect to the maximum amount of children they
can have: Node4, Node16, Node48, and the uncompressed
Node256. Those nodes are also organized slightly different
than the nodes in Judy. For example, the meta information
of each node is stored in a header instead of a fat pointer
(Judy pointer). Furthermore, ART nodes take into account the
latest changes and features in hardware design, such as SIMD
instructions to speedup searching in the linearly-organized
Node16. It is worth pointing out that we can not find any
consideration of that kind of instructions in the decade-old
design of Judy. (2) ART was designed as an index structure
for a database, whereas Judy was designed as a general purpose
associative array. As a consequence, Judy owns its keys and
values and covers them both inside the structure. In contrast
to that, ART does not necessarily cover full keys or values
(e.g., when applying vertical compression) but rather stores a
pointer (as value) to the primary storage structure provided
by the database — thus ART is primarily used as a non-
covering index. At lookup time, we use a given key to lookup
for the corresponding pointer to the database store containing
the complete 〈key, value〉 pair.

Finally, and for completeness, let us give a more detailed
comparison of the different node types between Judy and ART.
Node4 and Node16 of ART are very much comparable to
a linear node in Judy except for their sizes, see Figures 1a
and 1c. Node16 is just like a Node4 but with 16 entries.
Uncompressed Node256 of ART is the same as the uncom-
pressed node in Judy, and thus also as in plain radix trees.
Node48 of ART consists of a 256-byte array (which allows
direct addressing by a partial key) follow by an array of 48
child pointers Up to 48 locations of the 256-byte array can be
occupied, and each occupied entry stores the index in the child
pointer array holding the corresponding pointer for the partial

key, see Figure 1d. Node48 of ART and the bitmap node of
Judy fill in the gap between small and large nodes.

III. HASH TABLES

In this section we elaborate on the hashing schemes and
the hash functions we use in our study. In short, the hashing
schemes are (1) the well-known quadratic probing [6], [5], and
(2) Cuckoo hashing [7]. As for hash functions we use 64-bit
versions of (1) Murmur hashing [9], which is the hash function
used for the original study [1], and (2) the well-known,
and somewhat part of the hashing folklore, multiplicative
hashing [5], [6], [10]. In the rest of this section we consider
each of these parts in turn.

A. Quadratic probing

Quadratic probing is one of the best-known open-
addressing schemes for hashing. In open-addressing, every
hashed element is contained in the hash table itself, i.e., every
table entry contains either an element or a special character
denoting that the corresponding location is unoccupied. The
hash function in quadratic probing is of the following form:

h(x, i) = (h′(x) + c1 · i+ c2 · i2)
where i represents the i-th probed location, h′ is an auxiliary
hash function, and c1 ≥ 0, c2 > 0 are auxiliary constants.

What makes quadratic probing attractive and popular
is: (1) It is easy to implement. In its simplest iteration, the
hash table consists of a single array only. (2) In the particular
case that the size of the hash table is a power of two, it can
be proven that quadratic probing will examine every single
location of the table in the worst case [5]. That is, as long as
there are available slots in the hash table, this particular version
of quadratic probing will always find them, at the expense of
an increasing number of probes.

Quadratic probing is, however, not bulletproof. It is known
that it could suffer from secondary clustering. This means that
if two different keys collide in the very first probe, they will
also collide in all sub-sequent probes. Thus, choosing a good
hash function is of primary concern.

The implementations of quadratic probing used in this
study are the ones provided by Google dense and sparse
hashes [11]. These C++ implementations are well-engineered
for general purposes3, and are readily available. Further-
more, they are designed to be used as direct replacements
of std::unordered_map4. This reduces integration in
existing code to the minimal effort. These Google hashes come
in two variants, dense and sparse. The former is optimized
for (raw) performance, potentially sacrificing space, while
the latter is optimized for space while potentially sacrificing
performance. In this study we consider both variants, and,
for simplicity, we will refer to Google dense and sparse
hashes simply as GHFast (for performance) and GHMem (for
memory efficiency) respectively.

3This does not necessarily imply optimal performance in certain domains.
That is, it is plausible that specialized implementations could be faster.

4Whose implementation happens to be hashing with chaining just as the
ones used in the original ART paper.

B. Cuckoo hashing

Cuckoo hashing is a relatively new open-addressing
scheme [7], and somewhat still not well-known. The original
(and simplest) version of Cuckoo hashing works as follows:
There are two hash tables T0, T1, each one having its own hash
function h0, h1. Every inserted element x is stored at either
T0[h0(x)] or T1[h1(x)] but never in both. When inserting an
element x, location T0[h0(x)] is first probed, if the location is
empty, x is store there, otherwise, x kicks out the element y
already found at that location, x is stored there, but now y is
out of the table and has to be inserted, so location T1[h1(y)]
is probed. If this location is free, y is stored there, otherwise
y kicks out the element therein, and we repeat: in iteration
i ≥ 0, location Tj [hj(·)] is probed, where j = i mod 2.
In the end we hope that every element finds its own “nest”
in the hash table. However, it may happen that this process
enters a loop, and thus a place for each element is never
found. This is dealt with by performing only a fixed amount of
iterations, once this limit is achieved, a rehash of the complete
set is performed by choosing two new hash functions. How
this rehash is done is a design decision: it is not necessary to
allocate new tables, one can reuse the already allocated space
by deleting and reinserting every element already found in the
table. However, if the set of elements to be contained in the
table increases over time, then perhaps increasing the size of
the table when the rehash happens is a better policy for future
operations. It has been empirically observed [7], [12] that in
order to work, and obtain good performance, the load factor
of Cuckoo hashing should stay slightly below 50%. That is, it
requires at least twice as much space as the cardinality of the
set to be indexed. Nevertheless, it has also been observed [12]
that this situation can be alleviated by generalizing Cuckoo
hashing to use more tables T0, T1, T2 . . . Tk, each having its
own hash function hk, k > 1. For example, for k = 4 the
load factor (empirically) increases to 96%, at the expense of
performance. Thus, as for the Google hashes mentioned before,
we can consider two versions of Cuckoo hashing, one tuned
for performance, when k = 2, and the other tuned for space-
efficiency, when k = 4.

Finally, we include in this study yet another variant of
Cuckoo hashing. This variant allows more than one element
per location in the hash table [13], as opposed to the original
Cuckoo hashing where every location of the hash table holds
exactly one element. In this other variant, we use only two
tables T0, T1, just as the original Cuckoo hashing, but every
location of the hash table is a bucket of size equal to the
cache-line size, 64 bytes for our machines. This variant works
essentially as the original Cuckoo hashing, when inserting
an element x, it checks whether there is a free slot in the
corresponding bucket, if yes, then x is inserted, otherwise a
random element y of that bucket is kicked out, x is left in its
place, and we start the Cuckoo cycles. We decided to include
this variant of Cuckoo hashing because when a location of the
hash table is accessed, this location is accessed through a cache
line, so by aligning these buckets to cache lines boundaries we
hope to have better data locality for lookups; at the expense
of making more comparisons to find the given element in the
bucket. This comparisons happen, nevertheless, only among
elements that are already on cache (close to the processor).

For simplicity, we will refer to standard Cuckoo hashing
using two and four tables as CHFast (for performance) and
CHMem (for memory efficiency) — highlighting similarities
of each of these hashes with Google’s GHFast and GHMem,
respectively, mentioned before. The last variant of Cuckoo
hashing described above, using 64-byte buckets, will be simply
referred to as CHBucket.

Let us now explain the reasons behind our decision to in-
clude Cuckoo hashing in our study. (1) For lookups, traditional
Cuckoo hashing requires at most two tables accesses, which is
in general optimal among hashing schemes using linear space.
In particular, it is independent of the current load factor of
the hash table — unlike other open-addressing schemes, like
quadratic probing. (2) It has been reported to be competitive
with other good hashing schemes, like quadratic probing or
double hashing [7], and (3) It is easy to implement.

Like quadratic probing, Cuckoo hashing is not bulletproof
either. It has been observed [7] that Cuckoo hashing is sensitive
to what hash functions are used [14]. With good (and robust)
hash functions, the performance of Cuckoo hashing is good,
but with hash functions that are not as robust, performance
deteriorates; we will see this effect in our experiments.

C. Hash functions

Having explained the hashing schemes used in our study,
we now turn our attention to the hash functions used. We
pointed out before that both used hashing schemes are highly
dependent on the hash functions used. For our study we have
decided to include two different hash functions: (1) Mur-
murHash64A [9] and the well-known multiplicative hash-
ing [6]. The first one has been reported to be efficient and
robust5 [9], but more importantly, it is included here because
it is the hash function that was used in the original ART
paper [1], and we wanted to make our study equivalent.

The second hash function, multiplicative hashing, is very
well known [5], [6], [10], and it is given here:

hz(x) = (x · z mod 2w) div 2w−d

where x is a w-bit integer in {0, . . . , 2w−1}, z is an odd w-bit
integer in {1, . . . , 2w−1}, the hash table is of size 2d, and the
div operator is defined as: a div b = �a/b�. What makes this
hash function highly interesting is: (1) It can be implemented
extremely efficiently by observing that the multiplication x · z
is per se already done modulo 2w, and the operator div is
equivalent to a right bit shift by w−d positions. (2) It has also
theoretical guarantees. It has been proven [10] that if x, y ∈
{0, . . . , 2w−1}, with x �= y, and if z ∈ {1, . . . , 2w−1} chosen
uniformly at random, then the collision probability is:

Pr[hz(x) = hz(y)] ≤ 2

2d
=

1

2d−1

This probability is twice as large as the ideal probability
that, for a hash function, every location of the hash table
is equally likely. This also means that the family of hash
functions Hw,d = {hz | 0 < z < 2w and z odd} is the perfect
candidate for simple and somewhat robust hash functions.

5Although, to the best of our knowledge, no theoretical guarantee of this
has been shown.

As we will see in our experiments, MurmurHash64A
is indeed more robust than multiplicative hashing, but this
robustness comes at a very high performance degradation.
In our opinion multiplicative hashing showed to be robust
enough in all our scenarios. From now on, and for simplicity,
we will refer to MurmurHash64A simply as Murmur and to
multiplicative hashing just as Simple.

IV. MAIN EXPERIMENTS

In this section we experimentally confront the adaptive
radix tree ART [1] with all other structures previously men-
tioned: (1) Judy [4], which is another kind of adaptive radix
tree highly space-efficient — discussed in Section II and
(2) Quadratic probing [11] and Cuckoo hashing [7] — dis-
cussed in Section III. The experiments are mainly divided into
three parts.

In IV-C we first show experiments comparing ART only
against Cuckoo hashing under the following metrics: insertion
throughput, point query throughput, and memory foot-
print. The reason why we only compare ART against Cuckoo
hashing is the following: ART, as presented and implemented
in [1] was designed as a non-covering indexing data structure
for databases. That is, as mentioned in Section II-B, ART
will index a set of 〈key, value〉 pairs already stored and
provided by a database. Thus, ART will, in general, neither
cover the key nor the value6, but it will rather use the key
to place a pointer to the location in the database where the
corresponding pair is stored. Thus, when looking up for a given
key, ART will find the corresponding pointer (if previously
inserted) and then follow it to the database store to retrieve
the corresponding 〈key, value〉 pair. The semantics of the
freely available implementations of Judy arrays [4] and Google
hashes [11] are that of a map container (associative array),
i.e., self-contained general-purpose indexing data structures
(covering both the key and the value). We could have compared
ART against these implementations as well but we think the
comparison is slightly unfair, since inserting a pointer in those
implementations will still cover the key, and thus the data
structure will per se require more space. This is where our
own implementation of Cuckoo hashing enters the picture.
For the experiments presented in IV-C, Cuckoo hashing uses
the key to insert a pointer to the database store, exactly just
as ART — making an apple-to-apple comparison. For these
experiments we assume that we only know upfront the number
n of elements to be indexed. This is a valid assumption since
we are interested in indexing a set of elements already found in
a database. With this in mind, the hash tables are prepared to
be able to contain at least n elements. Observe that the ability
of pre-allocate towards certain size is (trivially) inherent to
hash tables. In contrast, trees require knowledge not only about
their potential sizes, but also the actual values and dedicated
(bulk-loading) algorithms. This kind of workload (IV-C) can
be considered static, like in an OLAP scenario.

In IV-D we test the structures considered in IV-C under
TPC-C-like dynamic workloads by mixing insertions, dele-
tions, and point queries. This way we simulate an OLTP
scenario. The metric here is only operation throughput. In

6The only exception to this happens when the key equals the value;
effectively making ART a set container.

this experiment the data structures assume nothing about the
amount of elements to be inserted or deleted, and thus we
will be able to observe how the structures perform under fully
dynamic workloads. In particular, we will observe how the
hash tables handle growth (rehashing) over time.

In IV-E we consider ART as a standalone data structure,
i.e., a data structure used to store (cover) 〈key, value〉 pairs,
and we compare it this time against Judy array, Google hashes,
and Cuckoo hashing under the same metrics as before. As ART
was not originally designed for this purpose, we can go about
two different ways: (1) We endow ART with its own store
and we use the original implementation of ART, or (2) We
endow ART with explicit leaf nodes to store the 〈key, value〉
pairs. We actually implemented both solutions but we decided
to keep for this study only the first one. The reason for this
is that for the second option we observed mild slowdowns for
insertions and mild speedups for lookups (just as expected),
but space consumption increases significantly as the size of
the set to be contained also increases; the reason for this is
that a leaf node requires more information (the header) than
simply storing only 〈key, value〉 pairs in a pre-allocated array.
For these experiments, the hash tables and the store of ART
are prepared to be able to store at least n elements, where n
is the number of elements to be indexed.

A. Experimental setup

All experiments are single-threaded. The implementations
of ART, Judy arrays, and Google hashes are the ones freely
available [15], [4], [11]. No algorithmic detail of those data
structures was touched except that we implemented the missing
range-query support in ART. All implementations of Cuckoo
hashing are our own. All experiments are in main memory
using a single core (one NUMA region) of a dual-socket
machine having two hexacore Intel Xeon Processors X5690
running at 3.47 GHz. The L1 and L2 cache sizes are 64 and
256 KB respectively per core. The L3 cache is shared and has
a size of 12 MB. The machine has a total of 192 GB of RAM
running at 1066 MHz. The OS is a 64-bit Linux (3.4.63) with
the default page size of 4 KB. All programs are implemented
in C/C++ and compiled with the Intel compiler icc-14 with
optimization -O3.

B. Specifics of our workloads

In our experiments we include two variants of ART, let us
call them unoptimized and optimized. The difference between
the two of them is that the latter applies path compression
(one of the techniques for vertical compression mentioned in
Section II-B) to the nodes. By making (some) paths in the tree
shorter, there is hope that this will decrease space and also
speedup lookups. However, path compression clearly incurs
into more overheads at insertion time; since at that time it has
to be checked whether there is opportunity for compression
and then it must be performed. In our experiments we denote
the version of ART with path compression by ART-PC, and
the one without it simply by ART. From now on, when we
make remarks about ART, those remarks apply to both variants
of ART, unless we say otherwise and point out the variant of
ART we are referring to.

In the original ART paper [1] all micro-benchmarks are
performed on 32-bit integer keys because some of the struc-
tures therein tested are 32-bit only. The authors also pointed
out that for such short keys, path compression increases space
instead of reducing it, and thus they left path compression out
of their study. In our study we have no architectural restrictions
since all herein tested structures support 32- and 64-bit integer
keys. Due to the lack of space, and in order to see the effect
of path compression, we have decided to (only) present 64-bit
integer keys.

We perform the experiments of IV-C and IV-E on two
different key distributions on three different dataset sizes —
for a total of six datasets. The two key distributions considered
are the ones also considered in the original paper [1] and
these are: (1) Sparse distribution; where each indexed key
is unique and chosen uniformly at random from [1, 264), and
(2) Dense distribution; where every key in 1, . . . , n is indexed7

(n is the total number of elements to be indexed by the data
structures). As for datasets, for each of the aforementioned
distributions we considered three different sizes: 16, 256, and
1000 million. Two out of these three datasets (16M, 256M)
were also considered in the original ART paper, along with
a size of 65K. We would like to point out that 65K pairs of
16 bytes each is rather small and fits comfortably in the L3
cache of a modern machine. For such a small size whether
an index structure is needed is debatable. Thus, we decided to
move towards “big” datasets, and include the one billion size
instead. Finally, the shown performance is the average of three
independent measurements; for the sparse distribution of keys
each measurement has a different input set.

C. Non-covering evaluation

In this very first set of experiments we test ART against
Cuckoo hashing under the workload explained in IV-B.
Lookups are point queries and each one of them looks up
for an existing key. After having inserted all keys, the set
of keys used for insertions is permuted uniformly at random,
and then the keys are looked up in this random order; this
guarantees that insertions and lookups are independent from
each other. Insertion and lookup performance can be seen in
Figures 2 and 3 respectively; each is presented in millions of
operations per second. In Figure 4 we present the effective
memory footprint of each structure in megabytes; this size
accounts only for the size of the data structure, i.e., everything
except the store.

Before analyzing the results of our experiments, let us state
beforehand our conclusion. The adaptive radix tree ART was
originally reported [1] to have better performance than other
well-engineered tree structures (of both kinds, comparison-
based and radix trees). It was also reported that only hashes
were competitive to ART. Our own experience indicates that
well-engineered performance-based hash tables are not only
competitive to ART, but actually significantly better. For ex-
ample, CHFast-Simple is at least 2× faster for insertions and
lookups than ART throughout the experiments. Moreover, this
difference gets only worse for ART as the size of the set to be
indexed increases; for one billion CHFast-Simple is at least
4.8× faster than ART for insertions and at least 2.8× faster

7Dense keys are randomly shuffled before insertion.

for lookups, and CHBucket-Simple is at least 4× faster than
ART for insertions, and at least 2× faster for lookups.

Having stated our conclusion, let us now dig more into
the data obtained by the experiments. First of all (1) we can
observe that using a simple, but still good hash function, has in
practice an enormous advantage over robust but complicated
hash functions; CHFast-Simple is throughout the experiments
roughly 1.7× faster for insertions than CHFast-Murmur, and
also roughly 1.93× faster for lookups. This difference in
performance is intuitively clear, but quantifying and seeing the
effect makes an impression stronger than initially expected.
(2) With respect to memory consumption, see Figure 4, mul-
tiplicative hashing seems to be robust enough for the two
used distributions of keys (dense and sparse). In all but one
tested case, see Figure 4a, multiplicative hashing uses as much
space as Murmur hashing — which has been used in the
past for its robustness. The discrepancy in the robustness of
both hash functions suggests that a dense distribution pushes
multiplicative hashing to its limits, and this has been pointed
out before [14]. In our opinion, however, multiplicative hashing
remains as a strong candidate to be used in practice. Also,
and perhaps more important, it is interesting to see that the
memory consumption of either version of ART is competitive
only under the dense distribution of keys, although not better
than that of CHMem. This is where the adaptivity of ART
plays a significant role; as in contrast to the sparse distribution,
where ART seems very wasteful w.r.t. memory consumption.
(3) 64-bit integer keys are (again) still too short to notice the
positive effect of path compression in ART — both versions
of ART have essentially the same performance, but the version
without path compression is in general more space-efficient;
the same effect was also reported in the original ART paper [1].
(4) With respect to performance (insertions and lookups) we
can see that the performance of all structures degrades as the
size of the index increases. This is due to caching effects (data
and TLB misses) and it is expected, as it was also observed
in the original ART paper [1]. When analyzing lookup perfor-
mance, we go into more detail on these caching effects. We
can also observe that as the size of the index increases, the
space-efficient variant of Cuckoo hashing, CHMem-Simple,
gains territory to ART. Thus, a strong argument in favor of
CHMem-Simple is that it has similar performance to ART but
it is in general more space-efficient.

Let us now try to understand the performance of the data
structures better. Due to the lack of space we will only analyze
lookups on two out of three datasets, and comparing the variant
of ART without path compression against the two fastest hash
tables (CHFast-Simple and CHBucket-Simple).

Lookup performance. Tables I and II show a basic cost
breakdown per lookup for 16M and 256M respectively. From
these tables we can deduce that the limiting factor in the
(lookup) performance of ART is a combination of long latency
instructions plus the complexity of the lookup procedure. For
the first term (long latency instructions) we can observe that the
sum of L3 Hits + L3 Misses is considerably larger than the cor-
responding sum of CHFast-Simple and CHBucket-Simple. The
L3-cache-hit term is essentially non-existent for the hashes,
which is clear, and the L3-cache-miss term of ART rapidly
exceeds that of the hashes as the index size increases. This
makes perfect sense since ART decomposes a key into bytes

 0

 5

 10

 15

 20

 25

 30

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 in

se
rt

s/
se

co
nd

Dense
Sparse

(a) 16M

 0

 5

 10

 15

 20

 25

 30

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 in

se
rt

s/
se

co
nd

Dense
Sparse

(b) 256M

 0

 5

 10

 15

 20

 25

 30

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 in

se
rt

s/
se

co
nd

Dense
Sparse

(c) 1000M

Figure 2: Insertion throughput (non-covering). Higher is better.

 0

 5

 10

 15

 20

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 lo

ok
up

s/
se

co
nd

Dense
Sparse

(a) 16M

 0

 5

 10

 15

 20

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 lo

ok
up

s/
se

co
nd

Dense
Sparse

(b) 256M

 0

 5

 10

 15

 20

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 lo

ok
up

s/
se

co
nd

Dense
Sparse

(c) 1000M

Figure 3: Lookup throughput (non-covering). Higher is better.

 0

 50

 100

 150

 200

 250

 300

 350

 400

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
em

or
y

F
oo

tp
rin

t [
M

B
]

Dense
Sparse

(a) 16M

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
em

or
y

F
oo

tp
rin

t [
M

B
]

Dense
Sparse

(b) 256M

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

ART-P
C

ART

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
em

or
y

F
oo

tp
rin

t [
M

B
]

Dense
Sparse

(c) 1000M

Figure 4: Memory footprint in MB (non-covering). Lower is better.

and then uses each byte to traverse the tree. In the extreme
(worst) case, this traversal incurs into at least as many cache
misses as the length of the key (8 for full 64-bit integers). On
the other hand, CHFast and CHBucket incur into at most two
(hash) table accesses, and each access loads records from the
store. Thus, CHFast incurs into at most four cache misses, but
CHBucket could still potentially incur into more; we go into
more detail on this when analyzing CHBucket. Still, for ART
we can also observe that the instruction count per lookup is
the highest among the three structures. This lookup procedure
works as follows: at every step, ART obtains the next byte to
search for. Afterwards, by the adaptivity of ART, every lookup

has to test whether the node we are currently at is one of four
kinds. Depending on this there are four possible outcomes;
in which the lightest to handle is Node256 and the most
expensive in terms of instructions is Node16; where search is
implemented using SIMD instructions. Node4 and Node48
are lighter in terms of instructions than Node16 but more
expensive than Node256. This lookup procedure is clearly
more complicated than the computation of at most two Simple
hash functions (multiplicative hashing).

Let us now discuss the limiting factors in the (lookup)
performance of CHFast and CHBucket. Since the amount of

L3 cache hits is negligible, and the computation of Simple
hash functions is also rather efficient, we can conclude that the
(lookup) performance is essentially governed by the L3 cache
misses, and actually, for CHFast that is the only factor, since
the lookup procedure does nothing else than hash computations
(two at most) and data access. The lookup procedure of
CHBucket is slightly more complicated since each location in
the hash table is a bucket that contains up to eight pointers
(8 · 8 bytes = 64 bytes) to the database store. The lookup
procedure first performs a hash computation for the given
key k (using the first hash function). Once the corresponding
bucket has been fetched, it computes a small fingerprint of k
(relying only on the least significant byte) and every slot of
the bucket is then tested against this fingerprint. A record from
the store is then loaded only when there is a match with the
fingerprint; so there could be false-positives. The fingerprint is
used to avoid loading from the store all elements in a bucket.
If the fingerprint matches, the corresponding record is fetched
from the store and then the keys are compared to see whether
the record should be returned or not; in the former case, the
lookup procedure finishes, and in the later we keep looking
for the right record in the same bucket. If the bucket has been
exhausted, then a similar round of computation is performed
using the second hash function. This procedure clearly incurs
into more computations than that of CHFast, and it also seems
to increase branch misprediction — there is at least one more
mispredicted branch per lookup (on average) than in ART
and CHFast. We tested an (almost) branchless version of this
lookup procedure but the performance was slightly slower, so
we decided to keep and present the branching version. This
concludes our analysis of the lookup performance.

ART CHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 405.3 590.3 200.8 277.6 339.1 373.4
Instructions 149.3 151.1 34.60 40.13 91.94 97.78
Misp. Branches 0.027 0.972 0.126 0.662 1.645 1.857
L3 Hits 2.539 3.104 0.083 0.118 0.145 0.156
L3 Misses 2.414 3.831 2.397 3.716 3.189 3.460

Table I: Cost breakdown per lookup for 16M.

ART CHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 785.0 1119 248.4 297.5 353.9 399.9
Instructions 164.9 162.9 36.02 39.68 90.75 97.00
Misp. Branches 0.045 0.686 0.303 0.638 1.608 1.825
L3 Hits 2.435 3.235 0.081 0.075 0.090 0.107
L3 Misses 4.297 6.671 2.863 3.747 3.170 3.472

Table II: Cost breakdown per lookup for 256M.

There is one more detail that we would like to point out: We
can see from Figures 2 and 3 that CHBucket has a performance
that lies between the performance-oriented CHFast and the
space-efficient CHMem, but its space requirement is equivalent
to that of CHFast. Thus, a natural question at this point is: does
CHBucket make sense at all? We would like to argue in favor
of CHBucket. Let us perform the following experiment: we in-
sert 1 billion dense keys on CHFast-Simple, CHFast-Murmur,
and CHBucket-Simple without preparing the hash tables to
hold that many keys, i.e., we allow the hash tables to grow
from the rather small capacity of 2 · 26 = 128 locations all the
way to 2 · 230 = 2, 147, 483, 648 — growth is set to happen
in powers of two. We observed that CHFast-Simple grows
(rehashes) at an average load factor of 39%, CHFast-Murmur
grows at an average load factor of 51%, and CHBucket-

Simple is always explicitly kept at a load factor of 75%,
and it always rehashes exactly at that load factor8. The load
factor of 75% was set for performance purposes — as the
load factor of CHBucket approaches 100%, its performance
drops rapidly. Also, by rehashing at a load factor of 75%,
we save roughly 25% of hash function computations when
rehashing in comparison of rehashing at a load factor near
100%. Thus, rehashing also becomes computationally cheaper
for CHBucket, and follow up insertions and lookups will
benefit from the new available space (less collisions). But now,
what is the real argument in favor of CHBucket? The answer
is in the robustness of CHFast-Simple. If CHFast-Simple was
as robust as CHFast-Murmur, the former would always rehash
around a 50% load factor, just as the latter, but that is not the
case. This negative effect has been already studied [14], and
engineering can alleviate it, but the effect will not disappear.
Practitioners should be aware of this. On the other hand,
CHBucket-Simple seems as robust as CHBucket-Murmur, and
it could actually be considered as its replacement. Thus, by
tuning the rehashing policy we can keep CHBucket-Simple
at an excellent performance; in particular, considerably better
than ART for somewhat large datasets.

We would like to close this section by presenting one more
small experiment. In Figure 5 the effect of looking up for keys
that are skewed can be observed. The lookup keys follow a
Zipf distribution [6]. This experiment tries to simulate the fact
that, in practice, some elements tend to be more important than
others, and thus they are queried more often. Now, if certain
elements are queried more often others, then they also tend
to reside more often in cache, speeding up lookups. In this
experiment each structure contains 16M dense keys.

 0

 5

 10

 15

 20

 25

 30

0 0.25 0.50 0.75 1

M
 lo

ok
up

s/
se

co
nd

Zipf parameter s (skewness)

ART-PC
ART

CHFast-Simple
CHMem-Simple

CHBucket-Simple

Figure 5: Skewed (Zipf-distributed) lookups. Higher is better.

We can see that all structures profit from skewed queries,
although the relative performance of the structures stays es-
sentially the same — CHFast-Simple and CHBucket-Simple
set themselves strongly apart from ART.

D. Mixed workloads

The experiment to test mixed workloads is composed as
follows: We perform one billion operations in which we vary
the amount of lookups (point queries) and updates (insertions
and deletions). Insertions and deletions are performed in a
ratio 4:1 respectively. The distribution used for the keys is
the dense distribution. Lookups, insertions and deletions are

8Without the manual 75% load factor, CHBucket-Simple rehashes on
average at a load factor of 97%.

all independent from one another. In the beginning, every data
structure contains 16M dense keys and thus, as we perform
more updates, the effect of growing the hash tables will
become more apparent as they have to grow multiple times.
This growth comes of course with a serious performance
penalty. The results of this experiments can be seen in Figure 6.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 25 50 75 100

M
 o

pe
ra

tio
ns

/s
ec

on
d

Update percentage (%)

ART-PC
ART
CHFast-Simple
CHMem-Simple
CHBucket-Simple

Figure 6: Mixed workload of insertions, deletions, and point queries.
Insertion-to-deletion ratio is 4:1. Higher is better.

We can see how the performance of all structures decreases
rapidly as more and more updates are performed. In the
particular case of the hash tables, more updates mean more
growing, and thus more rehashing, which are very expensive
operations. Yet, we can see that CHFast-Simple remains in
terms of performance indisputably above all other structures.
We would also like to point out that, although the gap between
ART (ART-PC) and CHBucket-Simple narrows towards the
right end (only updates), the latter still performs around one
million of operations per second more than the former; around
20% speedup. This can hardly be ignored.

E. Covering evaluation

In this section we confront experimentally all data struc-
tures considered in this study: Judy, ART, Google hashes, and
Cuckoo hashing. Additionally, as B+-trees are omnipresent in
databases, we include measurements for a B+-tree [16] from
now on. As B+-trees have been already broadly studied in the
literature, we will not discuss them here any further — we
just provide them as a baseline reference and to put the other
structures in perspective. Unlike the experiments presented
in IV-C, in this section we consider each data structure as
a standalone data structure, i.e., covering 〈key, value〉 pairs.
As we mentioned before, ART was designed to be a non-
covering index, unable to cover keys and values. We also
mentioned that, in order to compare ART against other data
structures in this section, we endowed ART with its own
store, which we now consider as a fundamental part of the
data structure. For this store we chose the simplest and most
efficient implementation, an array where each entry holds a
〈key, value〉 pair. This array, just as the hash tables, is pre-
allocated and has enough space to hold at least n 〈key, value〉
pairs, for n = 16M, 256M, 1000M. We do all this to minimize
the performance overhead contributed by the store of ART
to the measurements; we simulate an ideal table storage.
Therefore, we want to point out that, when it comes to ART,
there is essentially no difference in the experiments presented

in Section IV-C and this section; the only actual difference
is that in Section IV-C the store of ART is left out of the
computation of space requirements since it is provided by the
database. Here, nevertheless, this is not the case anymore.

As before, lookups are point queries and we query only
existing keys. The insertion order is random, and once all pairs
have been inserted, they are looked up for in a different random
order — making insertions and lookups independent from
each other. Insertion and lookup performance can be seen in
Figures 7 and 8 respectively, and it is presented in millions of
operations per seconds. The space requirement, in megabytes,
of each data structure can be seen in Figure 9. Also, Tables III
and IV present a basic cost breakdown per lookup for 16M and
256M respectively. Due to the lack of space, and the simil-
itude of the performance counters between GHFast-Simple
and CHFast-Simple, we present this cost breakdown only for
JudyL, GHFast-Simple, and CHBucket-Simple. A comparison
against ART can be done using the corresponding entries of
Tables I and II on page 9.

Lookup performance. By just looking at the plots, Fig-
ures 7 and 8, we can see that there is clearly no compar-
ison between JudyL and ART with GDenseHash-Simple and
CDenseHash-Simple. The latter seem to be in their own league.
Moreover, we can see that this comparison gets only worse
for JudyL and ART as the size of the dataset increases;
for one billion entries the space-efficient CHMem-Simple is
now at least 2.3× as fast as ART, and Judy, while requir-
ing significantly less space than ART. In this regard, space
consumption, JudyL is extremely competitive; for the dense
distribution of keys no other structure requires less space than
JudyL, and under the sparse distribution JudyL is comparable
with the space-efficient hashes. However, all optimizations
(compression techniques) performed by JudyL, in order to
save space, come at very expensive price; JudyL is by far the
structure with the highest number of instructions per lookup.

JudyL GHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 623.6 931.9 94.32 140.2 116.9 141.2
Instructions 216.6 215.8 46.98 53.84 32.69 36.55
Misp. Branches 0.041 1.466 0.006 0.572 1.135 1.382
L3 Hits 3.527 4.016 0.016 0.043 0.077 0.083
L3 Misses 1.460 3.737 1.104 1.793 2.006 2.466

Table III: Cost breakdown per lookup for 16M.

JudyL GHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 1212 1339. 94.72 143.2 126.9 146.4
Instructions 244.0 271.7 45.69 52.61 32.86 35.74
Misp. Branches 0.011 0.412 0.006 0.553 1.121 1.282
L3 Hits 4.103 3.116 0.025 0.058 0.084 0.085
L3 Misses 2.838 6.151 1.086 1.814 2.114 2.451

Table IV: Cost breakdown per lookup for 256M.
We can observe that the amount of long latency operations

(L3 Hits + L3 Misses) of ART and JudyL are very similar;
thus, we can conclude that the other limiting factor of JudyL
is algorithmic, which, in the particular case of JudyL, it is
also translated into code complexity — JudyL’s source code
is extremely complex and obfuscated.

With respect to the factors limiting the (lookup) perfor-
mance of the hash tables, we can again observe that the
amount of L3 cache hits is negligible, the instruction counts

 0

 5

 10

 15

 20

 25

 30

 35

 40

B+-
Tre

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 in

se
rt

s/
se

co
nd

Dense
Sparse

(a) 16M

 0

 5

 10

 15

 20

 25

 30

 35

 40

B+T
re

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 in

se
rt

s/
se

co
nd

Dense
Sparse

(b) 256M

 0

 5

 10

 15

 20

 25

 30

 35

 40

B+-
Tre

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 in

se
rt

s/
se

co
nd

Dense
Sparse

(c) 1000M

Figure 7: Insertion throughput (covering). Higher is better.

 0

 5

 10

 15

 20

 25

 30

 35

 40

B+-
Tre

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 lo

ok
up

s/
se

co
nd

Dense
Sparse

(a) 16M

 0

 5

 10

 15

 20

 25

 30

 35

 40

B+T
re

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 lo

ok
up

s/
se

co
nd

Dense
Sparse

(b) 256M

 0

 5

 10

 15

 20

 25

 30

 35

 40

B+-
Tre

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
 lo

ok
up

s/
se

co
nd

Dense
Sparse

(c) 1000M

Figure 8: Lookup throughput (covering). Higher is better.

 0

 100

 200

 300

 400

 500

 600

B+-
Tre

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
em

or
y

F
oo

tp
rin

t [
M

B
]

Dense
Sparse

(a) 16M

 0

 2000

 4000

 6000

 8000

 10000

 12000

B+T
re

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
em

or
y

F
oo

tp
rin

t [
M

B
]

Dense
Sparse

(b) 256M

 0

 10000

 20000

 30000

 40000

 50000

 60000

B+-
Tre

e

Ju
dy

L
ART

GHFas
t-S

im
ple

GHFas
t-M

ur
m

ur

GHM
em

-S
im

ple

GHM
em

-M
ur

m
ur

CHFas
t-S

im
ple

CHFas
t-M

ur
m

ur

CHM
em

-S
im

ple

CHM
em

-M
ur

m
ur

CHBuc
ke

t-S
im

ple

CHBuc
ke

t-M
ur

m
ur

M
em

or
y

F
oo

tp
rin

t [
M

B
]

Dense
Sparse

(c) 1000M

Figure 9: Memory footprint in MB (covering). Lower is better.

is very small, and thus, what is limiting the hash tables is
essentially the amount of L3 cache misses. We can additionally
observe that CHBucket-Simple incurs into more than one
branch misprediction per lookup — these mispredictions are
happening when looking for the right element inside a bucket.
However, these mispredictions cannot affect the performance
of CHBucket-Simple as they potentially do in its non-covering
version (Tables I and II), since this time these mispredictions
cannot trigger long latency operations due to speculative loads
(usually resulting into L3 cache misses).

Range queries. So far, all experiments have considered
only point queries. We now take a brief look at range queries,
a longer study will be found in the extended version of this
paper. Clearly, range queries are the weak spot of hash tables

since elements in a hash table are in general not stored in
a particular order. However, in the very particular case that
keys come from a small discrete universe, as in the case of
the dense distribution, we could answer a range query [a, b] by
looking up in a hash table for every possible value between
a and b, the whole range. Depending on the selectivity of
the query, this method avoids looking up the whole hash
table. For our experiment we fire up three sets of 1000 range
queries, every set with a different selectivity; 10%, 1%, 0.1%
respectively, on structures containing exactly 16M keys. For
the sparse distribution we refrain ourselves from answering the
queries using hash tables; it hardly makes sense. The results
can be seen in Figure 10 below. All structures are covering
versions, as the ones used in Section IV-E. As we mentioned

before, we implemented range-query support in ART, and our
implementation is based on tree-traversal.

 0

 1000

 2000

 3000

 4000

 5000

 6000

GHFas
t-S

im
ple

CHFas
t-S

im
ple

Ju
dy

L
ART

B+-
Tre

e

Ju
dy

L
ART

B+-
Tre

e

ra
ng

e
qu

er
ie

s/
se

co
nd

10%
1%

0.1%

Sparse DistributionDense Distribution

Figure 10: Range queries over 16M dense and sparse keys. Covering
versions of hash tables are only shown for dense keys. Higher is better.

It is hard to see in the plot, but the difference in throughput
between adjacent selectivities is a factor of 10. It is also very
surprising to see that the hashes still perform quite good under
the dense distribution. Again, the use cases for which hash
tables can be used in this manner are very limited, but not
impossible to find.

V. CONCLUSIONS

In the original ART paper [1], the authors thoroughly
tested ART, and their experiments supported the claim that
only a hash table was competitive (performance-wise) to ART.
In our experiments we extended the original experiments by
considering hashing schemes other than chained hashing. Our
experiments clearly indicate that the picture changes when
we carefully choose both, the hashing scheme and the hash
function. Our conclusion is that a carefully chosen hash table
is not only competitive with ART, but actually significantly
better. For example, for an OLAP scenario, and for one billion
indexed keys, one non-covering variant of Cuckoo hashing is
at least 4.8× faster for insertions, at least 2.8× faster for
lookups, and it sometimes requires just half the space of ART,
see Figures 2, 3, and 4. For an OLTP scenario, the same
variant is up to 3.8× faster than ART, see Figure 6. We also
tested ART against another (older) adaptive radix tree (Judy).
In our experiments, ART ended up having almost 2× better
performance over Judy, but at the same time, it tends to also
use twice as much space. This is an important trade-off to keep
in mind.

Towards the very end we presented a small experiment to
test performance under range queries. Here, ART was clearly
outperforming Judy and all hash tables. However, ART is still
slower than a B+-tree by up to a factor of 3. Furthermore, we
also observe that in the very limited case of a dense distribution
coming from a small discrete universe, hash tables perform
surprisingly good (comparable to Judy), and deciding whether
hash tables could be use for range queries this way takes no
time to the query optimizer.

Finally, in the extended version of this work we will extend
our experiments by considering a 32-bit universe, by present-

ing changes to ART that slightly improve its performance,
by extending the study on range queries, and by presenting
interesting implementation details, that, for example, help to
improve the robustness of multiplicative hashing.

VI. ACKNOWLEDGEMENT

Research partially supported by BMBF.

REFERENCES

[1] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in ICDE, 2013, pp. 38–49.

[2] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey, “Fast: Fast architecture sensitive
tree search on modern cpus and gpus,” in SIGMOD, 2010, pp. 339–350.

[3] J. Rao and K. A. Ross, “Making B+-trees cache conscious in main
memory,” in SIGMOD, 2000, pp. 475–486.

[4] D. Baskins, “Judy arrays,” http://judy.sourceforge.net/ Version 31/07/14.
[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms. Cambridge, MA, USA: MIT Press, 1990.
[6] D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.)

Sorting and Searching. Addison Wesley, 1998.
[7] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,

vol. 51, no. 2, pp. 122 – 144, 2004.
[8] M. Mitzenmacher, Some Open Questions Related to Cuckoo Hashing.

Springer Berlin Heidelberg, 2009, vol. 5757, pp. 1–10.
[9] A. Appleby, “Murmurhash64a,” https://code.google.com/p/smhasher/

Version 31/07/14.
[10] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen, “A

reliable randomized algorithm for the closest-pair problem,” Journal of
Algorithms, vol. 25, no. 1, pp. 19 – 51, 1997.

[11] Google Inc., “Google sparse and dense hashes,” https://code.google.
com/p/sparsehash/ Version 31/07/14.

[12] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space efficient hash
tables with worst case constant access time,” Theory of Computing
Systems, vol. 38, no. 2, pp. 229–248, 2005.

[13] M. Dietzfelbinger and C. Weidling, “Balanced allocation and dictio-
naries with tightly packed constant size bins,” Theoretical Computer
Science, vol. 380, no. 1–2, pp. 47–68, 2007.

[14] M. Dietzfelbinger and U. Schellbach, “On risks of using cuckoo hashing
with simple universal hash classes,” in SODA, 2009, pp. 795–804.

[15] V. Leis, “ART implementations,” http://www-db.in.tum.de/∼leis/
Version 31/07/14.

[16] T. Bingmann, “STX B+-tree implementation,” http://panthema.net/2007/
stx-btree/ Version 31/07/14.

