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ABSTRACT

Column-oriented database systems [19, 23] perform better than
traditional row-oriented database systems on analytical workloads
such as those found in decision support and business intelligence
applications. Moreover, recent work [1, 24] has shown that light-
weight compression schemes significantly improve the query pro-
cessing performance of these systems. One such a lightweight
compression scheme is to use a dictionary in order to replace long
(variable-length) values of a certain domain with shorter (fixed-
length) integer codes. In order to further improve expensive query
operations such as sorting and searching, column-stores often use
order-preserving compression schemes.

In contrast to the existing work, in this paper we argue that order-
preserving dictionary compression does not only pay off for at-
tributes with a small fixed domain size but also for long string at-
tributes with a large domain size which might change over time.
Consequently, we introduce new data structures that efficiently sup-
port an order-preserving dictionary compression for (variable-
length) string attributes with a large domain size that is likely to
change over time. The main idea is that we model a dictionary as a
table that specifies a mapping from string-values to arbitrary integer
codes (and vice versa) and we introduce a novel indexing approach
that provides efficient access paths to such a dictionary while com-
pressing the index data. Our experiments show that our data struc-
tures are as fast as (or in some cases even faster than) other state-
of-the-art data structures for dictionaries while being less memory
intensive.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administration—Data

dictionary/directory; E.4 [Data]: Coding and Information The-
ory—Data compaction and compression; H.3.1 [Information Stor-

age and Retrieval]: Content Analysis and Indexing—Dictionar-

ies, Indexing methods

General Terms

Algorithms, Design, Performance
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1. INTRODUCTION
Column-oriented database systems (such as Monet-DB [23] and

C-Store [19]) perform better than traditional row-oriented database
systems on analytical workloads such as those found in decision
support and business intelligence applications. Recent work [1,
24] has shown that lightweight compression schemes for column-
oriented database systems (called column stores further on) en-
able query processing on top of compressed data and thus lead
to significant improvements of the query processing performance.
Dictionary encoding is such a light-weight compression scheme
that replaces long (variable-length) values of a certain domain with
shorter (fixed-length) integer codes [1]. In order to compress the
data of a certain column that is loaded into a data warehouse using
such a compression scheme, existing column stores usually create
an array of distinct values (i.e., the dictionary) and then store each
attribute value of that column as an index into that array. Dictionar-
ies are usually used in column stores if the size of the corresponding
domain is small.

Bit packing is then used on top of dictionaries to further com-
press the data [12]. This compression scheme calculates the min-
imal number of bits that are necessary to represent the maximal
index into the dictionary. Bit packing makes sense if the size of
the domain is stable (or known a priori). However, in many prac-
tical data warehousing scenarios the domain size is not stable. As
an example, think of a cube inside a data warehouse of a big su-
permarket chain which holds the sales of all products per category
(e.g., whole milk, low fat milk, fat free milk) , While the total num-
ber of categories is not too large, it is likely that the categories will
change over time (i.e., new products are added to the selection of
the supermarket).

In order to deal with situations where the domain size is not
known a priori, existing column stores usually analyze the first bulk
of data that is loaded in order to find out the current domain size of
a certain attribute (e.g., the total number of product categories) and
then derive the minimal number of bits (for bit packing). However,
if subsequent bulks of data contain new values that were not loaded
previously, existing column stores usually have to decode all the
previously loaded data (e.g., the data stored inside the sales cube)
and then encode that data again together with the new bulk using
more bits to represent the new domain size. This situation becomes
even worse if different attributes (that are not known a priori) share
the same global dictionary to enable join processing or union oper-
ations directly on top of the encoded data.

In addition, column stores often use order preserving compres-
sion schemes to further improve expensive query operations such
as sorting and searching because these operations can then be ex-
ecuted directly on the encoded data. However, order-preserving
compression schemes either generate variable-length codes (e.g.,
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Figure 1: Dictionary-based order-preserving string compression

[2]) that are known to be more expensive for query processing in
column stores than fixed-length codes [12], or they generate fixed-
length codes (e.g., by using indexes in a sorted array) that are more
difficult to extend when new values should be encoded in an order-
preserving way.

In contrast to the existing work, in this paper we argue that order-
preserving dictionary compression does not only pay off for at-
tributes with small domain sizes but also for long string attributes
with a large domain size. For example, the sales cube mentioned
before could contain product names of type VARCHAR(100). If
we encode one million different product names using a dictionary
that generates fixed-length integer codes (e.g., 32-bit), we would
get a very good average compression rate for that column.

However, using a sorted array and indexes into that array as
fixed-length integer codes is too expensive for large dictionaries
where the domain size is not known a priori. There are different
reasons for this: First, using a sorted array and binary search as the
only access path for encoding data is not efficient for large string
dictionaries. Second, if the index into the sorted array is used as in-
teger code, each time a new bulk of string data is loaded it is likely
that the complete dictionary has to be rebuilt to generate order-
preserving codes and all attributes that use that dictionary have to
be re-encoded. For the same reasons, strict bit packing on top of
an order-preserving dictionary compression scheme does not make
sense either.

Motivated by these considerations, this paper introduces data
structures that efficiently support an order-preserving dictionary-
compression of (variable-length) string attributes where the domain
size is not known a priori (e.g., when the dictionary is shared by
different attributes). Furthermore, the integer codes that are gener-
ated have a fixed length to leverage efficient query processing tech-
niques in column stores and we do not use bit-packing on top of
these integer codes to efficiently be able to support updates. Conse-
quently, in this paper we model the dictionary as a table that spec-
ifies a mapping from string-values to arbitrary integer codes and
vice versa. Our goal is also to provide efficient access paths (i.e.,
index structures) to such a dictionary. More precisely, we identify
index structures for a string dictionary that efficiently support the
following tasks:

• Data loading: As discussed before, data is usually loaded
bulk-wise into a data warehouse. This means that the dictio-
nary must efficiently support the encoding of bulks of string
values using integer codes. The encoding logically consists
of two operations: the first operation is a bulk lookup of the

integer codes for the string values that are already a part of
the dictionary and the second operation is the bulk insertion
of the new string values as well as the generation of order-
preserving integer codes for those new values. As an exam-
ple, in Figure 1 (a) we see how two bulks of product data
(i.e., the column p_name) are loaded into the sales cube.

• Query Compilation: In order to execute analytical queries
directly on top of encoded data, it is necessary to rewrite the
query predicates. If an order preserving encoding scheme
is used, this step is trivial: The string constants of equality-
and range-predicates only have to be replaced by the cor-
responding integer codes. Moreover, prefix-predicates (e.g.,
p_name=’Whole Milk*’) can be mapped to range pred-
icates1. Consequently, a string-dictionary should enable ef-
ficient lookups to rewrite string constants as well as string
prefixes. As an example, in Figure 1 (b), we see how the
predicate of a query is rewritten.

• Query Execution: During query execution, the final query
result (and sometimes intermediate query results) must be
decoded using the dictionary (which can be seen as a semi-
join of the encoded result with the dictionary). As most col-
umn stores use vectorized query operations (or sometimes
even materialize intermediate query results) [12, 24], a string-
dictionary should also support the efficient decoding of the
query results for bulks (i.e., bulk-lookups of string values for
a given list of integer codes). As an example, in Figure 1
(c), we see how the dictionary is used to decode the column
p_name of the encoded query result.

While all the tasks above are time-critical in today’s data ware-
houses, query processing is the most time-critical one. Conse-
quently, the data structures that we present in this paper should be
fast for encoding but the main optimization goal is the performance
of decoding integer codes during query execution. In that respect,
in this paper we identify efficient (cache-conscious) indexes that
support the encoding and decoding of string-values using a dictio-
nary. While there has already been a lot of work to optimize index
structures for data warehouses on modern hardware platforms (i.e.,
multi-core-systems with different cache levels), much of this work
concentrated on cache-conscious indexes for numerical data (e.g.,
the CSS-Tree [16] and the CSB+-Tree [17]). However, there has
been almost no work on indexes that enable (cache-)efficient bulk
lookups and insertions of string values. Consequently, we focus on
indexes for encoding string data.
1In this paper we do not support wildcards at arbitrary positions.
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In addition, the amount of main memory as well as the size of
the CPU caches of today’s hardware are constantly growing. Con-
sequently, data warehouses start to hold all the critical data in main
memory (e.g., the data that is used for online analytical reporting).
In that respect, in this paper we address the question of how to com-
press the dictionary in order to keep as much data as possible in the
different levels of the memory hierarchy. Again, while there has
been a lot of work on compressing indexes for numerical data [10],
almost no work exists for string data [5].

Thus, the contributions of this paper are:

(1) In Section 2, we introduce a new approach for indexing a
dictionary of string values (called shared leaves) that lever-
ages an order-preserving encoding scheme efficiently. In the
shared leaves approach, indexes on different attributes (that
can be clustered the same way) can share the same leaves in
order to reduce the memory consumption while still provid-
ing efficient access paths.

(2) In Section 3, we introduce a concrete leaf structure for the
shared-leaves approach that can be used by the indexes of a
dictionary for efficiently encoding and decoding string val-
ues while the leaf structure itself is compressed. We also
discuss the most important operations on this leaf structure
(i.e., lookup and update) and analyze their costs.

(3) As another contribution, in Section 4, we present two new
cache-conscious string indexes that can be used on top of
our leaf structure to efficiently support the encoding of string
data in the dictionary. For the decoding of integer codes we
argue why the CSS-Tree [16] is optimal in our case.

(4) Finally, in Section 5, our experiments evaluate the new leaf
structure and the new cache-conscious indexes under differ-
ent types of workloads and show a detailed analysis of their
performance and their memory behavior. As one result, the
experiments show that in terms of performance our leaf struc-
ture is as efficient as other read-optimized indexes while us-
ing less memory (due to compression).

2. OVERVIEW
In this section, we first discuss the operations that an order-

preserving string-dictionary must support. Afterwards, we present
a new idea for indexing such a dictionary (called shared-leaves)
which is not bound to particular index structures and we show how
the operations above can be implemented using this approach. Fi-
nally, we discuss requirements and design decisions for index struc-
tures that can be efficiently used for a dictionary together with the
shared-leaves approach.

2.1 Dictionary Operations
As mentioned in Section 1, in this paper we model a string dic-

tionary as a table T with two attributes: T = (value, code). Thus,
table T defines a mapping of variable-length string values (defined
by the attribute value) to fixed-length integer codes (defined by
the attribute code) and vice versa. In order to support the data load-
ing as well as the query processing task inside a column store, the
interface of the dictionary should support the following two bulk
operations for encoding and decoding string values:

• encode: values → codes: This bulk operation is used dur-
ing data loading in order to encode data of a string column
(i.e., the values) with corresponding integer codes (i.e., the
codes). This operation involves (1) the lookup of codes for
those strings that are already in the dictionary and (2) the

encode
index
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leaves 
(value->code)

leaves 
(code->value)

encode
index

decode
index
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leaves 

(value->rid)
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(code->rid)

Dictionary (rid, value, code)

Shared-leaves:

encode
index
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(code<->value)

decode

index

Figure 2: Traditional approaches vs. Shared-leaves

insertion of new string values as well as the generation of
order-preserving codes for those new values.

• decode: codes → values: This bulk operation is used dur-
ing query processing in order to decode (intermediate) query
results (i.e., a bulk of integer codes) using the corresponding
string values (i.e., the values).

Moreover, the interface of the dictionary should also support the
following two operations in order to enable the rewrite of the query
predicates (for query processing):

• lookup: (value, type) → code: This operation is used dur-
ing query compilation in order to rewrite a string constant
(i.e., the value) in an equality-predicate (e.g., p_name =

’Whole Milk - Gallon’) or in a range-predicate (e.g.,
p_name ≥ ’Whole Milk - Gallon’) with the cor-
responding integer code (i.e., code). The parameter type
specifies whether the dictionary should execute an exact-match
lookup (as it is necessary for string constants in equality-
predicates) or return the integer code for the next smaller (or
larger) string value (as it is necessary for string constants in
range-predicates). An example will be given in the following
subsection.

• lookup: prefix → (mincode, maxcode): This operation is
used during query compilation to rewrite the prefix of a
prefix-predicate (e.g., p_name = ’Whole Milk*’) with
the corresponding integer ranges (i.e., the mincode and the
maxcode). Again, an example will be given in the following
subsection.

In order to use table T to efficiently support all these operations,
we propose to build indexes for both attributes of table T (value
and code) because encoding and decoding usually access only a
subset of the dictionary. Moreover, indexing the dictionary is es-
pecially important if the dictionary is shared between different at-
tributes, because then it is more likely that only a subset of the
dictionary is touched (if the domains of the individual attributes
are not completely overlapping). Consequently, we believe that in
many cases a sequential scan of the complete dictionary does not
pay off. The choice of whether to use a sequential scan or an index
to access the dictionary, however has to be done as a part of the
cost-based query optimization (because it strongly depends on the
particular workload). However, this discussion is out of the scope
of this paper.

2.2 Shared-leaves Indexing
Traditional approaches for indexing can be classified into two

general categories: direct and indirect indexes. Using these ap-
proaches for indexing the two attributes (value and code) of table
T would result in the following situations (see Figure 2):
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(1) In the direct indexing approach, two indexes for encoding
and decoding are created that hold the data of table T directly
in their leaves. In this case, the table T itself does not need
to be explicitly kept in main memory since the data of T is
stored in the indexes.

(2) In the indirect indexing approach, two indexes for encoding
and decoding are created that hold only references to the data
inside table T (i.e., a row identifier rid). In this case, the
table T itself needs to be explicitly kept in main memory.

While direct indexing (1) has the disadvantage of holding the
data of table T redundantly in the two indexes which is not optimal
if the indexes should be main memory resident, indirect indexing
(2) (which is standard in main-memory databases [9, 7]) requires
one level of indirection more than the direct indexing approach (i.e.,
pointers into the table T ). Thus, (2) results in higher cache miss
rates on modern CPUs. Another alternative to index the dictionary
data is to extend a standard index (e.g., a B+-Tree) in order to sup-
port two key attributes instead of one (i.e., in our case for value
and code) . However, in that case both access paths of the index
need to read the two key attributes during lookup which increases
the cache miss rates (especially when decoding the integer codes).

The new idea of this paper is that the two indexes for encoding
and decoding share the same leaves (see shared-leaves approach
in Figure 2) where both indexes directly hold the data of table T
in their leaves but avoid the redundancy of the direct indexing ap-
proach. Thus, the shared leaves also avoid the additional indirec-
tion level of the indirect indexing approach.

As the string dictionary uses an order-preserving encoding scheme,
the string values and the integer codes in table T follow the same
sort order (i.e., we can have clustered indexes on both columns
and thus can share the leaves between two direct indexes). Con-
sequently, as the attribute values value and code of table T can
both be kept in sort order inside the leaves, the leaves can provide
efficient access paths for both lookup directions (i.e., for the en-
coding and decoding) using a standard search method for sorted
data (e.g., binary search or interpolation search). Moreover, using
the shared-leaves for indexing the dictionary means that T does not
have to be kept explicitly in main memory because the leaves hold
all the data of table T (as for direct indexes).

In the following, we discuss how the shared-leaves approach can
support the bulk operations mentioned at the beginning of this sec-
tion to support the data loading and query processing inside a col-
umn store:

Figure 3 shows an example of how the shared-leaves approach
can be used to efficiently support the bulk operations for encoding
and decoding string values. In order to encode a list of string values
(e.g., the list shown at the top of Figure 3), the encode-index is used
to propagate these values to the corresponding leaves. Once the
leaves are reached, a standard search algorithm can be used inside
a leaf to lookup the integer code for each single string value. The
decoding operation of a list of integer codes works similar. The
only difference is that the decode index is used to propagate the
integer codes down to the corresponding leaves (e.g., the list of
integer codes shown on the bottom of Figure 3).

If some integer codes for string values are not found by the
lookup operation on the encode-index (e.g., the string values ’aac’
and ’aad’ in our example), these string values must be inserted into
the dictionary (i.e., the shared-leaves) and new integer codes must
be generated for those values (see the right side of Figure 3). The
new codes for these string values have to be added to the result
(i.e., the list of codes) that are returned by the encoding operation.
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Figure 3: Operations on indexes with shared-leaves

Moreover, the encoding and decoding indexes must be updated if
necessary.

In this paper, we do not focus on how to generate new order-
preserving integer codes for new string values that are inserted into
the dictionary. In order to generate the codes, we simply partition
the code range where new string values are inserted in into equi-
distant intervals (e.g., in our example the two strings ’aac’ and
’aab’ are inserted into the code range between 10 and 20). The
limits of these intervals represent the new codes (e.g., 13 for ’aac’
and 17 for ’aad’ in our example). In case that the range is smaller
than the number of new string values that have to be inserted in
the dictionary, re-encoding of some string values as well as up-
dating the data (i.e., the columns of a table) that use these string
values becomes necessary. Analyzing more sophisticated order-
preserving encoding schemes that are optimal (i.e., that require
minimal re-encoding) under certain workloads as well as strategies
for re-encoding the dictionary data are an avenue of our future re-
search work.

In the following, we discuss how the shared-leaves approach can
support the two lookup operations mentioned at the beginning of
this section that support the predicate rewrite a column store:

The lookup operation which is necessary to rewrite the equality-
and range-predicates is similar to the bulk lookup explained be-
fore: the encoding index propagates the string constant to the cor-
responding leaf and then a standard search algorithm can be used on
the leaf to return the corresponding integer code. For example, in
order to rewrite the predicate value ≥ ’zzc’ using the encode
index in Figure 3 (left side), the encode index propagates the string
value ’zzc’ to the rightmost leaf and this leaf is used to lookup
the next integer code for that string value that is equal or greater
than the given value (i.e., the integer code 970 for the string value
’zzm’). The rewritten predicate thus would be code ≥ 970.

In order to support the other lookup operation that is necessary
to rewrite a prefix-predicate, the encoding index needs to propa-
gate the string prefix to those leaves which contain the minimum
and the maximum string value that matches this prefix. For exam-
ple, in order to rewrite the predicate value = ’aa*’ using the
encode index in Figure 3 (left side), the encode index has to propa-
gate the prefix to the first leaf which contains the minimum and the
maximum string value that matches this prefix. Afterwards, those
leaves are used to map the strings that represent the boundaries for
the given prefix to the corresponding codes (e.g., in our example
we retrieve the codes for ’aab’ and ’aaz’ and rewrite the predicate
as 10 ≤ code ≤ 40).
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2.3 Requirements and Design Decisions
The main requirement is that the dictionary should be fast for

encoding (i.e., the bulk lookup/insert of integer codes for a list of
string values) but the optimization goal is the performance for de-
coding (i.e., the bulk lookup of string values for a given list of in-
teger codes). Thus, the data structures of the dictionary (i.e., leaves
and indexes) should also be optimized for encoding/decoding bulks
instead of single values. Moreover, the data structures should be
optimized for modern CPUs (i.e., they should be cache-conscious
and the operations should be easy to parallelize). In the following
we discuss further requirements and design decision for the leaf
structure and the indexes of the dictionary.

Leaf structure: The most important requirement for the leaf
structure is that it must be able to hold the string values as well as
the integer codes in sort order to enable efficient lookup operations
(e.g., binary search) for both encoding and decoding (while the leaf
structure should be optimized for decoding).

As the dictionary must be memory resident, the memory foot-
print of the dictionary should be small (i.e., it might make sense
to apply a lightweight compression scheme such as incremental
encoding to the leaf data). Moreover, the leaf should support the
encoding of variable-length string values. While the lookup opera-
tions on a leaf are trivial for fixed-length string-values that are not
compressed, the lookup operations get more complex if the leaves
should also support variable-length string values and compression.

When encoding a bulk of string values, new string values might
be inserted into the dictionary which involves updating the shared-
leaves. Consequently, the leaf should also enable efficient bulk
loads and bulk updates.

Finally, note that the leaf structure can be totally different from
the data structure that is used for the index nodes on top. A con-
crete leaf structure that satisfies these requirements is discussed in
detail in the next section.

Encode/Decode index structure: Same as the leaf structure, the
indexes for encoding and decoding should keep their keys in sort
order to enable efficient lookup operations over the sorted leaves.
Another requirement is that the encode index must also support the
propagation not only of string constants but also of string-prefixes
to the corresponding leaves in order to support the predicate-rewrite
task. Moreover, the indexes should also be memory resident and
thus have a small memory footprint.

When bulk encoding a list of string values using the encoding
index, in addition to the lookup of the integer codes for string val-
ues that are already a part of the dictionary, it might be necessary to
insert new string values into the dictionary (i.e., update the leaves
as well as the both indexes for encoding and decoding) and gen-
erate new order-preserving codes for those values. We propose to
combine these two bulk operations (lookup and insert) into one op-
eration. In order to support this, we see different strategies:

(1) All-Bulked: First, propagate the string values that need to be
encoded to the corresponding leaves using the encode index
and lookup the codes for those strings that are already in the
leaves. Afterwards, insert the new values that were not found
by the lookup into the leaves and if appropriate reorganize
the updated leaf level (e.g., create a leaf level where all leaves
are filled up to the maximal leaf size). Afterwards generate
integer codes for the new string values and bulk load a new
encode and a new decode index from the updated leaf level
(in a bottom-up way).

(2) Hybrid: First, propagate the string values that need to be en-

coded to the corresponding leaves using the encoding index
and update the encoding index directly (i.e., do updates in-
place during propagation). Then, lookup the codes for those
strings that are already in the leaves. Afterwards, insert the
new values that were not found by the lookup into the leaves
and generate integer codes for all new string values. Finally,
bulk load a new decode index from the updated leaf level
(bottom-up).

(3) All-In-Place: First, propagate the string values that need to
be encoded to the corresponding leaves using the encoding
index and update the encoding index directly (i.e., do up-
dates in-place during propagation). Then, lookup the codes
for those strings that are already in the leaves. Afterwards,
insert the new values that were not found by the lookup into
the leaves and generate integer codes for all new string val-
ues. Propagate each update on the leaf level that causes an
update of the decode index (e.g., a split of a leaf) directly to
the decode index and apply the update.

In the first two strategies above, the decode index is bulk loaded
from the updated leaf level, which means that it should provide
a better search performance for decoding which is our main opti-
mization goal. Consequently, in this paper we focus on the first two
strategies.

In order to guarantee consistency of the data dictionary, for sim-
plicity we decide to lock the complete indexes as well as the leaves
during data loading (i.e., the encoding of string values) because
this usually happens only at predefined points in time in data ware-
housing (i.e., once a day). Thus, no concurrent updates and reads
are possible during data loading. However, during query process-
ing (i.e., for decoding query results), we allow concurrency because
these are read-only operations.

For persisting the dictionary, currently we only write the updates
leaves sequentially to disk as a part of data loading. More sophisti-
cated persistence strategies are a part of our future work.

3. LEAF STRUCTURE
In this section, we present a leaf structure that can be used in the

shared-leaves approach (see Section 2) for efficiently encoding and
decoding variable-length string values on a particular platform. The
general idea of this leaf structure is to keep as much string values
as well as the corresponding fixed-length integer codes sorted and
compressed together in one chunk of memory in order to increase
the cache locality during data loading and lookup operations2.

3.1 Memory Layout
Figure 4 shows an example of the memory layout of one concrete

instance of a leaf structure that represents the dictionary shown in
Figure 1 (c). The leaf structure compresses the string values us-
ing incremental-encoding [21] while each n-th string (e.g., each
16-th string value) is not compressed to enable an efficient lookup
of strings without having to decompress the complete leaf data: In
the example, value 16 ’Whole Milk - Gallon’ is not compressed
and value 17 ’Whole Milk - Half Gallon’ is compressed using
incremental-encoding; i.e., the length of the common prefix com-
pared to the previous value (e.g., 11) is stored together with the
suffix that is different (e.g., ’Half Gallon’)

In order to enable an efficient lookup using this leaf structure, an
offset vector is stored at the end of the leaf that holds references
(i.e., offsets) and the integer codes of all uncompressed strings of

2In this paper we assume that string values are encoded in ASCII
using one byte per character.
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a leaf also in a sorted way. For example, the offset 128 and the
code 32000 are stored in the offset vector for value 16 (see Figure
4). The integer codes of the compressed string-values are stored
together with the compressed string values in the data section and
not in the offset vector (e.g., the code 32050 for value 17). The off-
set vector is stored in a reverse way to enable efficient data loading
while having no negative effect on the lookup operations.

In order to adapt the leaf structure to a certain platform (e.g., to
the cache sizes of a CPU) different parameters are available:

• Leaf-size l: Defines the memory size in bytes that is initially
allocated for a leaf. In our example, we used l = 1024.

• Offset-size o: Defines the number of bytes that are used as
offset inside the leaf. This parameter has influence on the
maximal leaf size. If we use o = 2 bytes, as in the example
in Figure 4, then the maximal leaf size is 216 bytes (64kB).

• Code-size c: Defines the number of bytes that are used to
represent an integer codeword. If we use c = 4, we can
generate 232 different codewords.

• Prefix-size p: Defines the number of bytes that are used to
encode the length of the common prefix for incremental en-
coding. This parameter is determined by the maximal string
length. For example, if we use strings with a maximal length
of 255, then we can use p = 1 because using one byte allows
us to encode a common prefix length from 0 to 255.

• Decode-interval d: Defines the interval that is used to store
uncompressed strings (16 in our example). This parameter
has influence on the size of the offset vector (i.e., the smaller
this interval is, the more space the offset vector will use).

We do not allow the definition of these parameters on the gran-
ularity of bits because most CPUs have a better performance on
data that is byte-aligned (or even word- or double-word aligned on
modern CPUs). We decide to use byte-aligned data (and not word-
or double-word aligned data) because the other variants might lead
to a dramatic increase in the memory consumption of the leaves.

As an example, assume that we want to tune the leaf structure
for a platform using one CPU (with one core) having an L2 cache
of 3MB and an L1 cache of 32kB. Moreover, assume that the leaf
should only store strings with an average length of 50 characters
and a maximum length of 255 characters (which means that p = 1
can be used). In that case it would make sense to use a leaf size
not bigger than the L2 cache size, say max. 2MB. Consequently,
an offset-size o = 3 is sufficient to address all values inside such a
leaf. The code-size depends only on the overall number of strings

that should be stored in a dictionary. We assume that c = 4 is an
appropriate choice for this example.

Defining the value for the decode interval d is more difficult: in
general, we want to make sure that the offset vector once loaded re-
mains in the L1 cache (e.g., having a max. size of 32kB) such that
an efficient binary search is possible for a bulk of strings. With
the given settings of the example above, we assume that a leaf
will be able to store approx. 42000 strings (which results from
the max. leaf size of 2MB and the average string length of 50).
Moreover, each uncompressed string utilizes 7 bytes of the offset
vector (for the offset and the code). Consequently, the offset vec-
tor can store max. 32k/7 ≈ 4681 entries (i.e., offsets and codes)
for uncompressed strings which means that we could store each
d ≈ 42000/4681 ≈ 9th string uncompressed in the example.

3.2 Leaf Operations
The most important operations on the leaf structure are the lookup

operations for encoding string values with their integer codes and
decoding the integer codes with their string values. Moreover, the
leaf also supports updates (i.e., inserting new strings). In the fol-
lowing paragraphs, we examine these operations in detail.

Bulk Lookup: In this paragraph, we first explain how the
lookup works for a single value and then discuss some optimiza-
tions for bulks. The leaf supports the following lookup operations:
one to lookup the code for a given string value (i.e., value v → code
c) and another one that supports the lookup vice versa (i.e., code c
→ value v). In order to search the code c for a given value v, the
procedure is as follows:

1. Use the offset vector to execute a binary search over the un-
compressed strings of a leaf in order to find an uncompressed
string value v′ that satisfies v′

≤ v and no other uncom-
pressed value v̄ exists with v′ < v̄ < v.

2. If v′ = v return the corresponding code c for v that is stored
in the offset vector.

3. Otherwise, sequentially search value v from value v′ on until
v is found or the next uncompressed value appears. In the
first case return the code c, in the second case indicate that
the value v was not found.

Note that for sequentially searching over the incrementally en-
coded string values no decompression of the leaf data is necessary.
Algorithm 1 shows a search function that enables the sequential
search over the compressed leaf data. The parameters of this func-
tion are: the leaf data (i.e., leaf ), the offset where to start and end
the sequential search (i.e., start and end), as well as the value that
we search for (i.e., v). The return value is the corresponding code c
if the value is found, otherwise the algorithm returns −1. The ba-
sic idea of the algorithm is that it keeps track of the common prefix
length (i.e., prefix_len) of the current string (at the offset start)
and the search string v. If this common prefix length is the same as
the length of the search string then the correct value is found and
the code can be returned. The variables p and c are constants that
represent the prefix-size and the code-size to increment the offset
value start.

The lookup operation to find a string value v for a given code
c works similar as the lookup operation mentioned before using
the offset vector. The differences are that the first step (i.e., the
search over the offset vector) can be executed without jumping into
the leaf data section because the codes of the uncompressed strings
are stored together with the offset vector. In contrast to the other
lookup operation, for the search over the offset vector we theoreti-
cally expect to get only one L1 cache miss using a simplified cache
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Algorithm 1 Sequential search of string v on compressed leaf
function SEQUENTIALSEARCH(leaf, start, end, v)

v′ ← leaf [start] ⊲ read string v′ at offset start
start← start + size(v′) ⊲ increment offest by string size
prefix_len← prefix_len(v, v′) ⊲ calculate common prefix len
while start ≤ end and prefix_len < |v| do

curr_prefix_len← leaf [start] ⊲ get curr. prefix len
start← start + p ⊲ increment offest by prefix-size p = 1
v′ ← leaf [start]
start← start + size(v′)
if curr_prefix_len <> prefix_len then

continue ⊲ prefix of curr. value v′ too short/long
else if compare(v′, v) > 0 then

return -1 ⊲ curr. value v′ comes after search value v
end if
prefix_len← prefix_len + prefix_len(v, v′)
start← start + c ⊲ increment offest by code-size c = 4

end while
if prefix_len = |v| then

return leaf [start− c] ⊲ string v found: return code
else

return -1 ⊲ string v not found
end if

end function

model (if the offset vector fits into the L1 cache). Another differ-
ence of this lookup operation is that during the sequential search
the string values have to be incrementally decompressed.

When executing both lookup operations, we expect to theoret-
ically get one L2 cache miss in a simplified cache model if we
assume that loading the complete leaf causes one miss and the leaf
fits into the L2 cache3. The average costs for these two lookup
operations are as follows (where n is the number of strings/codes
stored in a leaf and d is the decode interval):

O(log(n/d)) + O(d)

In order to optimize the lookup operation for bulks (i.e., a list
of string values or a list of integer codes), we can sort the lookup
probe. By doing this, we can avoid some search overhead by mini-
mizing the search space after each search of a single lookup probe
(i.e., we do not have to look at that part of the offset vector/leaf data
that we already analyzed).

Bulk Update: In this paragraph, we explain how to insert new
strings into the leaf structure. As we assume that data is loaded in
bulks, we explain the initial bulk load and the bulk insert of strings
into an existing leaf.

In order to initially bulk load a leaf with a list of string values,
we first have to sort the string values. Afterwards, the leaf data
can be written sequentially from the beginning of the leaf while the
offset vector is written reversely from the end. If the string values
do not utilize the complete memory allocated for a leaf (because
we do not analyze the compression rate before bulk loading) then
the offset vector can be moved to the end of the compressed data
section and the unused memory can be released.

In order to insert a list of new string values into an existing leaf,
we again have to sort these string values first. Afterwards, we can
do a sort merge of these new string values and the existing leaf in
order to create a new leaf. The sort merge is cheaper if we can reuse
as much of the compressed data of the existing leaf as possible
and thus do not have to decode and compress the leaf data again.

3A more fine grained cache model would respect cache lines and
cache associativity. However, as we focus on bulk lookups our
simplified model is sufficient to estimate the costs of cache misses.

Ideally, the new string values start after the last value of the existing
leaf. In that case, we only have to compress the new string values
without decoding the leaf. If the list of string values and the existing
leaf data do not fit into one leaf anymore, the data has to be split.
However, as the split strategy depends on the index structure that
we build on top of the leaves, we discuss this in the next section.

4. CACHE-CONSCIOUS INDEXES
In this section, we present new cache-conscious index structures

that can be used on top of the leaf structure presented in the pre-
vious section. These indexes support one of the first two update
strategies (All-Bulked and Hybrid) discussed in Section 2. For the
encoding index, we present a new cache sensitive version of the
patricia trie (called CS-Array-Trie) that supports the Hybrid up-
date strategy and a cache sensitive version of the Prefix-B-Tree [5]
(called CS-Prefix-Tree) that supports the All-Bulked update strat-
egy.

As decoding index, we reuse the CSS-Tree [16] which is known
to be optimized for read-only workloads. We create a CSS-Tree
over the leaves of the dictionary using the minimal integer codes
of each leaf as keys of the index (i.e., the CSS-Tree is only used
to propagate the integer values that are to be decoded to the corre-
sponding leaves). As the CSS-Tree can be bulk loaded efficiently
in a bottom-up way using the leaves of the dictionary, it satisfies the
requirements for both update strategies (Hybrid and All-Bulked).

4.1 CS-Array-Trie
As a first cache-conscious index structure that can be used as

an encode index to propagate string lookup probes and updates to
the corresponding leaf in a shared leaf approach, we present the
CS-Array-Trie. Compared to existing trie implementations the CS-
Array-Trie uses read-optimized cache-conscious data structures for
the index nodes and does not decompose the strings completely.

4.1.1 General Idea

Many existing trie implementations are using nodes that hold an
array of pointers to the nodes of the next level with the size of the
alphabet (e.g., 128 for ASCII). While such an implementation al-
lows efficient updates and lookups on each node, it is not memory-
efficient because the array trie allocates space for a pointers per
node, where a is the size of the alphabet (while a pointer uses 8
bytes on a 64-bit system).

Other trie implementations avoid the memory overhead and use
a sorted linked list [13] to hold only the characters of the indexed
strings together with a pointer to the next level of the trie. While
this implementation still offers efficient node updates, the lookup
must execute a search over the characters stored in the linked list.
However, linked lists are known to be not very cache efficient on
modern CPUs because of pointer-chasing [20]. Moreover, most
existing trie implementations decompose the indexed strings com-
pletely (i.e., each letter of a string results in a node of the trie).

Compared to the implementations mentioned above, a node of
the CS-Array-Trie uses an array instead of a linked list to store the
characters of the indexed string values. Compared to a linked list an
array is not efficient when sequentially inserting single values into
a trie. However, when bulk inserting new values into a CS-Array-
Trie, we need grow the array of a node only once for each bulk. In
order to lookup a string value of a CS-Array-Trie, the search over
the characters of a node (i.e., the array) is more efficient than the
sequential search on a linked list because the array supports binary
search and all characters are stored clustered in memory.

The second key idea of the CS-Array-Trie is that it does not de-
compose the string values completely. The CS-Array-Trie stores
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a set of strings that have the same prefix together using the leaf
structure that we discussed in the previous section. A leaf of the
CS-Array-Trie stores the complete strings and not only their suf-
fixes (without the common prefix) in order to enable efficient de-
coding of integer codes using the same leaves (as described in our
shared-leaves approach). Moreover, storing the complete strings in
a leaf (i.e., repeating the same prefix) is still space efficient because
we use incremental encoding to compress the strings. Finally, for
those trie nodes that only hold a pointer to one child node, we use
the path compression used in patricia tries [15].

Figure 5 (left side) shows an example of a CS-Array-Trie that
indexes nine different strings. If we follow the path ’aa’ in the trie,
we reach a leaf that holds only strings that start with the prefix ’aa’.
The leaves are shown as uncompressed tables for readability. The
physical memory layout is as discussed in Section 3.

4.1.2 Index Operations

In order to encode a bulk of string values during data loading
using that trie, we implement the Hybrid update strategy for the
CS-Array-Trie which means that new string values are inserted into
the trie when the strings that should be encoded are propagated
through the encoding index (i.e, the trie). In order to leverage the
fact of having bulk inserts, we propagate the string values (in pre-
order) to the leaves using variable buffers at each node of the trie
to increase the cache locality during lookup as described in [22].
Moreover, when using buffers at each node we can grow the array
of characters stored inside a node only once per bulk. The work in
[22] showed that this effectively reduces data cache misses for tree-
based indexes and results in a better overall lookup performance.

Figure 5 (right side) shows an example for encoding a bulk of six
strings using the existing encode index (i.e., the trie shown on the
left side). First, all strings that need to be encoded are propagated
from the root node of the trie to the first level of nodes creating
three buffers ((1), (2), and (3)). In order to keep the order of strings
in the lookup probe for creating the encoded result (at the bottom of
Figure 5), a sequence number is added for each value in the buffers
(as suggested in [22]). The strings that are propagated from the root
to the first level of buffers are analyzed and the missing character
’m’ for the string ’mzb’ is added to the root node4.

Afterwards, the buffer (1) is propagated to the next level creating
two new buffers (4) and (5) and buffer(1) is returned to a buffer pool
(to avoid expensive memory allocation for buffer pages). Next,
buffers (4) and (5) are processed, which means that values for the
codes for existing string values are looked up and new strings are
inserted into the existing leaves with a placeholder as their integer
code (e.g., −1): While buffer (4) contains two new strings ’aax’
and ’aay’ that are inserted to the leftmost leaf, buffer (5) contains
only one new string ’amc’ that is inserted the next leaf. Note, that
the new values in buffers (4) and (5) are not yet deleted and kept
to lookup the integer codes for those string values (that are not yet
generated).

A question that arises here is, whether the new strings fit into
the existing leaf (i.e., the new leaf size is expected to be less than
the maximal leaf size) or whether the leaf must be split up into
several leaves. In order to estimate the expected leaf size, we add
the size (uncompressed) of all new strings in a buffer page as well
as the size of their new codes (without eliminating duplicates) to
the current leaf size. If the bulk is heavily skewed and contains
many duplicates it is likely that we decide to split a leaf even if it is
not necessary.

When all string values are propagated to their corresponding

4All updates on the trie and the leaves are shown in light gray in
Figure 5 (right side).

leaves (i.e., the new strings are inserted into the leaves), new in-
teger codes are generated for the new string values. This is done
by analyzing the number of strings that are inserted in between two
existing string values. For example, in order to generate codes for
the three new string values that are inserted into the first two leaves
between ’aam’ and ’amd’ in Figure 5 (right side), we have to gen-
erate three new codes that must fit into the range between 40 and
50. Using our equi-distance approach (discussed in Section 2), we
generate 43, 45, and 48 as new codes. Therefore, the trie must al-
low us to sequentially analyze all leaves in sort order (i.e., each leaf
has a pointer to the next leaf). Finally, after generating the integer
codes for the new string values of the trie, we use the buffer pages
that we kept on the leaf level (e.g., the new strings in the buffers
(2), (4), and (5) in the example) to lookup the integer codes for the
new string values and use the sequence number to put the integer
code at the right position in the answer (see bottom of Figure 5).

Another task that can efficiently be supported using the CS-Array-
Trie, is the predicate rewrite: for equality- and range-predicates the
constants are simply propagated through the trie without buffering.
For prefix-predicates, the prefix is used to find the minimal and
maximal string value that matches this prefix (which is also trivial
when using a trie).

4.1.3 Cost Analysis

For propagating a bulk of string values from the root of a CS-
Array-Trie to the leaves, we theoretically expect to get one L2 data
cache miss for each node in our simplified cache model. In addi-
tion, for leaf that has to be processed during the lookup, we expect
to get another L2 data cache miss using our simplified cache model.

Moreover, the input and output buffers of a node should be de-
signed to fit into the L2 cache together with one node (to allow
efficient copying from input to output buffers). In that case, we
expect to get one cache miss for each buffer page that needs to be
loaded. Moreover, generating the new integer codes will cause one
L2 data cache miss for each leaf of the trie. Finally, executing the
lookup of the new integer codes, will also cause one cache miss for
each buffer page that has to be loaded plus the L2 cache misses for
executing the lookup operations on the leaves (as discussed in the
section before).

The costs for encoding a bulk that contains no new string values
(i.e., a pure lookup) are composed of the costs for propagating the
strings through the trie plus the costs for the lookup of the codes
for all strings using the leaves. If we assume that all strings in the
lookup probe have the same length m and are distributed uniformly,
the height of the trie is loga(s/l) in the best case and equal to the
length of the string m in the worst case (where s is the total number
of strings, l is the number of strings that fit in one leaf, and a the
size of the alphabet). The lookup costs on each node are O(log(a)).
Thus, the average costs for propagation are:

O(s ∗ ((loga(s/l) + m)/2) ∗ log(a))

4.1.4 Parallelization

The propagation of string values from the root of the trie to the
leaves (including the update of the nodes) can be easily parallelized
for different sub-tries because sub-tries share no data.

Moreover, the generation of new integer codes can be done in
parallel as well (without locking any data structures). For this we
need to find out which leaves hold contiguous new string values
(i.e., sometimes a contiguous list of new string values might span
more than one leaf as shown in Figure 5 on the right side for the
first two leaves).

Finally, the lookup operation of the new string values can also be
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Figure 5: Encode data using the CS-Array-Trie

parallelized without locking any data structures. In Figure 5 (right
side), the new values in the buffer pages (2), (4), and (5) can be
processed by individual threads for example. We can see that each
thread writes the resulting integer codes to different index positions
of the result (shown at the bottom) using the sequence number of
the buffer pages. Thus, no locks on the result vector are necessary.

4.2 CS-Prefix-Tree
As a second cache-conscious index structure that can be used as

an encode index to propagate string lookup probes and updates to
the corresponding leaf in a shared leaf approach, we present the CS-

Prefix-Tree. This index structure combines ideas from the Prefix-
B-Tree [5] and the CSS-Tree [16].

4.2.1 General Idea

Same as the Prefix-B-Tree, a node of a CS-Prefix-Tree contains
the shortest prefixes that enable the propagation of string values
to the corresponding child nodes. However, instead of storing a
pointer to each child, the CS-Prefix-Tree uses a contiguous block of
memory for all nodes and offsets to navigate through this block (as
the CSS-Tree). This effectively reduces memory consumption and
avoids negative effects on the performance due to pointer chasing.
In order to further reduce the memory footprint of the CS-Prefix-
Tree, we only store the offset to the first child node explicitly. Since
the nodes have a fixed size s, we can calculate the offset to a child
node using offset arithmetics (i.e., the i-th child of a node can be
found at offset o = offset(first_child) + (i ∗ s)).

In order to enable fast search over the variable-length keys of a
node (e.g., binary search), we store the offsets to the keys (i.e., the
string prefixes) in an offset vector at the beginning of each node.
Moreover, the node size has to be fixed in order to use offset arith-
metics for computing the index to the child nodes. Thus, the num-
ber of children of a node is variable because we store variable-
length keys inside a node.

4.2.2 Index Operations

The CS-Prefix-Tree (as the CSS-Tree) can only be bulk loaded
in a bottom-up way which means that it is only suitable for the All-

bulked update strategy discussed in Section 2. Using the All-bulked

update strategy for the encoding a list of string values means that

the new string values (that are not yet a part of the dictionary) must
first be inserted into the leaves (in sort order) and then the index
can be created.

Thus, if the first bulk of string values should be encoded using
the All-bulked update strategy, the complete leaf level has to be
built using these string values. Therefore, we reuse the idea in [18]
and create a trie (more precisely a CS-Array-Trie) to partition the
string values into buckets that can be sorted efficiently using multi-
key quicksort [6]. The sorted string values can then be used to
create leaves that are filled up to the maximum leaf size. From
these leaves, a new encode index (i.e., a CS-Prefix-Tree) is bulk
loaded in a bottom-up way.

Figure 6 shows an example of a CS-Prefix-Tree. In the follow-
ing, we describe the bulk load procedure of a CS-Prefix-Tree from
a given leaf level:

1. In order to bulk load the CS-Prefix-Tree, we process the leaf
level in sort order: We start with the first two leaves and
calculate the shortest prefix to distinguish the largest value
of the first leaf and the smallest value of the second leaf. In
our example it is sufficient to store the prefix ’am’ in order
to distinguish the first two leaves. This prefix is stored in a
node of the CS-Prefix-Tree. Note, a node does not store a
pointer to each child since we can derive an offset into the
leaf level (i.e., the sorted list of leaves). Since we do not
know the size of the offset vector in advance, we write the
offset vector from left to right and store the keys from right
to left. The example assumes a fixed node size of 32 bytes
and therefore we store offset 29 in the offset vector and write
the prefix at the corresponding position.

2. Next, we calculate the shortest prefix to distinguish the largest
value of the second leaf and the smallest value of the third
leaf and so on until all leaves are processed. If a node is full,
we start a new node and store the index to the first leaf that
will be a child of this new node as an anchor. In our exam-
ple the first node covers the first four leaves and therefore the
index of the first child in the second node is 4. Note that the
nodes are stored continuously in memory.

3. As long as more than one node is created for a certain level of
the CS-Prefix-Tree, we add another level on top with nodes
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Figure 6: Example of a CS-Prefix-Tree

that store prefixes that distinguish their child nodes. In our
example we have one node on top of the lowest level of the
CS-Prefix-Tree. This node is the root of the tree and we store
the offset to this node in the contiguous memory block (2 in
our example). Since the tree is built bottom up, the nodes
have to be stored in that sequence in memory.

For subsequent bulks, we use the existing CS-Prefix-Tree to prop-
agate the string values that are to be encoded to the corresponding
leaves. In our current implementation we buffer the string values
only on the leaf level (and not within the CS-Prefix-Tree). After-
wards, we do a sort-merge of the existing leaf with the new string
values stored in the buffers. If the new string values in the buffers
and the values of the existing leaf do not fit into one leaf, we sim-
ply create another leaf. This very simple sort-merge strategy can
be improved in different ways: for example, one could try to create
equally sized leaves to avoid degenerated leaves that contain only a
small number of strings. Moreover, after encoding several bulks it
might make sense to reorganize the complete leaf level by filling all
leaves to their maximum. Once all updates are processed we bulk
load a new CS-Prefix-Tree from the merged leaf level.

For example, in order to propagate a bulk of strings to the leaves
using the CS-Prefix-Tree, we proceed as follows: assume we are
looking for value ’amk’ in our example in Figure 6. We start at the
root node and see that ’amk’ is smaller than ’bcz’, thus we proceed
at the first child of this node at offset 0. We find that ’amk’ is
between ’am’ and ’amq’ and thus proceed at the second child of this
node at index 1 (calculated from the index of the first child). The
CS-Prefix-Tree stores the information that nodes below a certain
offset point to leaves instead of internal nodes.

To rewrite query predicates using the CS-Prefix-Tree, we do a
simple lookup with the string constants if it is an equality-predicate
or a range-predicate. If it is a prefix-predicate, the prefix is used to
find the minimal string value that matches the prefix. The lookup
for the prefix will end up at leaf that contains this value even if the
value itself is not in the dictionary. From that leaf on, we execute
a sequential search for the maximum string value that matches the
prefix. We could save some effort compared to a sequential search,
if we also use the index to find the leaf that holds the maximum
value directly (similar to a skip list).

One problem of using a contiguous block of memory and offsets
is that the memory has to be allocated in advance. We calculate the
maximum amount of memory that all nodes of the CS-Prefix-Tree
need by introducing an artificial limit on the maximum length of
the keys in the tree. We then can calculate the minimum number
of keys that fit into one node and thus can estimate the maximal

number of nodes that we need to store the data. One possibility to
overcome this problem is to leverage the idea of a CSB-Tree [17]
to use a mix of pointers and offset arithmetics (e.g., one pointer per
node) to identify the correct child and thus allow multiple blocks
of memory instead of one single block.

4.2.3 Cost Analysis

We suggest to set the size of a node of a CS-Prefix-Tree at most
to the size of the L2 cache. Thus for propagating a bulk of string
values from the root of a CS-Prefix-Tree to the leaves, we theoreti-
cally expect to get one L2 data cache miss (in our simplified cache
model) for each node that is traversed during the lookup for each
string value and another L2 data cache miss when the value is writ-
ten to the corresponding buffer of the leaf (which should also be
designed to fit into the cache). Moreover, the generation of new
codes and the encoding itself will each cause one L2 data cache
miss for each leaf in the leaf level (if the leaf and the output buffer
fit in the L2 cache together).

The costs for encoding a bulk that contains no new string values
(i.e., a pure lookup) is composed of the costs for propagating the
strings through the tree plus the costs of the lookup in the leaf. If
we assume that all strings in the lookup probe have the same length
and are distributed uniformly, the height of the tree is logk(s/l)
(where s is the total number of strings, l is the number of strings
that fit in one leaf, and k the number of keys that fit into one node).
The lookup costs on each node are O(log(k)). Thus, the average
costs for propagation are:

O(s ∗ logk(s/l) ∗ log(k))

Compared to the CS-Array-Trie, it is more expensive to build a
CS-Prefix-Tree because the data has to be sorted first and then the
CS-Prefix-Tree is loaded bottom-up as opposed to the CS-Array-
Trie that is loaded top-down and implicitly sorts the data during
that process. We show in our experiments that the CS-Prefix-Tree
performs slightly better than the CS-Array-Trie for a pure lookup
workloads (i.e., encoding a bulk of strings that does not contain
new values) since on average the tree is expected to be less high
than the trie and the leaves are organized more compact.

4.2.4 Parallelization

Our current implementation supports multiple threads at the leaf
level. Once the bulk is completely buffered at the leaves, the lookup
can be executed in parallel as described for the CS-Array-Trie.
Since we want to support variable length keys we cannot parallelize
the bottom-up bulk loading of the tree.
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Currently, the bulk lookup on the index is single threaded since
we are not buffering the requests within the tree and thus have no
point to easily distribute the workload to multiple threads. One
way to parallelize the lookup would be to partition the bulk be-
fore accessing the index and process these partitions using multiple
threads. Since the buffers at the leaf level would then be shared by
several threads, either locking would be needed or the partitioning
has to be done according to the sort order, which is expensive.

5. PERFORMANCE EXPERIMENTS
This section shows the results of our performance experiments

with the prototype of our string-dictionary (i.e., the leaf structure
discussed in Section 3 and the cache conscious indexes discussed
in Section 4). We executed three experiments: the first experiment
(Section 5.1) shows the efficiency of our leaf structure and com-
pares it to other read-optimized indexes5, the second experiment
(Section 5.2) examines the two new cache conscious indexes using
different workloads, and finally the last experiment (Section 5.3)
shows the overall performance and scalability of our approach.

We implemented the data structures in C++ and optimized them
for a 64-bit Suse Linux Server (kernel 2.6.18) with two Intel Xeon
5450 CPUs (each having four cores) and 16 GB of main memory.
Each CPU has two L2 caches of 6MB (where two cores share one
L2 cache) and one L1 cache for each core with 32kB for data as
well as 32kB for instructions.

In order to generate meaningful workloads, we implemented a
string data generator that allows us to tune different parameters like
the number of strings, string length, alphabet size, the distribution,
and others. We did not use the TPC-H data generator dbgen, for
example, because most string attributes either follow a certain pat-
tern (e.g., the customer name is composed of the prefix ’Customer’
and a unique number) or the domain size of such attributes is too
low (e.g., the name of a country). Thus the data generated by dbgen

does not allow us to generate workloads that let us analyze our data
structures with workloads that have certain interesting properties.
We will show the properties of the workloads that we generated for
each experiment individually.

5.1 Efficiency of Leaf Structure
In this experiment, we analyze the efficiency of the leaf struc-

ture discussed in Section 3. The general idea of this experiment
is to show the performance and memory consumption of the leaf
operations for two different workloads. We used the parameters in
the following table to configure the leaf structure (first part) and to
generate our workloads (second part).

Parameter Value

Leaf-size l 64kB - 16MB
Offset-size o 4 bytes
Code-size c 8 bytes
Prefix-size p 1 byte
Decode-interval d 16
String-length (1) 25, (2) 100
String-number (1) ∼ 450000, (2) ∼ 150000
Alphabet-size 128
Distribution Distinct (unsorted)

The two different workloads ((1) and (2)) were designed that
each of these workloads fits into a leaf with a size of 16 MB while

5We used PAPI to measure the performance counters:
http://icl.cs.utk.edu/papi/.

each workload uses a different fixed string-length and thus repre-
sents a different number of strings. We only used distinct unsorted
workloads (i.e., no skew) because these workloads represent the
worst case for all lookup operations (i.e., each string value/integer
code of the leaf is encoded/decoded once for each workload). We
used each of these workloads to load a set of leaves that hold the
workload in a sorted way while for each workload we used differ-
ent leaf sizes varying from 64kB to 16MB (resulting in a different
set of leaves for each combination of workload and leaf size).

The first goal of this experiment is to show the costs (of the bulk
loading and bulk lookup operations) caused by the different work-
loads (of approximately the same size in memory) using leaves with
different sizes without the overhead of an encoding and decoding
index on top (by simulating the pure lookup on the leaves). We
measured the time as well as the L2 cache misses that resulted from
executing the bulk loading of the leaves and executing the lookup
operations for encoding as well as decoding.

In order to load the leaves, we first sorted the workloads and then
bulk loaded each leaf up to its maximal size (see Section 3). After-
wards, we generated the integer codes for these leaves. As shown
in the table before, we use 8 bytes for the integer code in this ex-
periment to show the memory consumption expected for encoding
attributes with a large domain size. In order to measure the pure
lookup performance of the leaf structures, we assigned each string
value of the workloads mentioned above to the corresponding leaf
using a buffer and then we looked up the code for each string in the
individual buffers (i.e., we created a corresponding encoded work-
load for each leaf). Finally, we used the encoded workload to exe-
cute the lookup operation (in the same way as described before) on
the leaves to decode the integer codes again.

A second goal of this experiment is to show a comparison of
the 16MB leaf structure (which can be used for encoding as well as
for decoding) and two cache-conscious read-optimized index struc-
tures using the workloads (1) and (2): for encoding the string values
we compare the leaf structure to the compact-chain hash table [4]
and for decoding integer codes we compare the leaf structure to the
CSS-tree [16].

The main results of this experiment are that (1) the leaf structure
is optimal when having a medium size (∼ 512kB) and (2) the per-
formance of our leaf structure is comparable to the read-optimized
index structures mentioned above while using less memory:

• Figure 7 (a) shows the time and memory that is needed to
bulk load the leaf structure (of 16MB size) compared to bulk
loading the compact-chain hash table and the CSS-tree. As a
result, we can see that bulk loading the leaf structure is faster
for both workloads (i.e., string length 25 and 100) and uses
less memory compared to the compact-chain hash table and
the CSS-tree.

• Figure 7 (b) shows that the time and the L2 data cache misses
(L2CM) for encoding the two workloads of this experiment
(using the bulk loaded leaves) are increasing for large leaf
sizes. Moreover, in terms of performance we can see that
the 16MB leaf structure is comparable to the compact-chain
hash map (Map) while offering sorted access (i.e., the leaf
structure is a little slower).

• Finally, in Figure 7 (c) we can see that our leaf structure
is optimized for decoding: While decoding 450k strings of
length 100 using the smallest leaf size takes about 50ms, it
takes 200ms to encode them. Moreover, the L2 cache misses
for encoding are almost twice as high as for decoding these
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Figure 7: Performance and memory overhead of the leaf structure

strings. Finally, compared to the CSS-Tree (Tree) our 16MB
leaf structure is again only a little slower when used for de-
coding.

5.2 Efficiency of Encoding Indexes
This experiment shows the efficiency of our new encoding in-

dexes compared to an implementation of the list-trie that decom-
poses the strings completely (i.e., it does not use our leaf struc-
ture). The idea of this experiment is to show the costs for encod-
ing workloads that produce different update patterns on the indexes
(which cause different costs). Therefore, we first bulk load a dictio-
nary with 10m strings and afterwards encode another bulk of 10m
strings that represents a certain update pattern (details later). All
workloads consist of string values with a fixed length of 20 char-
acters (while the other parameters to generate the workload are the
same as in the experiment before). For the leaves we fixed the max-
imum leaf size to be 512kB (while the other leaf parameters are the
same as in the experiment before). As update patterns we used:

• No-updates: The second bulk contains no new strings.
• Interleaved 10%: The second bulk contains 10% new string

values where each 10th string in sort order is new.
• Interleaved 50%: The second bulk contains 50% new string

values where every other string in sort order is new.
• Interleaved 100%: The second bulk contains 100% new

string values whereas each new string is inserted between
two string values of the first bulk.

• Append: The second bulk contains 100% new string values
whereas all string values are inserted after the last string of
the first bulk.

The interleaved patterns cause higher costs (independent from
the index on top) because all leaves must be decompressed and
compressed again to apply the inserts of the new strings. Figure
8 shows the time to first bulk load the dictionary with 10m strings
and afterwards encode the other 10m strings for the different update
patterns (when we either use the CS-Array-Trie or the CS-Prefix-
Tree as the encoding index).

While the CS-Prefix-Tree is more expensive to bulk load (be-
cause we need to sort the complete input before bulk loading the
index) than the CS-Array-Trie (which supports efficient top-down
bulk loading), the workload which represents the no-update pat-
tern is faster on the CS-Prefix-Tree because the CS-Prefix-Tree is
(1) read-optimized and (2) not as high a the CS-Array-Trie. Fur-
thermore, in general a workload that is more update-intensive (i.e.,
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which has more new string values) has a better performance on
the CS-Array-Trie. Comparing the costs of our CS-Array-Trie to
the pure list-trie (that also uses buffers to speed-up the lookup of
bulks), we can see that our index performs much better.

5.3 Scalability of the Dictionary
This experiment shows the performance of our data structures for

unsorted workloads of different sizes with 1m up to 64m distinct
strings (with a fixed string length of 10). The remaining configu-
ration for data generation was the same as in Section 5.1. For the
leaves, we used the same configuration as in the experiment before.

Figure 9 shows the time for encoding these workloads using dif-
ferent encoding indexes for the dictionary (starting with an empty
dictionary). After encoding, we bulk loaded a decode index (i.e.,
a CSS-Tree) from the leaves of the encoding indexes and used the
encoded workloads that we created before for decoding. For exam-
ple, encoding 8m strings with the CS-Array-Trie takes 4.8s and the
decoding takes 1.9s (while using one thread for both operations).
We also scaled-up the number of threads (up to 16) to show the
effects of parallelization on the CS-Array-Trie. For example, us-
ing 8 threads reduces time for encoding 8m strings from 4.8s to
2s. Figure 9 does not show the results for 16 threads because the
performance slightly decreased compared to 8 threads due to the

294



 0.1

 1

 10

 100

 1  2  4  8  16  32  64

T
im

e
 (

lo
g
) 

[s
]

Millions of Strings (log)

CSATrie, enc
CSPTree, enc
CSATrie, dec

CSPTree, dec
CSATrie, enc, 4T
CSATrie, enc, 8T

Figure 9: Scalability of the Dictionary

overhead for thread synchronization. Moreover, pinning individual
threads to a single CPU to avoid thread migration did not improve
the performance as well.

6. RELATED WORK
There has been recent work on dictionary compression in column-

stores [1, 12, 24]. As mentioned before, this work focuses on small
dictionaries for attributes with a stable domain size. Other work on
dictionary compression of strings [2, 8] generates variable-length
integer keys to support the order-preserving encoding of attributes
with a variable domain size. However, none of this work addresses
the problem of efficiently encoding a huge set of variable-length
string values using fixed-length integer keys and how to efficiently
support updates on such a dictionary without having to re-encode
all existing data. Furthermore, to the best of our knowledge, there
exists no work that exploits the idea of different indexes sharing the
same leaves.

Moreover, there exists a lot of work on cache-conscious indexes
and index compression for numerical data [16, 17, 10, 14, 11].
However, not much work is focused on cache-conscious indexing
of string values. Compared to our indexes, [3] presents a cache-
conscious trie that holds the string values in a hash table as its
leaf structure and thus does not hold the strings in sort order. [5]
presents a string index that holds the keys in sort order but is not
designed to be cache-conscious.

An area that is also generally related to our work is the work on
indexing in main memory databases [7, 9]. Finally, we applied the
ideas of [22] for buffering index lookups to increase cache locality
to our indexes and showed the benefits that buffering can also help
for bulk loading these indexes.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown an approach for efficiently using

dictionaries for compressing a large set of variable-length string
values with fixed-length integer keys in column stores. The dic-
tionary supports updates (i.e., inserts of new string values) without
changing codes for existing values in many cases. Furthermore,
we have presented a new approach for indexing such a dictionary
(called shared-leaves) that compresses the dictionary itself while
offering efficient access paths for encoding and decoding. We also

discussed a concrete leaf structure and two new cache-conscious
indexes that can leverage the shared-leaves indexing approach.

As a part of our future work we plan to investigate different or-
der preserving encoding schemes that are optimal for certain up-
date patterns. Moreover, we want to analyze how to efficiently per-
sist the dictionary data. Finally, the distribution of the dictionary
over different nodes is very important for efficiently supporting the
scale-up of the data in column stores.
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