
HOT: A Height Optimized Trie Index for Main-Memory
Database Systems

Robert Binna, Eva Zangerle, Martin Pichl,
Günther Specht

University of Innsbruck, Austria
firstname.lastname@uibk.ac.at

Viktor Leis
Technische Universität München, Germany

leis@in.tum.de

ABSTRACT
We present the Height Optimized Trie (HOT), a fast and space-
efficient in-memory index structure. The core algorithmic idea of
HOT is to dynamically vary the number of bits considered at each
node, which enables a consistently high fanout and thereby good
cache efficiency. The layout of each node is carefully engineered for
compactness and fast search using SIMD instructions. Our experi-
mental results, which use a wide variety of workloads and data sets,
show that HOT outperforms other state-of-the-art index structures
for string keys both in terms of search performance and memory
footprint, while being competitive for integer keys. We believe that
these properties make HOT highly useful as a general-purpose
index structure for main-memory databases.

CCS CONCEPTS
• Information systems→ Data access methods;Main memory
engines;

KEYWORDS
height optimized trie, main memory, index, SIMD
ACM Reference Format:
Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht and Viktor Leis.
2018. HOT: A Height Optimized Trie Index for Main-Memory Database Sys-
tems. In SIGMOD’18: 2018 International Conference on Management of Data,
June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3183713.3196896

1 INTRODUCTION
For many workloads, the overall performance of main-memory
database systems depends on fast index structures. At the same
time, a large fraction of the total main memory is often occupied
by indexes [30]. Having fast and space-efficient index structures is
therefore crucial.

While in disk-based database systems B-trees are prevalent, some
modern in-memory systems (e.g., Silo [26] or HyPer [13]) use trie
structures (e.g., Masstree [22] or ART [18]). The reason for this
preference is that, in main memory, well-engineered tries often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196896

(a) Adaptive Radix Tree (b) Height Optimized Trie

Figure 1: Illustration of adaptive radix tree and height-
optimized trie storing sparsely distributed keys. Whereas
the average node fanout for the adaptive radix tree decreases
at lower levels of the tree, HOT retains a consistently high
fanout and therefore has a smaller overall height.

outperform comparison-based structures like B-trees [1, 3, 18, 30].
Furthermore, unlike hash tables, tries are order-preserving and
therefore support range scans and related operations. Nevertheless,
even recent trie proposals have weaknesses that preclude optimal
performance and space consumption. For example, while ART can
achieve a high fanout and therefore high performance on integers,
its average fanout is much lower when indexing strings. This lower
fanout usually occurs at lower levels of the tree and is caused by
sparse key distributions that are prevalent in string keys.

In this work, we present the Height Optimized Trie (HOT), a
general-purpose index structure for main-memory database sys-
tems. HOT is a balanced design that efficiently supports all opera-
tions relevant for an index structure (e.g., online updates, point and
range lookups, support for short and long keys, etc.), but is particu-
larly optimized for space efficiency and lookup performance. For
string data, the size of the index is generally significantly smaller
than the string data itself.

While HOT incorporates many optimizations used in modern
trie variants, its salient algorithmic feature is that it achieves a high
average fanout for arbitrary key distributions. In contrast to most
tries, the number of bits considered at each node (sometimes called
span or alphabet) is not fixed, but is adaptively chosen depending
on the data distribution. This enables a consistently high fanout
and avoids the sparsity problem that plagues other trie variants. As
a result, space consumption is reduced and the height of the tree is
minimized, which improves cache efficiency. This height-reducing
effect is schematically depicted in Figure 1.

Besides using this novel algorithmic approach, the layout of
nodes is carefully engineered for good performance on modern
CPUs. The node representation is optimized for cache efficiency
and allows for efficient, SIMD-optimized search. Our evaluation is
based on the YCSB benchmark, and a wide variety of workloads
and data distributions. We compare HOT with B-trees, Masstree,
and ART, which are state-of-the-art, order-preserving, in-memory

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

521

https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/3183713.3196896


(a) Binary trie (height=9, #nodes=37). (b) Patricia (height=5, #nodes=12). (c) 3 bit span (height=3, #nodes=8).

(d) Patricia, 3 bit span (height=3, #nodes=6). (e) Patricia, 3 bit span, adaptive nodes
(height=3, #nodes=6).

(f) HOTwithmaximum fanout k=4 (height=2,
#nodes=4).

Figure 2: Trie optimizations. Nodes on the same level have the same color. Discriminative bits are shown as black dots.

omit nodes with only
one child

span 1 bit
span 3 bits

omit nodes with only
one child

adapt node sizes to
content

adapt span to
optimize height

index structures. The experimental results show that HOT gener-
ally outperforms its competitors in terms of performance and space
consumption, for both short integers as well as long strings. These
properties make HOT particularly well suited as an index for in-
memory database systems and, more generally, for string-intensive
applications. Our implementation of HOT is publicly available un-
der the ISC license at https://github.com/speedskater/hot.

The rest of the paper is organized as follows. We start by describ-
ing important background and related work on tries in Section 2.
Section 3 introduces the high-level algorithms for insertion and
discusses how the tree structure is dynamically organized such that
the overall tree height is optimized. The physical node layout and
the data-parallel operations are then described in Section 4. Sec-
tion 5 presents a scalable synchronization protocol for multi-core
CPUs. After presenting our experimental evaluation in Section 6,
we summarize the paper in Section 7.

2 BACKGROUND AND RELATED WORK
The growth of main memory capacities has led to the development
of index structures that are optimized for in-memory workloads
(e.g., [4, 14, 20, 24, 25, 28, 31]). Tries, in particular, have proven to
be highly efficient on modern hardware [1, 3, 16, 18, 22, 27, 29, 30].
Tries are tree structures where all descendants of a node share
a common prefix and the children of a node are searched using
the binary representation of the remaining bits. In a binary trie,
for example, at each node one bit of the key determines whether
to proceed with the left or right child node. While binary tries
are conceptually simple, they do not perform well due to their
large tree heights (e.g., a height of 32 for 4 byte integers). Prior
research focused on reducing the height of trie structures. In the
following, we discuss and graphically illustrate some of the most
relevant approaches in this area. Each trie depicted in Figure 2 stores
the same 13 keys, all of which are 9 bits long. Compound nodes
are surrounded by solid lines and are colored according to their
level in the respective tree structure. Dots in the figures represent
either leaf values or bit positions in compound nodes which are
used to distinguish between different keys. In Figure 2a, a binary

trie is depicted. The subsequent Figures 2b-2f illustrate different
optimizations, which we discuss in the following.

Figure 2b shows a binary Patricia trie [23], which reduces the
overall tree height by omitting all nodes with only one child1. The
resulting structure resembles a full binary tree, where each node
either is a leaf node or has exactly two children. While this op-
timization often reduces the tree height (e.g., from 9 to 5 in our
example), the small fanout of 2 still yields large tree heights.

To reduce the height, many trie structures consider more than 1
bit at each node, i.e., they increase the span. For a given span s ,
this is generally implemented using an array of 2s pointers in each
node. The Generalized Prefix Tree [3], for example, uses a span of
4 bits reducing the overall tree height by a factor of 4 in comparison
to a binary trie. The downside of a larger span is increased space
consumption for sparsely distributed keys (e.g., long strings) asmost
of the pointers in the nodes will be empty and the actual fanout is
typically much smaller than the optimum (2s ). The resulting tree
structures therefore remain vulnerable to large tree heights and
wasted space. These problems can be observed in Figure 2c, which
depicts a trie with a span of 3 bits. Its average fanout is only 2.5,
which is considerably smaller than the optimum of 8. Also note that,
while the Patricia optimization can be applied to tries with a larger
span, it becomes less effective (though may still be worthwhile).
As Figure 2d shows, when applied to the trie depicted in Figure 2c
with a span of 3 bits, the Patricia optimization saves only two nodes
and does not reduce the maximum tree height.

One fairly effective approach for addressing the shortcomings
of larger spans is to dynamically adapt the node structure. The
Adaptive Radix Tree (ART) [18], for example, uses a span of 8 bits,
but avoids wasting space by dynamically choosing more compact
node representations (instead of always using an array of 256 point-
ers). Hence, adaptive nodes reduce memory consumption and en-
able the use of a larger span, which increases performance through
better cache efficiency. However, even with a fairly large span of

1As a result of the Patricia optimization, keys are not necessarily stored fully in the
trie and every key must therefore be available at its corresponding leaf node. For
main-memory database systems, this is usually the case because the leaf node will
store a reference to the full tuple (including the key).

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

522

https://github.com/speedskater/hot


8 bits, sparsely distributed keys result in many nodes with a very
small fanout at lower levels of the tree. The concept of adaptive
nodes is depicted in Figure 2e, which adds adaptive nodes to the trie
of Figure 2d. It clearly shows that using adaptive nodes successfully
limits the issue of memory consumption in case of sparsely dis-
tributed data. However, it also shows that, in our example, adaptive
nodes do not have an impact on the effective node fanout and the
overall tree height.

Having surveyed the different approaches to reduce the overall
tree height of trie-based index structure, we conclude that all opti-
mizations depicted in Figure 2 combine multiple nodes of a binary
trie into a compound node structure, such that the height of the
resulting structure is reduced and the average node fanout is in-
creased. Moreover, these approaches choose the criteria to combine
multiple binary trie nodes, namely the span representing the bits
considered per node, independently of the data stored. Therefore,
the resulting fanout, memory consumption and access performance
heavily depend on the data actually stored.

In this work, we propose the Height Optimized Trie (HOT).
HOT combines multiple nodes of a binary Patricia trie into com-
pound nodes having a maximum node fanout of a predefined value
k such that the height of the resulting structure is optimized. Thus,
each node uses a custom span suitable to represent the discrimina-
tive bits of the combined nodes. Moreover, adaptive node sizes are
used to reduce memory consumption and non-discriminative bits
are ignored (i.e., skipped during traversal) like in a Patricia trie.
Figure 2f shows a Height Optimized Trie with a maximum node
fanout of k = 4 that has 4 compound nodes and an overall height
of 2 to store the same 13 keys as the other trie structures.

While all data structures discussed so far are “pure tries”, a num-
ber of hybrid data structures that combine a trie with some other
data structure have also been proposed. For example, the BURST-
Trie [10] and HAT-Trie [1] use binary trees and hash tables respec-
tively for sparsely populated areas. Both data structures achieve
fairly high performance for string workloads, but are limited in
terms of memory consumption and access performance in case of
integer- or densely distributed keys. Another hybrid structure is
Masstree [22], which uses a large span of 64 bits and B-trees as
its internal node structure. This solves the sparsity problem at the
cost of relying more heavily on comparison-based search, which
is often slower than the bitwise trie search. HOT, in contrast, is a
pure trie and solves the sparsity problem by using a varying span.
The Bit Tree [6] is primarily a B-tree that uses discriminative bits
at the leaf level. This optimization is done to save space on disk
and the data structure is not optimized for in-memory use cases.

3 THE HEIGHT OPTIMIZED TRIE
The optimizations discussed in the previous section combine the
nodes of a binary trie into compound nodes with a higher fanout.
The most important optimization is to increase the span of each
node. However, in current data structures, the span is a static, fixed
setting (e.g., 8 bits) that is set globally without taking the actual
keys stored into account. As a result, both the performance and
memory consumption can strongly vary for different data sets.

Consider, for example, a trie with span of 8 bits storing 1 million
64-bit integers. For monotonic integers (i.e., 1 to 1,000,000), almost

h = 2

h = 1

h = 3

(a) Optimized for # of nodes

h = 2

h = 1 h = 1

h = 1

(b) Optimized for height

Figure 3: Different ways of combining binary nodes into
compound nodes, which are annotated with their height h.

all nodes are full, the average fanout is close to the maximum of
256, and, as a result, performance as well as space consumption is
optimal. For integers randomly drawn from the full 64-bit domain,
on the other hand, many nodes at lower levels of the tree will only
be sparsely filled. Strings are also generally sparsely distributed,
with genome data representing nucleic acids using a single-byte
character (A, C, G, T) being an extreme case. Using a fixed span,
sparse distributions have a low average fill factor, which negatively
affects performance. Also, as most nodes are at lower levels, space
consumption is high.

To solve the problem of sparsely-distributed keys, we propose
to set the span of each node adaptively depending on the data
distribution. Thus, dense key regions (e.g., near the root) will have
a smaller span than sparse regions (e.g., at lower levels), and a
consistently high fanout can be achieved. Instead of having a fixed
span and data-dependent fanout as in a conventional trie, HOT
features a data-dependent span and a fixed maximum fanout k .

3.1 Preliminaries: k-Constrained Tries
A crucial property of HOT is that every compound node represents
a binary Patricia trie with a fanout of up to k . As can be observed
in Figure 2b, a binary Patricia trie storing n keys has exactly n − 1
inner nodes. A HOT compound node therefore only needs to store
at most k − 1 binary inner nodes (plus up to k pointers/leaves).

For a given parameter k , there are multiple ways of combining
binary nodes into compound nodes. Figure 3 shows two trees with
a maximum fanout k = 3 storing the same data. While the tree
shown in Figure 3a reduces the total number of compound nodes,
the tree shown in Figure 3b is usually preferable, as it minimizes
the overall tree height. In the figure and in our implementation
every compound node n is associated with a height h(n), such that
h(n) is the maximum height of its compound child nodes + 1. Based
on this definition, the overall tree height is the height of the root
node. More formally, assuming a node n has n.m child nodes, h(n)
can be defined as

h(n) =
{
1, n.m = 0
maxn .mi=1 (h(n.child[i])) + 1, else.

Creating k-constrained nodes in a way that minimizes the overall
tree height is analogous to partitioning a full binary tree into dis-
joint subtrees, such that the maximum number of partitions along
a path from the root node to any leaf node is minimized. For static
trees, Kovács and Kis [17] solved the problem of partitioning trees
such that the overall height and cardinality are optimized. In this

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

523



0
1

110
0

101

011

1001

11

0011001 00111

011 101

111001 11101

(a) Initial HOT
before inserting 0010.

0

01

0
1

1001

11

0010

0011001 00111

011

(b) Normal insert of 0010
before inserting 010.

0

01

0
1

1001

1

0 1

0010

0011001 00111

010 011

(c) Insert of 010 using
leaf node pushdown.

Before Inserting 0011000.

0

01

0
1

00
1

0 1

0010

0011000 0011001

00111

(d) Inserting 0011000 causes
overflow in node n having
h(n) + 1 = h(parent (n)).

0
1

01

0 1

00
1

0 1

1

0010

0011000 0011001

00111

(e) Handling overflow by parent
pull up (propagates overflow to

parent node).

0 1

110
0

101

01

0 1

1

0010

101

111001 11101

(f) Overflow resolution
by parent pull up resulting in

new root node creation.
Before inserting 1111.

0 1

11
0

0
1

101

101

1111

111001 11101

(g) Inserting 1111 causes
overflow in node n having
h(n) + 1 < h(parent (n)).

0 1

110

0
1

101

01

0 1

00
1

0 1

1

0 1

0010

0011000 0011001

00111

010 011

101

1111

111001 11101

(h) Overflow resolution by
intermediate node creation.

mismatching

previously
mismatchingNew

discriminating

m

leaf node
pushdown

m

overflow

overflow

m

new root overflow
interm.
node

Figure 4: Step-by-step example inserting the keys 0010, 010, 0011000, and 1111 into a HOT with a maximum fanout of k = 3.

paper, we present a dynamic algorithm, which is able to preserve
the height optimized partitioning while new data is inserted.

To avoid confusion between binary nodes and compound nodes,
in the rest of the paper, we use the following terminology: whenever
we denote a node in a binary Patricia trie we use the term BiNode.
In all other cases, the term node stands for a compound node. In
this terminology, a node contains up to k − 1 BiNodes and up to k
leaf entries.

3.2 Insertion and Structure Adaptation
Similar to B-trees, the insertion algorithm of HOT has a normal code
path that affects only a single node and other cases that perform
structural modifications to the tree. As the deletion operation is
algorithmically analogous, we focus on the insertion operation in
the remainder.

In the following, we describe the different cases by successively
inserting four keys into a HOT structure with a maximum node
fanout of k = 3. The initial tree is shown in Figure 4a. Insertion
always begins by traversing the tree until the node with the mis-
matching BiNode is found. The mismatching BiNode for the first
key to be inserted, 0010, is shown in Figure 4a.

In the normal case, insertion is performed by locally modify-
ing the BiNode structure of the affected node. More precisely, and
as shown in Figure 4b, a new discriminating BiNode, which dis-
criminates the new key from the keys contained in the subtree of
the mismatching BiNode, is created and inserted into the affected
node. The normal case is analogous to inserting into a Patricia tree.
However, because nodes are k-constrained, the normal case is only
applicable if the affected node has less than k entries.

The second case is called leaf-node pushdown and involves
creating a new node instead of adding a new BiNode to an existing
node. If the mismatching BiNode is a leaf and the affected node is an
inner node (h(n) > 1), we replace the leaf with a new node. The new
node consists of a single BiNode that distinguishes between the new
key and the previously existing leaf. In our running example, this
case is triggered when the key 010 is inserted into the tree shown
in Figure 4b. Leaf-node pushdown does not affect the maximum
tree height as can be observed in Figure 4c: Even after leaf-node
pushdown, the height of the root node (and thus the tree) is still 2.

An overflow happens when neither leaf-node pushdown nor
normal insert are applicable. As Figure 4d shows, such an invalid
intermediate state occurs after inserting 0011000.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

524



There are two different ways of resolving an overflow. Which
method is applicable depends on the height of the overflowed node
in relation to its parent node. As Figure 4e illustrates, one way to
resolve an overflow is to perform parent pull up, i.e., to move
the root BiNode of the overflowed node into its parent node. This
approach is taken when growing the tree “downwards” would in-
crease the tree height, and it is therefore better try to grow the
tree “upwards”. More formally, parent pull up is triggered when the
height of the overflowed node n is “almost” the height of its parent:
h(n) + 1 = h(parent(n)). By moving the root BiNode, the originally
overflowed node becomes k-constrained again, but its parent node
may now overflow—this indeed happens in the example shown
in Figure 4e. Overflow handling therefore needs to be recursively
applied to the affected parent node. In our example, because the
root node is also full, overflow is eventually resolved by creating
a new root, which is the only case where the overall height of the
tree is increased. Thus, similar to a B-tree, the overall height of
HOT only increases when a new root node is created.

The second way to handle an overflow is intermediate node
creation. Instead of moving the root BiNode of the overflowed
node into its parent, the root BiNode is moved into a newly created
intermediate node. Intermediate node creation is only applicable
if adding an additional intermediate node does not increase the
overall tree height, which is the case if: h(n) + 1 < h(parent(n)). In
our example, this case is triggered when the key 1111 is inserted
into the tree shown in Figure 4g. As can be seen in Figure 4g, the
overflowed node n has a height of 1 and its parent has a height of
3. Thus, there is “room” above the overflowed node and creating
an intermediate node does not affect the overall height, as can be
observed in the tree shown in Figure 4h.

Based on the insertion operation we designed an analogous dele-
tion operation consisting of the following three cases mirroring its
insertion counterparts in the following. A normal deletion, modi-
fying a single node, compensates normal insert or leaf-node push-
down. Underflow handling by merging two nodes or integrating a
link to a direct neighbour corresponds to the the overflow handling
strategies leaf-node pushdown or intermediate node creation.

To summarize the insertion operation, there are four cases that
can happen during an insert operation. A normal insert only modi-
fies an existing node, whereas leaf-node pushdown creates a new
node. Overflows are either handled using parent pull up or inter-
mediate node creation.

These four cases are also visible in Listing 1, which shows the
full insertion algorithm.

3.3 Properties of Height Optimized Tries
HOT is a pure trie structure, i.e., every node represents a prefix
of the key. Nevertheless, it has similarities with comparison-based
multi-way structures, which have to perform loд2(n) key compar-
isons. Like in B-trees, in HOT the maximum fanout of each node is
bounded and both structures strive to reduce the overall (maximum)
tree height by dynamically distributing the data and nodes. Another
similarity is that the height of both structures only increases when
a new root node is created.

But there are also major differences. Whereas the theoretical
properties in terms of tree height and access performance for B-trees

Listing 1: Structure-adapting insertion algorithm.
1 insert(hot, key):

2 n = traverse hot for key

3 m = traverse n until mismatch

4 if (isLeafEntry(m) and h(n) > 1):

5 # leaf node pushdown

6 l = createNode(m, key)

7 n̂ = replaceNode(n, m, l)

8 else:

9 d = createBiNode(m, key)

10 n̂ = replaceBiNode(n, m, d)

11 handleOverflow(n̂)

13 handleOverflow(n):

14 if (not isFull(n))

15 # normal path

16 return

17 n̂ = split(n)

18 p = parentNode(n)

19 if (height(n̂) == height(p)):

20 # parent pull up

21 e = createBiNode(n̂[0], n̂[1])

22 p̂ = replaceBiNode(p, n, e)

23 handleOverflow(p̂)

24 else

25 # intermediate node creation

26 p̂ = replaceNode(p, n, n̂)

are well known, this is currently not the case for HOT. A common
property of most tries not shared by comparison-based trees is that
any given set of keys results in the same structure, regardless of
the insertion order. Based on experiments, we conjecture that this
deterministic structure applies to HOT as well.

4 NODE IMPLEMENTATION
The algorithms in Section 3 have been presented in a fairly high-
level way: We did not specify k , did not discuss how nodes are
physically organized, and did not show how operations within
nodes are performed. In this section, we fill these missing details by
presenting a design for general-purpose in-memory indexing with
a focus on space efficiency and lookup performance. Let us note
that other designs, e.g., optimized for other workloads or disk-based
storage, would also be possible based on the algorithms presented
in Section 3.

4.1 Overview
In principle, one could organize each HOT node (i.e., each k-
constrained binary Patricia trie) as a pointer-based binary trie
structure. However, this approach would waste much space for
pointers and would be very inefficient (as all operations would
require traversing this binary trie, which results in cache misses as
well as control or data dependencies). To make HOT space-efficient
and fast, a compact representation that can be searched quickly is
required.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

525



(bit 3, 3-bits prefix 011)

(bit 6)

(bit 9)(bit 8)

(bit 4)

(bit 8)

010

01

01 10

101

0 1

1

010110 1010

01 11

V1
0110100101

V2
0110100110

V3
0110101010

V4
0110101011

V5
0111010110

V6
0111101001

V7
0111101011

(a) Example Binary Patricia Trie. Discriminative bits along a path are
typeset in bold.

Raw Key Bit
Positions

Partial Key
(dense)

Partial Key
(sparse)

0 1 1 0 1 0 0 1 0 1 {3, 6, 8} 0 1 0 0 1 0 0 0 0 0
0 1 1 0 1 0 0 1 1 0 {3, 6, 8} 0 1 0 1 0 0 0 0 1 0
0 1 1 0 1 0 1 0 1 0 {3, 6, 9} 0 1 1 1 0 0 0 1 0 0
0 1 1 0 1 0 1 0 1 1 {3, 6, 9} 0 1 1 1 1 0 0 1 0 1
0 1 1 1 0 1 0 1 1 0 {3, 4} 1 0 0 1 0 1 0 0 0 0
0 1 1 1 1 0 1 0 0 1 {3, 4, 8} 1 1 1 0 1 1 1 0 0 0
0 1 1 1 1 0 1 0 1 1 {3, 4, 8} 1 1 1 1 1 1 1 0 1 0

(b) Raw and partial keys for the trie in (a).

00000 . . . 11010 V 1 . . . V 798643(I) Position-Sequence Layout
Bit Positions Partial Keys Values

00000 . . . 11010 V 1 . . . V 700011010 110000000(II) Single-Mask Layout

00000 . . . 11010 V 1 . . . V 7110000000001101010(III) Multi-Mask Layout

(c) Three different variations of a node representing a linearized version of the trie shown in (a). All representations consist of three parts:
the bit positions, the partial keys, and the values (tuple identifiers or node pointers). We show 3 representations for bit positions: (I) stores

them naively as a sequence of positions, (II) uses a single bit mask, (III) uses multiple bit masks.

Figure 5: Illustration of how HOT encodes a Binary Patricia Trie.

The key idea behind our node layout is to linearize ak-constrained
trie to a compact bit string that can be searched in parallel using
SIMD instructions. To achieve this, we store the discriminative bits
of each key consecutively. Consider, for example, the trie shown in
Figure 5a, which consists of 7 keys and has the discriminative bit
positions {3, 4, 6, 8, 9}. The 5 discriminative bits for each key form
the partial keys (dense) and are shown in Table 5b. By storing the
partial keys consecutively, we can search all keys in parallel using
SIMD operations instead of traversing the corresponding trie. As
will be described in Section 4.4, to improve insertion performance
we actually use as slightly improved version of partial keys called
sparse partial keys.

Another important design decision is to set the maximum fanout
k to 32, which is large enough to benefit from CPU caches and small
enough to support fast updates. As a result, a node can have up to
31 bit positions (which is always sufficient to distinguish between
32 keys). Note that 32 is an upper bound, and fewer bits are often
sufficient (e.g., because the node has only 14 entries). On the other
hand, partial keys need to be aligned to enable fast SIMD operations.
Therefore, on a physical level, partial keys are stored in one of 3
representations, namely as an array of 8-bit, 16-bit, or 32-bit values.
For each node, the smallest possible layout is chosen.

Besides the partial keys, each node must also store the corre-
sponding bit positions (i.e., {3, 4, 6, 8, 9} in our example). The most
obvious way to do this would be to store this set as a sequence in an
array, as shown in Figure 5c (I). The problem with this approach is
that it would slow down search: Before the actual data-parallel key
comparison could be performed, one would have to sequentially
extract bits from the search key bit-by-bit to form the comparison

key. Note that key extraction is done for every node encountered
during tree traversal and is therefore critical for performance.

To speed up key extraction, we therefore utilize the PEXT instruc-
tion from the BMI2 instruction set, which extracts bits specified
by a bit mask from an integer. Thus, as shown in Figure 5c (II), we
represent the bit positions as a bit mask (and an initial byte posi-
tion). This layout can be used whenever the smallest and largest bit
positions are close to each other (less than 64 bit positions differ-
ence). Otherwise, we use the multi-mask layout, which is illustrated
in Figure 5c (III). It breaks up the bit positions into multiple 8-bit
masks, each of which is responsible for an arbitrarily byte. Again,
PEXT can be used to efficiently extract the bits contained in mul-
tiple 8-bit key portions in parallel using this layout. As with the
partial keys, for any node the most compact representation for the
bit positions is chosen.

To summarize, the node layout has two dimensions of adaptivity.
The first dimension is the size of the partial keys (8, 16, or 32 bits),
and the second dimension is the representation of the bit positions
(single-mask or multi-mask). In both cases we choose represen-
tations that adapt to the data distribution at hand. Furthermore,
all representations allow exploiting modern hardware instructions
(data-parallel comparisons, PEXT).

4.2 Physical Node Layout
Figure 6 shows the 9 physical node layouts supported by HOT. As
the figure shows, each node layout consists of a (1) node header, (2)
bit positions, (3) partial keys, and (4) values.

Each node starts with a header section containing the height of
its subtree, a bit mask describing the used entries and a lock in the
synchronized version.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

526



header 8-bit offset 64-bit mask n∗8-bit partial key n∗64-bit value SINGLE_MASK_PKEYS_8_BIT (n=2–32, size=64–320 bytes)

header 8-bit offset 64-bit mask n∗16-bit partial key n∗64-bit value SINGLE_MASK_PKEYS_16_BIT (n=9–32, size=128–352 bytes)

header 8-bit offset 64-bit mask n∗32-bit partial key n∗64-bit value SINGLE_MASK_PKEYS_32_BIT (n=17–32, size=240–416 bytes)

(a) Single-mask layout with a 1 64-bit mask and 8, 16, or 32-bit partial keys.

header 8∗8-bit offset 8∗8-bit mask n∗8-bit partial key n∗64-bit value MULTI_MASK_8_PKEYS_8_BIT (n=3–32, size=72–328 bytes)

header 8∗8-bit offset 8∗8-bit mask n∗16-bit partial key n∗64-bit value MULTI_MASK_8_PKEYS_16_BIT (n=9–32, size=136–360 bytes)

header 8∗8-bit offset 8∗8-bit mask n∗32-bit partial key n∗64-bit value MULTI_MASK_8_PKEYS_32_BIT (n=17–32, size=248–424 bytes)

(b) Multi-mask layout with 8 8-bit masks and 8, 16, or 32-bit partial keys.

header 16∗8-bit offset 16∗8-bit mask n∗16-bit partial key n∗64-bit value MULTI_MASK_16_PKEYS_16_BIT (n=9–32, size=152–376 bytes)

header 16∗8-bit offset 16∗8-bit mask n∗32-bit partial key n∗64-bit value MULTI_MASK_16_PKEYS_32_BIT (n=17–32, size=264–440 bytes)

(c) Multi-mask layout with 16 8-bit masks and 16 or 32-bit partial keys.

header 32∗8-bit offset 32∗8-bit mask n∗32-bit partial key n∗64-bit value MULTI_MASK_32_PKEYS_32_BIT (n=17–32, size=296–472 bytes)

(d) Multi-mask layout with 32 8-bit masks and 32-bit partial keys.

Figure 6: The physical node layouts.

To store the bit positions 4 different layouts are used. The single-
mask layout is shown in Figure 6a and consists of an 8-bit offset
and a 64-bit mask. The offset determines the starting byte position
from which the partial key is extracted using the mask. Besides the
single-mask layout, there are 3multi-mask layouts that use multiple
byte offsets and multiple 8-bit masks. These 3 layouts (Figure 6b,
6c, 6d) differ only in the number of offset/mask pairs (8, 16, or 32).

The partial keys are stored as an array of 8-bit, 16-bit, or 32-bit
entries. Note that some bit-position/partial-key layout combina-
tions cannot occur, which is why there are not 12 but 9 node layouts.
For example, the 32-entry multi-mask layout shown in Figure 6d
implies that there are more than 16 discriminative bits and that
therefore, neither 8-bit nor 16-bit partial keys would suffice. Each
node also stores 64-bit values, which are either pointers to other
nodes or tuple identifiers. We distinguish between a pointer and a
tuple identifier using the most-significant bit, which is otherwise
always 0.

Depending on the number and the distribution of the discrim-
inative bits, we always choose the smallest of the 9 node layouts.
Furthermore, for a node storing n entries we allocate exactly n
partial keys and n values, and use copy-on-write when modifying
nodes. Besides saving space, copy-on-write also helps concurrent
operations (cf., Section 5). Using arbitrary node sizes (between
2 and 32) takes the concept of adaptive nodes [18] to its logical
conclusion.

4.3 Lookup
Listing 2 shows the (slightly simplified) code for lookup, which
traverses the tree until a leaf node containing a tuple identifier is
encountered. As a last step, the key corresponding to that tuple is
loaded from the database and compared to the search key (line 7).
This is necessary because lookup in a Patricia trie may otherwise
yield a false positive.

The “heavy lifting” of a lookup operation is done by the
retrieveResultCandidates function (lines 12–25), which, given
a node and the search key, performs the actual intra-node search
consisting of two steps: (1) extracting the (dense) partial key from

the search key, and (2) comparing the node’s (sparse) partial keys
with it. The implementation of both steps depends on the node
layout. For this reason retrieveResultCandidates consists of a
switch statement over all node layouts (lines 13–24). Each case
then consists of calling the appropriate extraction (extract*) and
search primitives (searchPartialKeys*) (e.g., lines 14–16).

To illustrate the extraction of a key’s discriminative bits, we show
code for single-mask (extractSingleMask, lines 27–30) and multi-
mask 8 extraction (extractMultiMask8, lines 31–38), both ofwhich
use the PEXT instruction. The AVX2-based search is shown for 8-bit
partial keys (searchPartialKeys8, lines 42–49). The remaining
primitives are implemented analogously.

4.4 Insertion
Supporting efficient insertion operations is an important aspect
of any index structure. In the context of HOT, insertion perfor-
mance depends on a fast method to insert new keys into its nodes
representing linearized k-constrained tries.

As described in Section 4.1, each node consists of a set of partial
keys. Themost obvious approach to create partial keys, are so-called
dense partial keys. These dense partial keys are formed by extracting
all discriminative bit positions for each key, e.g., 5 bit positions
(3,4,6,8,9) for the example in Table 5b. While search and deletion
operations on dense partial keys can be implemented efficiently,
inserting a new key into a node can be slow. The reason is that
a new key may yield a new discriminative bit and may therefore
require resolving this new discriminative bit for all keys already
stored in that node. For instance, inserting the key 0110101101 into
the binary Patricia trie of Figure 5a would result in bit 7 becoming
a new discriminating bit and thus, a new bit position. All existing
dense partial keys would have to be extended to 6 bits length and
therefore, new bits would have to be determined by loading the
existing keys, which would obviously slow down insertion. To
overcome this shortcoming, we use a slightly modified version
of partial keys, which we call sparse partial keys. The difference
to dense partial keys is that for sparse partial keys, only those
discriminative bits are extracted that correspond to inner BiNodes

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

527



Listing 2: HOT lookup.
1 TID lookup(Node* root, uint8_t* key) {

2 Node* node = root;

3 while (!isLeaf(node)) {

4 uint32_t candidates = retrieveResultCandidates(node, key);

5 node = node->value[clz(candidates)];

6 }

7 if (!isEqual(loadKey(getTid(node)), key))

8 return INVALID_TID; // key not found

9 return getTid(node);

10 }

12 uint32_t retrieveResultCandidates(Node* node, uint8_t* key) {

13 switch (getNodeType(node)) {

14 case SINGLE_MASK_PKEYS_8_BIT:

15 uint32_t partialKey = extractSingleMask(node, key);

16 return searchPartialKeys8(node, partialKey);

17 case MULTI_MASK_8_PKEYS_8_BIT:

18 uint32_t partialKey = extractMultiMask8(node, key);

19 return searchPartialKeys8(node, partialKey);

20 ...

21 case MULTI_MASK_32_PKEYS_32_BIT:

22 uint64_t partialKey = extractMultiMask32(node, key);

23 return searchPartialKeys32(node, partialKey);

24 }

25 }

27 uint32_t extractSingleMask(SMaskNode* node, uint8_t* key) {

28 uint64_t* keyPortion = (uint64_t*) (key + node->offset)

29 return _pext_u64(*keyPortion, node->mask);

30 }

31 uint32_t extractMultiMask8(MMask8Node* node, uint8_t* key) {

32 uint64_t keyParts = 0;

33 //load all 8-bit mask into a single 64-bit mask

34 for (size_t i=0; i < node->numberMasks; ++i)

35 ((uint8_t*) keyParts)[i] = key[node->offsets[i]];

36 //SIMD approach to extract multiple 8-bit masks in parallel

37 return _pext_u64(keyParts, node->mask);

38 }

39 uint32_t extractMultiMask16(MMask16Node* node, uint8_t* key)...

40 uint32_t extractMultiMask32(MMask32Node* node, uint8_t* key)...

42 int searchPartialKeys8(Node* node, uint32_t searchKey) {

43 __m256i sparsePKeys = _mm256_loadu_si256(node->partialKeys8);

44 __m256i key = _mm256_set1_epi8(searchKey);

45 __m256i selBits = _mm256_and_si256(sparsePKeys, key);

46 __m256i complyKeys = _mm256_cmpeq_epi8(selBits, sparsePKeys);

47 uint32_t complyingMask = _mm256_movemask_epi8(complyKeys);

48 return bit_scan_reverse(complyingMask & node->usedKeysMask);

49 }

50 int searchPartialKeys16(Node* node, uint32_t partialKey) ...

51 int searchPartialKeys32(Node* node, uint32_t partialKey) ...

along the path from the root BiNode and that all other bits are set to 0.
Thus, sparse partial key bits set to 0 are intentionally left undefined.
In case of a deletion this allows to remove unused discriminative
bits. To illustrate the difference between dense and sparse partial
keys, we show both in Table 5b for the trie in Figure 5a. Based on
this definition of sparse partial keys, we now describe how new
keys can be inserted into a HOT node.

Before the actual insertion, a search operation is issued check-
ing whether the key to insert is already contained. If the thereby
retrieved key does not match the search key, the mismatching bit
position is determined. In contrast to a traditional binary Patricia

trie, explicitly determining the corresponding mismatching BiNode
is impossible, as explicit representations for BiNodes do not exist
in linearized k-constrained tries. Instead, we directly determine all
leaf entries contained in the subtree of the mismatching BiNode and
denote these entries as the affected entries. Using SIMD instructions,
we therefore mark all partial keys that have the same prefix up to
the mismatching bit position as the initially matching false positive
partial key as affected. Next, if the mismatching bit position is not
contained in the set of the node’s discriminative bit positions, all
sparse partial keys are recoded using a single PDEP instruction to
create partial keys containing also the mismatching bit position. For
instance, to add bit position 7 to the sparse partial keys depicted in
Figure 5a, the _pdep_u32(existingKey, 0b111011) instruction
is executed for each key.

To directly construct the new (sparse) partial key representation,
we exploit the fact that it shares a common prefix up to the mis-
matching bit with the affected entries. Therefore, to obtain the new
(sparse) partial key, we copy this prefix and set the mismatching
bit accordingly. As the bit at the mismatching bit position discrimi-
nates the new key from the existing keys in the affected subtree,
the affected partial keys’ mismatching bits are set to the inverse of
the new key’s mismatching bit. Finally, again depending on the mis-
matching bit, the newly constructed partial key is inserted either
directly in front or after the affected entries.

4.5 Optimizations
To improve the performance of search as well as insert operations,
we prefetch the first 4 cache lines of a node. Furthermore, we encode
the node type within the least-significant bits of each node pointer.
These two optimizations allow overlapping two time-consuming
operations, namely loading the node data, which can trigger a cache
miss, and resolving the node type, which may otherwise suffer from
a branch misprediction penalty.

5 SYNCHRONIZATION PROTOCOL
Besides performance and space efficiency, scalability is another
crucial feature of any index structure. A scalable synchronization
protocol is therefore necessary to provide efficient concurrent index
accesses. In the following, we present such a protocol for HOT.

Traditionally, index structures used fine-grained locking and lock
coupling to provide concurrent accesses to index structures [7, 8].
However, it has been shown that using such fine grained locks for
reading and writing has a huge impact on the overall system perfor-
mance and does not scale well [19]. Therefore, different approaches
based on the concept of lock-free index structures or write-only
minimal locks have been proposed [15, 19–21]

Lock-free data structures often use a single compare-and-swap
(CAS) operation to atomically perform updates. Therefore, it is
tempting to assume that HOT—using a copy-on-write approach
and swapping a single pointer per insert operation—would be lock-
free by design. However, using a single compare-and-swap (CAS)
operation does not suffice to synchronize write accesses to HOT. If
two insert operations are issued simultaneously, it is possible that
inserts are lost. If one insert operation replaces a node N with a new
copy N’, while the other insert operation replaces a child node C of
N with a new copy C’, it might occur that in the final tree, node C

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

528



root

. . .

. . .

. . .

(a) Determine affected
nodes.

root

. . .
3

2
. . .

. . .
1

(b) Lock affected nodes
bottom-up.

root

. . .

. . .

. . .

(c) Validate locked
nodes.

root

. . .

. . .

. . .

(d) Perform insertion and mark
modified as obsolete.

root

. . .
1

. . .
2

. . .
3

(e) Unlock all affected nodes.

Figure 7: Step-by-step example of HOT’s synchronization protocol. The example shows an insertion operation resulting in
a parent pull up. The three affected nodes are marked red with rounded corners, the newly created nodes are marked green
with a double border and all modified and therefore obsolete nodes are marked gray and filled with a line pattern.

is a child of N’, whereas C’ is a child node of the now unreachable
node N.

Although the combination of copy-on-write and CAS is not
enough to synchronizeHOT, it is a perfect fit for the Read-Optimized
Write EXclusion (ROWEX) synchronization strategy [19]. ROWEX
does not require readers to acquire any locks and hence, they can
progress entirely wait-free (i.e., they never block and they never
restart). Writers, on the other hand, do acquire locks, but only for
those nodes that are actually modified during an insert operation.
Writers also have to ensure that the data structure is valid at any
point in time because locks are ignored by readers. As a result, the
lookup code (cf, Listing 2) remains unaffected, and in the following
we only describe update operations.

Modification operations (e.g., insert, delete) are performed in five
steps, which are illustrated in Figure 7 and explained in the follow-
ing: (a) During tree traversal, all nodes that need to be modified are
determined (and placed in a stack data structure). We denote these
nodes as the affected nodes. (b) For each of the affected nodes a lock
is acquired—in bottom-up order to avoid deadlocks. (c) A validation
phase then checks whether any of the affected nodes is obsolete,
i.e., have not been removed in the meantime. In case any of the
locked nodes is invalid, the operation is restarted (after unlocking
all previously locked nodes). (d) If the validation is successful, the
actual insert operation is performed. Nodes replaced by new nodes
(due to copy-on-write) are marked as obsolete. (e) Finally, all locks
are released (in top-down order).

The crucial part in HOT’s synchronization implementation is
to determine the set of affected nodes, as a single modification
operation can affect multiple nodes. Analogously to the insertion
operation, we distinguish 4 different approaches to determine the
set of affected nodes (cf. Section 3.2). In case of a normal insert
the set of affected nodes consists of the node containing the mis-
matching BiNode and its parent node. For the other three cases
(i) leaf-node pushdown, (ii) parent pull up, and (iii) intermediate
node creation the set of affected nodes is determined as follows: (i)
In case of a leaf-node pushdown, the set of affected nodes solely
consists of the node containing the mismatching BiNode. If an
overflow occurs, all ancestor nodes of this node are traversed, and
added to the set of affected nodes until either (ii) in case of a parent
pull up, a node with sufficient space or the root node is reached
or (iii) in case of an intermediate node creation, a node n fulfill-
ing heiдht(parent(n)) >= heiдht(n) is reached. Finally, the direct
parent of the last accessed node is added.

Another critical aspect of HOT’s synchronization strategy is
marking nodes as obsolete instead of directly reclaiming the nodes’
memory. This reclamation strategy has two advantages. On the
one hand, the obsolete marker allows concurrent writers to detect
whether one of the currently locked nodes has been replaced in the
meantime (and restart the operation). On the other hand, readers
do not need any locks to deal with concurrent writes. Whenever
writers modify a currently read node, the reader is able to fin-
ish the lookup—on the now obsolete—node. To actually reclaim
the memory of obsolete nodes HOT uses an epoch based memory
reclamation strategy[9], which frees the memory of obsolete nodes
whenever no more reader or writer accesses the corresponding
nodes.

6 EVALUATION
In the following, we experimentally evaluate HOT and compare it
with other state-of-the-art in-memory index structures. We first de-
scribe the experimental setup before presenting our results, which
focus on the following four areas: (i) performance, (ii) memory
consumption, (iii) scalability, and (iv) tree height.

6.1 Experimental Setup
Most experiments were conducted on a workstation system with an
Intel i7-6700 CPU, which has 4 cores and is running at 3.4 GHz with
4 GHz turbo frequency (32 KB L1, 256 KB L2, and 8 MB L3 cache).
The scalability experiments were conducted on a server system
with an Intel i9-7900X CPU, which has 10 cores and is running at
3.3 GHz with 4.3 GHz turbo frequency (32 KB L1, 1 MB L2, and
8 MB L3 cache). Both systems are running Linux and all code was
compiled with GCC 7.2.

We compare the following state-of-the-art index structures:
• ART: The Adaptive Radix Tree (ART) [18], which is the default
index structure of HyPer [30]. It features variable sized nodes and
selectively uses SIMD instruction to speed up search operations.
• Masstree: Masstree [22] is a hybrid B-Tee/trie structure used by
Silo [26].
• BT : The STXB+-Tree2 represents a widely used cache-optimized
B+ Tree (e.g., [12]) and hence, a baseline for a comparison-based
approach. The default node size is 256 bytes which in the case of
16 bytes per slot (8 bytes key + 8 bytes value) amounts to a node
fanout of 16.
• HOT: Our C++14 implementation of HOT using AVX2.

2https://github.com/bingmann/stx-btree

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

529



1.3

0.3

0.9
0.6

0.6

0.2
0.1

0.2

1.2

0.4

1.0
0.9

1.5

0.3

1.2

0.8

0.6

0.3 0.2 0.3

1.4

0.4

1.4
1.2

4.1

1.7 1.5
2.4

0.9 0.8

0.3
0.4

2.4
1.9 1.8

2.2

5.3

1.7 1.4

5.0

1.0
0.8

0.3

0.6

2.6
1.9 1.7

3.9

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART
0.0

2.0

4.0

6.0

0.0

0.5

1.0

0.0
1.0
2.0
3.0
4.0

0.0
1.0
2.0
3.0
4.0

0.0

0.5

1.0

0.0

1.0

2.0

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.0

0.5

1.0

M
ill
io
n
O
pe
ra
tio

ns
pe
rS

ec
on

d

url (avg. 55 bytes) email (avg. 23 bytes) yago (8 bytes) integer (random, 8 bytes)

C (100% lookup) C (100% lookup) C (100% lookup) C (100% lookup)

E (95% scan, 5% insert) E (95% scan, 5% insert) E (95% scan, 5% insert) E (95% scan, 5% insert)

LOAD (100% insert) LOAD (100% insert) LOAD (100% insert) LOAD (100% insert)

Figure 8: Throughput using different data sets inmillion operations per second for read-onlyworkloadC, scan-heavyworkload
E, and the insert-only load phase.

We use the publicly available implementations of ART, the STX
B+-Tree, and Masstree. We do not compare against hash tables, as
these do not support range scans and related operations.

We use 64-bit pointers as tuple identifiers to address and resolve
the actually stored values and keys. In case the stored values only
consist of fixed sized keys up to 8 byte length (e.g., 64-bit integers),
those keys are directly embedded in their tuple identifiers.

For our workload, we rely on the work of Zhang et al. [30],
who proposed an index micro-benchmark adapted from the YCSB
framework [5]. We therefore base our work on the available imple-
mentation of their workload generator3 and add support to jointly
configure multiple workloads. To foster reproducibility and repeata-
bility, we make the extended workload generator available online4.

Our benchmark configurations correspond to the six YCSB core
workloads: A (50% read, 50% update), B (95% read, 5% update), C
(read-only), D (latest-read, 95% read, 5% insert), E (95% range-scan
accessing up to 100 elements, 5% insert) and F (50% read, 50% read-
modify-write) [5]. Each workload is separated into two phases:
the load phase inserts 50 million keys in random order into the
index structure to evaluate; in the transaction phase, 100 million
operations specified by the workload to be evaluated are executed.
Each benchmark configuration is created in two variants: using a
Zipfian and a uniform distribution to select the records to operate
on. Each of these benchmark configurations is created for four
different data sets, two string data sets representing long keys and
two 8 byte short key data sets:

3https://github.com/huanchenz/index-microbench
4https://github.com/speedskater/index-microbench

• url: The url data set consists of a total of 72,701,109 distinct
URLs, which we collected from the 2016-10 DBPedia data set [2],
where we removed all URLs that are longer than 255 characters.
• email: 30 byte long email addresses originating from a real-
world email data set. We cleansed the data set by removing invalid
email addresses or emails solely consisting of numbers or special
characters.
• yago: 63-bit wide triples of the Yago2 data set [11]. The triples
are compound keys, where the lowest 26 bits are used for the object
id, bits 27 to 37 store predicate information and bits 38 to 63 are
used for subject information.
• integer: uniformly-distributed 63-bit random integers.
Overall, the 6 workloads (A, B, C, D, E, F), 4 data sets (url, email,

yago, integer) and 2 operation distributions (uniform, Zipf) amount
to a total of 48 different benchmark configurations. For each of
the 48 benchmark configurations, performance metrics, statistics
regarding the overall memory consumption of the respective index
structures and the distribution of leaf values in relation to the depth
of occurrence are collected.

6.2 Performance
In this section, we present the results of the runtime performance
evaluation. Here, we mainly discuss the results of the uniformly
distributed lookup-only workload C, the scan-heavy (95% scan, 5%
insert) workload E, consisting of short range scans accessing up
to 100 entries and an insert only workload consisting of the load
phase, which is identical for all workloads. The results of these
three workloads is depicted in Figure 8. For each combination of

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

530



raw key size

1.64

0.67

5.05

1.26

1.64

0.67

5.05

1.26

tid tid tid tid

1.42

0.62

2.68

1.26
1.42

0.62

2.68

1.26

tid tid tid tid

1.29
0.61

1.531.26
1.29

0.61

1.531.26

tid tid tid tid

1.09
0.53

1.531.26
1.09

0.53

1.531.26

tid tid tid tid

url (avg. 55 bytes) email (avg. 23 bytes) yago (8 bytes) integer (random, 8 bytes)

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART
0

2

4

M
em

or
y
(G
B)

Figure 9: Memory consumption in gigabytes. The lower part of each bar, labeled with tid, represents the space required to store
the raw tuple identifiers (0.37GB). For the short-key data sets, the space required to store the raw keys is equal to the space
required to store the raw tuple identifiers. For the string-based data sets, the dashed red line marks the space required to store
the raw keys (url: 2.55 GB, email: 1.09 GB).

workload and data set, the figure shows a bar plot illustrating the
number of million operations per second (mops) executed by each
of the evaluated index structures. As the remaining workloads A, B,
D, and F only represent combinations of the workloads presented in
Figure 8 and the performance results for the Zipfian distributed op-
erations are similar to the uniformly distributed ones, we omit those
results for the remainder of this section. However, for completeness,
these additional results are depicted in the Appendix A.

For the lookup-only workload C, HOT achieves an at least 25%
higher throughput across all evaluated data sets compared to the
other evaluated index structures. For the scan heavy workload E,
consisting of short range scans accessing up to 100 elements, HOT
has the highest throughput for all key distributions. In case of the
URL data set, HOT’s throughput is 200% higher than for the other
data structures. For the insert only workload, the measured perfor-
mance characteristics are similar to the read operations discussed
in context of workload C. An exception is the insertion throughput
for the integer data set, where ART achieves a 50% higher insertion
throughput compared to HOT. However, for all other data set none
of the evaluated index structures is able to process a higher amount
of insertion operations than HOT. Having discussed the raw run-
time characteristics of the evaluated index structures, we draw the
conclusion that HOT is able to achieve consistently high perfor-
mance regardless of the evaluated workload or data set, which
makes it highly promising as a general purpose index structure
for main memory databases. The other evaluated index structures
achieve peak performance for specific workloads, but are not able
to provide consistently high throughput for all workloads and data
sets.

6.3 Space Consumption
To evaluate HOT’s memory efficiency, we rely on the benchmark
configurations presented in Section 6.1. As the data sets and there-
fore, the memory consumption is identical for all workloads, we
present the memory consumption measured after the load phase of
the read-only workload C. To measure the memory consumption
of ART and the B-Tree, we add custom code to their implemen-
tations that allows computing the memory consumption without
impacting the runtime behavior of the respective data structures.

For Masstree, we use its allocation counters to measure the space
consumption. To ensure a fair comparison we do not take the mem-
ory required to store Masstree’s tuples into account, as the space
required to represent the raw tuples is not considered for any of
the evaluated data structures.

Figure 9 reports the memory consumption for all measured
data structures. The overall height of each bar represents the total
amount of memory required (in GB) to store the given data set in
the respective index structure. The white lower part of each bar
represents the minimum amount of memory necessary to store the
raw 8-byte tuple identifiers (tid) of the indexed values. As all data
sets contain 50 million entries, the memory required to store those
raw tuple identifiers is the same for all workloads (0.37 GB). Addi-
tionally, the raw size of the stored keys is marked with a dashed
red line for the two textual data sets (email: 1.09 GB, url: 2.55).

Figure 9 shows that for all four data sets, HOT outperforms
the other index structures in terms of memory consumption. The
evaluation shows that the space consumption of trie based index
structures increases for long and non-uniformly distributed keys.
While in the worst case of long textual keys Masstree’s space con-
sumption increases by 230% and Art’s space consumption by 51%,
HOT’s space consumption only increases by 26% in comparison
to the integer data set. Thereby, HOT is the only trie based index
structure, which for all data sets has a space consumption which is
substantially below the space consumption of the B-Tree. Due to the
B-Tree’s design and the decision to use tids to resolve keys longer
than 8 bytes, the amount of space required is the same (1.26 GB) for
all data sets. However, for all data sets, it requires at least 88% more
space than HOT’s worst-case space consumption measured for the
url data set. Moreover, HOT is the only index structure which for
both textual data sets requires less space than the actual raw keys
(email: 43%, url: 74%).

To conclude, besides featuring superior memory consumption
in comparison to the other evaluated data structures, HOT has a
very stable memory footprint, which for all evaluated data sets lies
between 11.4 and 14.4 bytes per key.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

531



lookup insert

2 4 6 8 10 2 4 6 8 10

2.5

5

7.5

10

0

5

10

15

threads

M
ill
io
n
O
pe
ra
tio

ns
pe
rS

ec
on

d

Index Structure HOT ART MASS

Figure 10: Scalability on the 50M urls data set.

6.4 Scalability
Besides evaluating HOT’s single-threaded performance, we eval-
uated HOT in terms of its scalability. For each of the data sets
described in Section 6.1, we execute a workload consisting of 50
million randomly distributed insert operations, followed by 100
million uniformly distributed random lookups. Each workload is
executed seven times for thread counts between one and ten, with
ten representing the maximum physical core count of the server
used to run the evaluation. To prevent outliers, the median through-
put of the seven executed runs is considered for the comparison.

We conduct this experiment for the synchronized versions of
Masstree, ART (using the ROWEX synchronization protocol) and
HOT. In contrast to the previously conducted single threaded exper-
iments these variations of the evaluated index structures support
concurrent modifications. Therefore, due to lack of synchronization,
we omit the STX B-Tree for the scalability evaluation.

As all evaluated index structures, achieve a near linear speedup
we depict the absolute performance numbers for insert and lookup
operations only for the url data set in Figure 10. For all other data
sets the speedups vary slightly between the evaluated data struc-
tures. For instance, the mean speedups for all lookup operations are
9.96 for HOT, 9.91 for ART, and 10.1 for Masstree. The respective
mean speedups for the insert operations are 9.00 for HOT, 9.51 for
ART, and 7.87 for Masstree.

From these experiments, we conclude that besides featuring
excellent single threaded performance, HOT’s synchronization pro-
tocol achieves almost linear scalability.

6.5 Tree Height
To better understand the performance and space consumption num-
bers reported above, we now present the depth distribution of leaf
values, which is a measure of how balanced a tree is.

Specifically, we are interested in the effect of HOT’s algorithm
to combine multiple BiNodes into compound nodes. We therefore
compare the depth distribution of HOT with the depth distribution
of the “pure trie structures” (ART and binary Patricia trie). As
existing trie structures are vulnerable to deep structures in case of
long or non-uniformly distributed keys (cf. Section 2), we analyze
HOT’s depth distribution for all data sets (url, email, yago and
integer). The results are illustrated in Figure 11.

url email yago integer

HOTART BIN HOTART BIN HOTART BIN HOTART BIN

5
7
10
15
25

50

100

de
pt
h
(lo

g-
sc
al
ed
)

Figure 11: Depth distribution of leaves for HOT, ART, and
binary Patricia trie (BIN). Diamonds are the mean.

The results show that for textual data sets (email and url) HOT
is able to reduce the mean depth of leaf entries up to 68% in com-
parison to ART and up to an order of magnitude in contrast to
the binary Patricia trie. Even for non-uniformly distributed short
keys represented by the yago data set, HOT achieves the lowest
mean depth. Only for the integer data set consisting of uniformly
distributed random keys, ART’s maximal node fanout results in a
lower mean depth (HOT: 6.0, ART: 4.02).

To conclude, we observe that HOT achieves a lower depth dis-
tribution than other trie structures—regardless of the data set and
its distribution. While, the worst case mean depth distribution of
the other evaluated trie structures can be several times higher than
in the best case (ART 560%, BIN 270%), HOT’s depth distribution
in the worst case is only 42% higher than in its best case. Only in
the case of uniformly distributed short keys, HOT’s mean depth
distribution is larger when compared with trie structures having a
higher maximum node fanout like ART. We therefore argue that
HOT fulfills the requirements of a general purpose index structure,
achieving a consistently low depth distribution of leaves regardless
of the key size or distribution when compared with existing trie
structures in our experiments.

7 SUMMARY
We presented the Height Optimized Trie (HOT), which is a novel
index structure that adjusts the span of each node depending on
the data distribution. In contrast to existing trie structures, this
enables a consistently high fanout for arbitrary key distributions.
Furthermore, HOT’s compact node layout enables efficient search
using SIMD operations.

Our experimental results show that HOT is 2x as space efficient
as its state-of-the-art competitors (B-trees, Masstree and ART),
that it generally outperforms them in terms of lookup and scan
performance and that it features the same linear scalability. These
properties make HOT a highly promising index structure for main-
memory database systems.

In future work we aim to proof the theoretical properties of HOT
including the worst-case height properties and the deterministic
characteristics of the overall structure. Further, we plan to investi-
gate methods to establish higher node fanouts, thereby reducing
the overall tree height even further.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

532



A ADDITIONALWORKLOADS

1.5
1.2

0.30.3

1.00.8 0.70.6

1.6
1.3

0.30.3

1.1
0.9 0.70.6

1.6
1.3

0.30.3

1.1
0.9

0.70.6

1.71.7

0.40.4

1.21.2
0.80.8

0.7
0.6

0.30.2
0.10.1

0.20.2

2.0
1.7

0.50.4

1.4
1.2

0.90.8

1.7
1.4

0.40.3

1.3
1.0 0.90.8

1.8
1.5

0.40.3

1.5
1.2

0.90.8

1.8
1.5

0.40.3

1.5
1.2

0.90.8

2.02.0

0.40.4

1.71.7

1.01.0

0.7
0.6

0.30.3 0.20.2 0.30.3

2.3
1.9

0.60.5

1.7
1.4 1.21.0

4.03.6

2.01.7 1.61.3

2.8
2.2

4.84.4

2.11.7 1.91.5

3.0
2.3

4.74.1

2.01.7 1.91.5

3.0
2.4

4.5
3.5

2.22.1 2.12.2
3.23.3

1.1
0.9 1.0

0.8

0.30.3
0.50.4

5.85.1

2.62.2 2.21.8

3.83.1

4.63.9

2.01.7 1.51.3

5.7
4.3

5.7
4.3

2.01.7 1.91.5

6.6
4.9

5.65.3

2.01.7 1.81.4

6.5
5.0

5.25.5

2.12.2 2.02.0

7.16.7

1.2
1.0 1.0

0.8

0.30.3

0.70.6

6.55.8

2.72.3 2.11.7

8.0
6.3

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART

HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART HOT BT MASS ART
0.0
2.0
4.0
6.0

0.0
2.0
4.0
6.0

0.0
2.0
4.0
6.0

0.0

3.0

6.0

0.0

0.5

1.0

0.0

3.0

6.0

9.0

0.0
1.0
2.0
3.0
4.0

0.0

2.0

4.0

0.0

2.0

4.0

0.0

2.0

4.0

0.0

0.5

1.0

0.0
2.0
4.0
6.0

0.0
0.5
1.0
1.5

0.0
0.5
1.0
1.5

0.0
0.5
1.0
1.5

0.0
0.5
1.0
1.5

0.0
0.2
0.4
0.6

0.0

1.0

2.0

0.0
0.5
1.0
1.5

0.0
0.5
1.0
1.5

0.0
0.5
1.0
1.5

0.0
0.5
1.0
1.5

0.0
0.2
0.4
0.6

0.0
0.5
1.0
1.5

M
ill
io
n
O
pe
ra
tio

ns
pe
rS

ec
on

d

distribution uniform Zipf
url (avg. 55 bytes) email (avg. 23 bytes) yago (8 bytes) integer (random, 8 bytes)

A (50% lookup, 50% update) A (50% lookup, 50% update) A (50% lookup, 50% update) A (50% lookup, 50% update)

B (95% lookup, 5% update) B (95% lookup, 5% update) B (95% lookup, 5% update) B (95% lookup, 5% update)

C (100% lookup) C (100% lookup) C (100% lookup) C (100% lookup)

D ( 95% latest-read, 5% insert) D ( 95% latest-read, 5% insert) D ( 95% latest-read, 5% insert) D ( 95% latest-read, 5% insert)

E (95% scan, 5% insert) E (95% scan, 5% insert) E (95% scan, 5% insert) E (95% scan, 5% insert)

F (50% lookup, 50% read-mod-write) F (50% lookup, 50% read-mod-write) F (50% lookup, 50% read-mod-write) F (50% lookup, 50% read-mod-write)

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

533



REFERENCES
[1] N. Askitis and R. Sinha. HAT-trie: a cache-conscious trie-based data structure for

strings. Proceedings of the thirtieth Australasian conference on Computer science -
Volume 62, pages 97–105, 2007.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In Proceedings of the 6th International Semantic
Web Conference, pages 722–735, 2007.

[3] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer, D. Habich, and W. Lehner. Efficient
In-Memory Indexing with Generalized Prefix Trees. In Proceedings of the 14th
BTW conference on Database Systems for Business, Technology, and Web, pages
227–246, 2011.

[4] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index performance through
prefetching. In Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, pages 235–246, 2001.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on
Cloud Computing, pages 143–154, 2010.

[6] D. E. Ferguson. Bit-tree: A data structure for fast file processing. Communications
of the ACM, 35(6):114–120, June 1992.

[7] G. Graefe. A survey of b-tree locking techniques. ACM Transactions on Database
Systems, 35(3):16:1–16:26, July 2010.

[8] G. Graefe. Modern b-tree techniques. Foundations and Trends in Databases,
3(4):203–402, 2011.

[9] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance of memory
reclamation for lockless synchronization. Journal of Parallel and Distributed
Computing, 67(12):1270–1285, 2007.

[10] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast, efficient data structure
for string keys. ACM Transactions on Information Systems, 20(2):192–223, Apr.
2002.

[11] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and
G. Weikum. YAGO2: Exploring and Querying World Knowledge in Time, Space,
Context, and Many Languages. In Proceedings of the 20th International Conference
Companion on World Wide Web, pages 229–232, 2011.

[12] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a
high-performance, distributed main memory transaction processing system. In
Proceedings of the VLDB Endowment, pages 1496–1499, Aug. 2008.

[13] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory data-
base system based on virtual memory snapshots. In 2011 IEEE 27th International
Conference on Data Engineering, pages 195–206, April 2011.

[14] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee,
S. A. Brandt, and P. Dubey. FAST: Fast Architecture Sensitive Tree Search on
Modern CPUs and GPUs. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, pages 339–350, 2010.

[15] H. Kimura. Foedus: Oltp engine for a thousand cores and nvram. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, pages
691–706, 2015.

[16] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. KISS-Tree: Smart Latch-free
In-memory Indexing on Modern Architectures. In Proceedings of the Eighth
International Workshop on Data Management on New Hardware, pages 16–23,
2012.

[17] A. Kovács and T. Kis. Partitioning of trees for minimizing height and cardinality.
Information Processing Letters, 89(4):181–185, 2004.

[18] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful indexing
for main-memory databases. In Proceedings of the 2013 IEEE 29th International
Conference on Data Engineering, pages 38–49, 2013.

[19] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The ART of practical synchro-
nization. In Proceedings of the 12th International Workshop on Data Management
on New Hardware, DaMoN, 2016.

[20] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-tree: A B-tree for new
hardware platforms. In Proceedings of the 2013 IEEE 29th International Conference
on Data Engineering, pages 302–313, April 2013.

[21] D. Makreshanski, J. Levandoski, and R. Stutsman. To lock, swap, or elide: On the
interplay of hardware transactional memory and lock-free indexing. Proc. VLDB
Endow., 8(11):1298–1309, July 2015.

[22] Y. Mao, E. Kohler, and R. T. Morris. Cache Craftiness for Fast Multicore Key-value
Storage. In Proceedings of the 7th ACM European Conference on Computer Systems,
pages 183–196, 2012.

[23] D. R. Morrison. PATRICIA—Practical Algorithm To Retrieve Information Coded
in Alphanumeric. Journal of the ACM, 15(4):514–534, 10 1968.

[24] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main Memory. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, pages 475–486, 2000.

[25] B. Schlegel, R. Gemulla, and W. Lehner. k-Ary Search on Modern Processors.
In Proceedings of the Fifth International Workshop on Data Management on New
Hardware, pages 52–60, 2009.

[26] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions
in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18–32, 2013.

[27] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kaminsky, and D. Andersen.
Building a Bw-tree takes more than just buzz words. In Proceedings of the 2018
ACM SIGMOD International Conference on Management of Data, 2018.

[28] Z. Xie, Q. Cai, H. V. Jagadish, B. C. Ooi, and W. F. Wong. Parallelizing skip lists
for in-memory multi-core database systems. In Proceedings of the 2017 IEEE 33rd
International Conference on Data Engineering, pages 119–122, April 2017.

[29] H. Zhang, D. G. Andersen, M. Kaminsky, A. Pavlo, H. Lim, V. Leis, and K. Keeton.
SuRF: Practical Range Query Filtering with Fast Succinct Tries. In Proceedings of
the 2018 ACM SIGMOD International Conference on Management of Data, 2018.

[30] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen. Reducing
the Storage Overhead of Main-Memory OLTP Databases with Hybrid Indexes.
In Proceedings of the 2016 International Conference on Management of Data, pages
1567–1581, 2016.

[31] J. Zhou and K. A. Ross. Implementing Database Operations Using SIMD In-
structions. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, pages 145–156, 2002.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

534


	Abstract
	1 Introduction
	2 Background and Related Work
	3 The Height Optimized Trie
	3.1 Preliminaries: k-Constrained Tries
	3.2 Insertion and Structure Adaptation
	3.3 Properties of Height Optimized Tries

	4 Node Implementation
	4.1 Overview
	4.2 Physical Node Layout
	4.3 Lookup
	4.4 Insertion
	4.5 Optimizations

	5 Synchronization Protocol
	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance
	6.3 Space Consumption
	6.4 Scalability
	6.5 Tree Height

	7 Summary
	A Additional Workloads
	References



