
Rethinking Main Memory OLTP Recovery

Nirmesh Malviya #1, Ariel Weisberg .2, Samuel Madden #3, Michael Stonebraker #4

MIT CSAIL * VoltDB Inc.

1nirmesh@csail.mit.edu 2aweisberg@voltdb.com 3madden@csail.mit.edu 4stonebraker@csail.mit.edu

Abstract-Fine-grained, record-oriented write-ahead logging,
as exemplified by systems like ARIES, has been the gold standard
for relational database recovery. In this paper, we show that

in modern high-throughput transaction processing systems, this
is no longer the optimal way to recover a database system. In
particular, as transaction throughputs get higher, ARIEs-style
logging starts to represent a non-trivial fraction of the overall
transaction execution time.

We propose a lighter weight, coarse-grained command logging
technique which only records the transactions that were executed
on the database. It then does recovery by starting from a trans
actionally consistent checkpoint and replaying the commands
in the log as if they were new transactions. By avoiding the
overhead of fine-grained logging of before and after images (both
CPU complexity as well as substantial associated 110), command
logging can yield significantly higher throughput at run-time.
Recovery times for command logging are higher compared to
an ARIEs-style physiological logging approach, but with the
advent of high-availability techniques that can mask the outage
of a recovering node, recovery speeds have become secondary in
importance to run-time performance for most applications.

We evaluated our approach on an implementation of TPC
C in a main memory database system (VoltDB), and found that
command logging can offer 1.5 x higher throughput than a main
memory optimized implementation of ARIEs-style physiological
logging.

I. INTRODUCTION

Database systems typically rely on a recovery subsystem to

ensure the durability of committed transactions. If the database

crashes while some transactions are in-flight, a recovery phase

ensures that updates made by transactions that committed

pre-crash are reflected in the database after recovery, and

that updates performed by uncommitted transactions are not

reflected in the database state.

The gold standard for recovery is write-ahead logging

during transaction execution, with crash recovery using a com

bination of logical UNDO and physical REDO, exemplified by

systems like ARIES [20] . In a conventional logging system like

ARIES, before a modification to a database page is propagated

to disk, a log entry containing an image of the modified

data in the page before and after the operation is logged.

Additionally, the system ensures that the tail of the log is

on disk before a commit returns. This makes it possible to

provide the durability guarantees described above.

There is an alternative to ARIES-style logging, however.

Suppose during transaction execution, instead of logging

modifications, the transaction's logic (such as SQL query

statements) is written to the log. For transactional applications

that run the same query templates over and over, it may in fact

be possible to simply log a transaction identifier (e.g. , a stored

procedure's name) along with the query parameters; doing so

also keeps the log entries small. Such a command log captures

updates performed on the database implicitly in the commands

(or transactions) themselves, with only one log record entry per

command. After a crash, if we can bring up the database using

a pre-crash transactionally-consistent snapshot (which may or

may not reflect all of the committed transactions from before

the crash), the database can recover by simply re-executing the

transactions stored in the command log in serial order instead

of replaying individual writes as in ARIES-style physiological

logging.

Compared to physiological logging, command logging oper

ates at a much coarser granularity, and this leads to important

performance differences between the two approaches. Gener

ally, command logging will write substantially fewer bytes

per transaction than physiological logging, which needs to

write the data affected by each update. Command logging

simply logs the incoming transaction text or name, while

physiological logging needs to spend many CPU cycles to

construct before and after images of pages, which may require

differencing with the existing pages in order to keep log

records compact. These differences mean that physiological

logging will impose a significant run-time overhead in a

high throughput transaction processing (OLTP) system. For

example, as shown by [7] , a typical transaction processing

system (Shore) spends 10-20% of the time executing TPC-C

transactions (at only a few hundred transactions per second) on

ARIES-style physiological logging. As transaction processing

systems become faster, and more memory resident, this will

start to represent an increasingly larger fraction of the total

query processing time. For example, in high throughput data

processing systems like H-Store [28] , RAMCloud [21] and

Redis [27] , the goal is to process many thousands of trans

actions per second per node. To achieve such performance,

it is important that logging be done efficiently. Up to this

point, it has been an open question as to whether disk-based

logging can even be used in such a system without sacrificing

throughput. In this paper we show definitively that it is quite

feasible!

It is also relevant to look at recovery times for the two

logging approaches. One would expect physiological logging

to perform recovery faster than command logging; because in

command logging, transactions need to be re-executed com

pletely at recovery time whereas in ARIES-style physiological

logging, only data updates need to be re-applied. However,

given that failures are infrequent (once a week or less),

recovery times are generally much less important than run-time

978-1-4799-2555-1114/$31.00 © 2014 IEEE 604 ICDE Conference 2014

performance. Additionally, any production OLTP deployment

will likely employ some form of high-availability (e.g. , based

on replication) that will mask single-node failures. Thus,

failures that require recovery to ensure system availability are

much less frequent.

In this paper, our goal is to study these performance trade

offs between physiological logging and command logging

in detail. We describe how command logging works, and

discuss our implementation of both command logging and a

main-memory optimized version of physiological logging in

the VoltDB main memory open-source database system [30]

(VoltDB is based on the design of H-Store [28]). We compare

the performance of both the logging modes on two transac

tional benchmarks, Voter and TPC-C.

Our experimental results show that command logging has

a much lower run-time overhead compared to physiological

logging when (a) the transactions are not very complex and

only a small fraction of all transactions are distributed, so that

CPU cycles spent constructing the differential physiological

log record and the disk 110 due to physiological logging

represent a substantial fraction of transaction execution time;

and (b) the size of a command log record written for a

transaction is small and the transaction updates a large number

of data tuples, because physiological logging does much more

work in this case. In our experiments, we found that for TPC

C, which has has short transactions that update a moderate

number of records, the maximum overall throughput achieved

by our system when command logging is used is about 1.5 x
higher than the throughput when physiological logging is

employed instead, a result in line with the plot's prediction.

Also for TPC-C, we found that recovery times, as expected,
are better for physiological logging than command logging,

by a factor of about l.5.

Given this high level overview, the rest of this paper is

organized as follows. We begin with a short discussion of

VoltDB's system architecture in Section II. We then describe

our approach to command logging in Section III, followed by a

detailed description of our main-memory adaptation of ARIES

style physiological logging in Section IV . Subsequently, we

report extensive performance experiments in Section V and

discuss possible approaches to generalize command logging

in Section V I. Section V II provides an overview of relevant

past work in this area, and Section V III summarizes the paper.

II. VOLTDB OVERVIEW

VoltDB is an open source main memory database system

whose design is based on that of the H-Store system [28] ,

with some differences. Below, we give a brief overview of

VoltDB's system architecture.

A. Partitions and Execution Sites

VoltDB is a distributed in-memory database which runs on a

cluster of nodes. In VoltDB, a table is horizontally partitioned

on keys; each partition resides in the main memory of a

cluster node and can be replicated across several nodes for

high availability. All indexes are also kept in main memory

along with the partition. Every node in the cluster runs multiple

execution sites (e.g. , one per CPU core), with each partition on

the node assigned to one such site. Each node has an initiator

component which sends out transactions to the appropriate

partitions/replicas. By employing careful, workload-aware par

titioning, most transactions can be made single-sited (run on

just a single partition) [24] .

B. Transactions

Transactions in VoltDB are issued as stored procedures that

run inside of the database system. Rather than sending SQL

commands at run-time, applications register a set of SQL

based procedures (the workload) with the database system,

with each transaction being a single stored procedure. This

scheme requires all transactions to be known in advance, but

for OLTP applications that back websites and other online

systems, such an assumption is reasonable. Encapsulating

all transaction logic in a single stored procedure prevents

application stalls mid-transaction and also allows VoltDB to

avoid the overhead of transaction parsing at run-time. At

run-time, client applications invoke these stored procedures,

passing in just the procedure names and parameters.

All transactions in VoltDB are run serially at the appropriate

execution site(s). Because OLTP transactions are short, typi

cally touch only a small number of database records, and do

not experience application or disk stalls, this is actually more

efficient than using locking or other concurrency control mech

anisms which themselves introduce significant overhead [11] .

VoltDB supports distributed and replicated transactions by

running all transactions in a globally agreed upon order. Since

only one transaction can run at a time at each execution site, a

transaction that involves all partitions will be isolated from all

other transactions. If a transaction operates at a single partition,

it is isolated from other transactions because the execution

site owning the partition is single threaded and all replicas

of the partition/site run transactions in the globally agreed

upon order. Even if one or more sites do not respond to a

transaction request (e.g. , because of a crash), the transaction

will be executed as long as a one replica of each partition

involved in the transaction is available.

Below, we briefly explain how transaction ordering works

in VoltDB.

1) Global Transaction Ordering and Replication: In

VoltDB, a database component called an initiator receives

client requests and dispatches transactions to the appropriate

execution sites; the pool of initiators consists of one initiator

for each node. Each initiator generates unique timestamp

based transaction-ids that are roughly synchronized with those

generated by other initiators using NTP. At each execution site,

transactions received from an initiator are placed in a special

priority queue, which ensures that only tasks that are globally

ordered and safely replicated are executed.

For global ordering, this is done by checking if the id

of a transaction in the queue is the minimum across prior

transactions received from all initiators. Since initiators uses

605

timestamps to generate monotonically increasing transaction

ids and messages to the priority queue are TCP ordered, the

minimum transaction-id can be used to determine when the

position of a transaction in the global order is known. If a

transaction is not globally ordered, it is held in the queue

until its position in the global order is known.

Replication follows a similar process, but in reverse: ini

tiators inform the transaction execution sites of the minimum

safely replicated transaction-id for transactions from that ini

tiator. If a transaction-id is greater than the safely replicated

transaction-id for that initiator, the site holds the transaction

in the queue until it is replicated.

This global ordering and replication information propagates

via new transaction requests and their responses and not as

separate messages. In the event of light transaction load,

heartbeats (no-op transactions) are used to prevent stalls.

We note that a recently released version of VoltDB does

ordering differently, above we have described how global

transaction ordering works in the system we have used to

implement our recovery approaches.

C. Durability

The VoltDB mechanisms discussed above result in very

high transaction throughputs (about 4K transactions per second

per core on TPC-C), but durability is still a problem. In the

event of a single node failure, replicas ensure availability

of database contents. Additionally, VoltDB uses command

logging (described in Section III), along with a non-blocking

transaction-consistent checkpointing mechanism to avoid loss

of database contents in the event of power failure or other

cluster-wide outage.

To deal with scenarios where a transaction must be rolled

back mid-execution, VoltDB maintains an in-memory undo log

of compensating actions for a transaction. Thus, transaction

savepoints (partial rollback) are also supported; this is possible

because any partial rollback for a deterministic transaction

will also be deterministic. The undo log is separate from the

command log and is never written to disk. It is discarded on

transaction commit/abort because it can be regenerated when

the transaction is replayed.

1) Asynchronous Checkpointing: VoltDB's checkpoint

mechanism periodically writes all committed database state

to disk (index updates are not propagated to disk). Before

starting the snapshot, a distributed transaction is used to start

the snapshot by putting all of the sites into a copy-on-write

(COW) mode. The snapshot process then begins scanning

every row in the table, while queries continue to execute

on the database. All updates from this point until the end

of the snapshot are COW if they are performed on a row

that hasn't been scanned for the snapshot yet. Specifically,

three bits per row track whether the row was added, deleted,

or modified since the snapshot began (these bits are not a

part of the snapshot). Newly added rows are skipped by the

snapshot. Deleted rows are removed by the snapshot after they

have been scanned. Updates cause the row to be copied to a

shadow table before the update is applied, so the snapshot

can read the shadow version (as with deletes, the shadow

version is removed after the checkpoint process scans it). A

background process serializes the snapshot to disk, so there

is no need to quiesce the system and the checkpoint can be

written asynchronously. When one such sweep is done, and

the background process has completed its scan, the executor

returns to regular mode.

This checkpointing mechanism, although somewhat VoltDB

specific, can be easily generalized to any database system that

uses snapshots for isolation, since the copy-on-write mode is

very similar to the way transaction isolation is implemented

in snapshot-isolation based systems.

Having a transaction-consistent checkpoint is crucial for

the correctness of the command logging recovery protocol,

as we shall discuss in the next section which details how our

implementation of command logging in VoltDB works.

III. COMMAND LOGGING

The idea behind command logging is to simply log what

command was issued to the database before the command

(a transaction for example) is actually executed. Command

logging is thus a write-ahead logging approach meant to persist

database actions and allow a node to recover from a crash.

Note that command logging is an extreme form of logical

logging, and is distinct from both physical logging and record

level logical logging. As noted in Section I, the advantage of

command logging is that it is extremely lightweight, requiring

just a single log record to be written per transaction.

For the rest of this paper, we assume that each command is

a stored procedure and that the terms command logging and

transaction logging are equivalent. The commands written to

the log record in a command logging approach thus consist

of the name of a stored procedure and the parameters to

be passed to the procedure. For stored procedures that must

generate random numbers or call non-deterministic functions

such as date () /time (), a timestamp based transaction-id

(see Section II) can be used as the seed for the generator and

for extracting the date/time.

Generally speaking, stored procedure names are likely to

be substantially smaller than entire SQL-queries, so this

serves to reduce the amount of data logged by command

logging. Specifically, an entry in the log is of the form

(transaction-name, parameter-values).

A. Writing to the Log

Writing a command log record for a single-partition trans

action is relatively simple. For a distributed transaction, only

the coordinator site specific to the transaction writes the

transaction to its command log; all other sites participating

in the transaction do not log the transaction. The coordinator

for a distributed transaction is the site with the lowest id on the

node where the transaction was initiated. Multiple execution

sites on the same node write to a shared command log. For

both single and multi-sited transactions, if replicas are present,

the transaction is also logged at all replicas of the site. The

606

check-sum LSN record-type xaction-id partition-id xaction-type params I

Fig. 1 . Command logging record structure.

command log for each node also records transaction ordering

messages sent/received by the node's initiator at runtime.

Transactions are written to the command log right away

after they have been received, thus a transaction need not have

been globally ordered and replicated before it's written to the

log. This in turn requires that at recovery time, transactions be

sorted again in a manner that agrees with the global transaction

ordering at runtime. This is easy to accomplish because the

logged ordering messages are also replayed at recovery time.

In our VoltDB implementation of command logging, log

records written out for each transaction have the structure

shown in Figure 1.

1) Optimizations: Command log records can be flushed to

disk either synchronously or asynchronously. ACID semantics

can be guaranteed only with synchronous logging, because in

this case a log record for a transaction is forced to disk before

the transaction is acknowledged as committed. For this reason,

even though our implementation permits either mode, we

report results only for the synchronous mode and throughout

the rest of this paper, use the term command logging to mean

synchronous command logging.

To improve the performance of command logging, we

employ group-commit: the system batches log records for

multiple transactions (more than a fixed threshold or few

milliseconds worth) and flushes them to the disk together.

After the disk write has successfully completed, a commit

confirmation is sent for all transactions in the batch. This

batching of writes to the command log reduces the number

of writes to the disk and helps improve synchronous com

mand logging performance, at the cost of a small amount of

additional latency per-transaction.

B. Recovery

Recovery processing for the command logging approach

works as follows.

First, using the latest database snapshot on disk, database

contents are initialized in memory. Because the disk snapshot

does not contain indexes, all indexes are then rebuilt at start

up; this can be done in parallel with the snapshot restore

as index reconstruction for the part of the database that has

already been restored can begin while the rest of the database

finishes loading.

Next, the shared command log for each node is read by a

dedicated thread which reads the log into memory in chunks.

Starting from the log record for the first transaction not

reflected in the database, log entries are processed by the

node's initiator and the corresponding transaction is dispatched

to the appropriate sites (which may be on a different node in

case of a distributed transaction).

This recovery approach works even if the number of ex

ecution sites at replay time is different from the number of

sites at run-time, as long as the number of database partitions

remains the same. In the event of a site topology change, the

initiator replaying the log can simply send the transaction to

the new site for a given partition-id.

Given that each log record corresponds to a single trans

action and that the initiator has access to ordering messages

written to the command log at run-time, global ordering at

replay time is identical to the pre-crash execution ordering.

If a command log record for a transaction is written to the

log but the database system crashes before the transaction

completes executing (so that the client isn't notified), com

mand log replay will recover this transaction and bring the

database to a state as if this transaction had been committed,

even though the client won't be notified after replay (a similar

situation can happen in a conventional DBMS as well).

We further discuss how command logging could be ex

tended to other database systems in Section V I.

IV. PHYSIOLOGICAL LOGGING

Traditional database systems have typically employed

ARIES [20] or ARIES-like techniques for their recovery sub

system. ARIES does physiological logging; each operation

(insert/delete/update) performed by a transaction is written to a

log record table before the update is actually performed on the

data. Each such log entry contains the before and after images

of modified data. Recovery using ARIES happens in several

passes, which include an analysis pass, a physical REDO pass

and a logical UNDO pass.

While the core idea behind ARIES can be used in a main

memory database, substantial changes are required for the

technique to work in a main memory context. In addition, the

main-memory environment can be exploited to make logging

more efficient. Given the differences, throughout the rest of

this paper, we simply refer to our main memory optimized

ARIES-style logging technique as physiological logging.

Below, we discuss in detail the changes required and opti

mizations that must be made for main-memory physiological

logging to work well.

A. Supporting Main Memory

In a disk-based database, inserts, updates and deletes to

tables are reflected on disk as updates to the appropriate disk

page(s) storing the data. For each modified page, ARIES writes

a separate log record with a unique logical sequence number

(LSN) (a write to a page is assumed to be atomic [26]). These

log records contain disk specific fields such as the page-id

of the modified page along with length and offset of change.

This is stored as a RID, or record ID, of the form (page
#, slot #). A dirty page table, capturing the earliest log

record that modified a dirty page in the buffer pool is also

maintained. In addition, a transaction table keeps track of the

state of active transactions, including the LSN of the last log

record written out by each transaction. The dirty page and

transaction tables are written out to disk along with periodic

checkpoints.

607

Record-type Insert/Update/ Transaction-id
Delete

Modified Column
List

Fig. 2. Physiological logging record structure.

In a main-memory database like VoltDB, a data tuple can be

accessed directly by probing its main-memory location without

any indirection through a page-oriented buffer pool. Thus,

the ARIES logging structures can be simplified when adapted

to main-memory physiological logging; specifically, all disk

related fields in the log record structure can be omitted.

For each modification to a database tuple, our physiological

logging approach simply writes a unique entry to the log

with serialized before and after images of the tuple. Instead

of referencing a tuple through a (page #, slot #) RID,

the tuple is referenced via a (table-id, primary-key)
pair that uniquely identifies the modified data tuple. If a table

does not have a unique primary key and the modification

operation is not an insert, the entire before-image of a tuple

must be used to identify the tuple's location in the table either

via a sequential scan or a non-unique index lookup. For the

both the Voter and TPC-C benchmarks we use in our study, all

tables written to have primary keys except the TPC-C History

table which only has tuples inserted into it (see Section V-A

for schema details).

Use of persistent virtual memory addresses instead of

(table-id, primary-key) for in-memory tuple iden

tity is also an option [13] [8] , but we believe that it is not a good

choice as a unique identifier because a database in general

is not guaranteed to load a table and all its records at the

same virtual address on restart after a crash unless specifically

engineered to do so. Moreover, doing so limits potential

compaction over the table memory layout to minimize data

fragmentation.

1) Optimizations: In this section we describe a number of

optimizations to our physiological logging scheme.

Differential Logging. For tables with wide rows, a large

amount of log space can be saved by additionally recording

which attributes in the tuple were updated by a transaction,

with before and after images recorded for only those columns

instead of the entire tuple (this optimization does not apply to

inserts). The logging scheme is thus physiological - physical

with respect to the changes for a particular column and logical

with respect to which columns have been modified (similar to

the way ARIES records physical changes to logical page slots).

We found that that this dijferential logging optimization led to

a significant reduction in a log record's size for the TPC-C

benchmark (nearly 5x for TPC-C). However, we noticed that

this reduction came at the cost of increased CPU complexity to

construct log records, an overhead which becomes significant

at in-memory OLTP execution throughputs (we discuss the

implications of this observation in Section V).

Dirty Page Tracking. An in-memory database has no concept

of disk pages and so unlike ARIES, we do not need to

maintain a dirty page table. One option is to create a dirty

record table to keep track of all dirty (updated or deleted)

database records. For a write-heavy workload, though regular

snapshotting would keep the size of this table bounded, it can

grow to a fairly large size. Alternatively, we could eliminate

the separate dirty record table and instead simply associate a

dirty bit with each database tuple in memory. This dirty bit is

subsequently unset when the dirty record is written out to disk

as a part of a snapshot. Not storing the dirty record table results

in space savings, but depending on the checkpoint mechanism

in use, doing so can have significant performance impacts, as

we discuss next.

Checkpointing. Disk-based ARIES assumes fuzzy checkpoint

ing [18] to be the database snapshot mechanism. Fuzzy check

points happen concurrently with regular transaction activity,

and thus updates made by uncommitted transactions can also

be written to disk as a part of the checkpoint. In disk-based

ARIES, both the dirty page and transaction tables are flushed to

disk along with each checkpoint. The main memory equivalent

of this would be to write out the dirty record and transaction

tables with a checkpoint. Not having an explicit dirty record

table in such a scenario is inefficient, because prior to each

checkpoint, we would need to scan the in-memory database

to construct the dirty record table so it could be written along

with the checkpoint.

Alternatively, we could use transaction-consistent check

pointing [25] instead of fuzzy checkpointing. VoltDB already

uses non-blocking transaction-consistent checkpointing (see

Section II), so we leveraged it for our implementation. With

transaction consistent checkpointing, only updates from com

mitted transactions are made persistent, so that we can simply

keep track of the oldest LSN whose updates have not yet been

reflected on disk. Thus, the dirty record table is not needed at

checkpoint time.

Moreover, as explained in Section II-Cl, transaction

consistent checkpointing is also used by our system to ensure

correctness of command logging.

Log-per-node. In our VoltDB implementation of physiological

logging, execution sites on the same node write to a shared log

with arbitrary interleaving of log records from different sites.

The ordering of log records per site is still preserved. A field in

the log record identifies the partition the update corresponds to

(site-id to partition-id mapping is one-to-many as each site can

be host to more than one database partition). Having a shared

log for all sites as opposed to a log per-execution site makes

recovery much simpler, since the database is not constrained

to restarting with an identical partition-to-site mapping on a

given node. This is important, because if a node crash requires

a reconfiguration, or the database must be recovered on a

different machine from the one it was previously running

on, we may have a different number of sites and a different

partition-to-site mapping. However, the shared nature of the

log requires that all partitions previously residing together on

a node must still be on the same node for replay, even though

the number of sites on the node can be changed.

Batched writes. Because OLTP transactions are short, the

amount of log data produced per update in the transaction

608

is not enough to justify an early disk write given that the final

update's log record must also be flushed before the transaction

can commit. For this reason, its best to buffer all log records

for a single transaction and write them all to the log together.

Similar to ARIES, our physiological logging is synchronous,

so that log writes of a committed transaction are forced

to disk before we report back the transaction's status as

committed. Similar to command logging, our physiological

logging implementation uses group commit; writes from dif

ferent transactions are batched together to achieve better disk

throughput and to reduce the logging overhead per transaction.

The log record structure for our physiological logging

implementation in VoltDB is shown in Figure 2.

B. Recovery

Recovery using disk-based ARIES happens in three phases:

an analysis phase, a redo phase and an undo phase. The redo

pass is physical and the undo pass is logical.

Our physiological logging scheme for main-memory also

begins with an analysis phase, the goal of which is to identify

the LSN from which log replay should start. The redo pass

then reads every log entry starting from this LSN and reapplies

updates in the order the log entries appear. For each log entry,

the data tuple that needs to be updated is identified using the

(table-name, primary-key) pair and the serialized

after-image bytes in the log record are used to modify the tuple

appropriately (this covers insert and delete operations as well).

For the primary-key lookup identifying a tuple's location to be

fast, an index on the primary key is used at replay time. In

VoltDB, index modifications are not logged to disk at run-time,

so all indexes are reconstructed at recovery time in parallel

with snapshot reloading prior to log replay (see Section III).

Because log records corresponding to different partitions of

the database can be replayed in any order, the redo phase is

highly parallelizable. This optimization yielded linear scale up

in recovery speeds with the number of cores used for replay

(see Section V for performance numbers). Next comes the

undo pass. For transactions which had not committed at the

time of the crash, the undo phase simply scans the log in

reverse order using the transaction table and uses the before

image of the data record to undo the update (or deletes the

record in case it was an insert).

Recovery can be simplified for an in-memory database

such as VoltDB that uses transaction consistent checkpoint

ing and only permits serial execution of transactions over

each database partition. In such a system, no uncommitted

writes will be present on disk. Also, because transactions

are executed in serial order by the run-time system, log

records for a single transaction writing to some partition on

an execution site S are never interleaved with log records for

other transactions executed by S. Hence for each partition,

only the transaction executing at the time of crash will need

to be rolled back (at most one per partition). Even this single

rollback can be avoided by simply not replaying the tail of the

log corresponding to this transaction; doing so necessitates a

one transaction look-ahead per partition at replay time. Then

during crash recovery, no rollbacks are required and the undo

pass can be eliminated altogether (employing this optimization

reduced log record sizes by nearly a factor of two, as the before

image in update records could now be omitted). Also, with no

undo pass, the transaction table can be done away with.

Note that in databases other than VoltDB which use

transaction-consistent checkpointing but run multiple concur

rent transactions per execution site, the idea of simply not

reapplying the last transaction's updates for each site does not

work and an undo pass is required. This is because there could

be a mixture of operations from committed and uncommitted

transactions in the log.

V. PERFORMANCE EVALUATION

We implemented both command logging and ARIES-style

physiological logging inside VoltDB, with group-commit en

abled for both techniques. The logging is synchronous in

each case with both techniques issuing an fsync to ensure

that a transaction's log records are written to disk before the

results are returned. All performance optimizations discussed

in Sections III and IV were implemented and enabled for all

experiments except where we explicitly study the performance

impact of turning off a specific optimization. We implemented

an additional optimization for physiological logging, in which

all the log records for each transaction are first logged to

a local buffer, and then at commit time, written to the disk

in a batch along with records of other already completed

transactions. For OLTP workloads, this optimization adds a

small amount of latency but amortizes the cost of synchronous

log writes and substantially improves throughput. Also, we

ensured that the physiological logging implementation group

commits with the same frequency as command logging.

In this section, we show experimental results comparing

command logging against physiological logging. We study

several different performance dimensions to characterize the

circumstances under which one approach is preferable over the

other: run-time overhead (throughput and latency), recovery

time and bytes logged per transaction.

We also look at the effect of distributed transactions and

replication on performance of the two techniques.

In Section V-A, we briefly discuss the benchmarks we used

in our study. Then we describe our experimental setup in

Section V-B followed by performance results in Section V-C

Finally, we summarize our results and discuss their high level

implications in Section V-D.

A. Benchmarks

We use two different OLTP benchmarks in our study, Voter'

and TPC-C These two benchmarks differ considerably in their

transaction complexity. The work done by each transaction in

the Voter benchmark is minimal compared to TPC-C TPC-C

database tables are also much wider and exhibit more complex

relationships as compared to Voter.

The two benchmarks are described below.

I https:llcommunity.voltdb.com/node/47

609

1) Voter: The Voter benchmark simulates a phone based

election process. The database schema is extremely simple

and is as follows:

contestants (contestant_name STRING,
contestant_number INTEGER)

area_code_state (areacode INTEGER, state STRING)
votes (vote_id INTEGER, phone_number INTEGER,

state STRING, contestant_number INTEGER)

Given a fixed set of contestants, each voter can cast multiple

votes up to a set maximum. During a run of the benchmark,

votes from valid telephone numbers randomly generated by

the client are cast and reflected in the votes table. At the

end of the run, the contestant with the maximum number of

votes is declared the winner.

This benchmark is open-loop and has only one kind of trans

action, the stored procedure vote. This transaction inserts one

row into the votes table and commits. There are no reads to

the votes table until the end of the client's run, the other two

tables in the database are read as a part of the vote transaction

but not written to. In addition, the width of all the tables is

very small (less than 20 bytes each).

The number of contestants as well as the number of votes

each voter is allowed to cast can be varied. For our experi

ments, these are set to default values of 6 and 2 respectively.

2) TP C-C: TPC-C [29] is a standard OLTP system bench

mark simulating an order-entry environment.

The TPC-C database consists of nine different tables: Cus

tomer, District, History, Item, New-Order, Order, Order-Line,

Stock and Warehouse. These tables are between 3 and 21

columns wide and are related to each other via foreign key

relationships. The Item table is read-only.

The benchmark is a mix of five concurrent transactions of

varying complexity, namely New-Order, Payment, Delivery,

Order-Status and Stock-Level. Of these, Order-Status and

Stock-Level are read-only and do not update the contents of

the database. The number of New-Order transactions executed

per minute (tpmC) is the metric used to measure system

throughput.

The TPC-C implementation used to report numbers in

Section V-C differs from the standard benchmark in that (a) it's

open-loop, (b) New-order transactions do not read items from

a remote warehouse, so that the transactions are always single

sited. Performance numbers for multi-sited TPC-C New-order

transactions however are reported in Section V-C6.

As TPC-C simulates a real order-entry environment, the

benchmark description also mimics a human terminal operator

by adding keying times and think times for each transaction.

Our implementation of TPC-C does not take these into ac

count.

B. Experimental setup

All our experiments in Sections V-C 1-V-C5 were run on

a single Intel Xeon dual-socket 2.4 GHz 8-core server with

24GB of RAM, 12TB of hard disk with a battery backed write

cache and running Ubuntu Server. To improve disk throughput,

the disk was mounted with appropriate additional flags while

ensuring that data durability was not compromised; such a

careful setup is necessary to optimize either recovery system.

The client was run on a separate machine with a system

configuration identical to that of the server. We simulated

several clients requesting transactions from the server by

running a single client issuing requests asynchronously at a

fixed rate.

For our distributed transactions experiments in Sec

tion V-C6, we used a cluster of four identical machines, with

one machine used to run an asynchronous client and the other

three used as database servers. Each machine was an Intel

Xeon dual-socket 12-core server box with a processor speed

of 2.4GHz, 48GB of RAM, 4TB of hard disk space with a

battery backed cache and running Ubuntu Server.

Because the VoltDB server process runs on a multi-core ma

chine, we can partition the database and run several execution

sites concurrently, with each site accessing its own partition.

For an 8-core machine, we experimentally determined that

running six sites works best for the Voter benchmark and

more sites did not lead to increased throughput. For the TPC

C benchmark, we found that best performance is achieved by

using all possible sites (one per core). Each site corresponds

to one warehouse, so that the results to follow are for a TPC

C 8-warehouse configuration (except for Section V-C6, where

12 warehouses are used). While it's possible to fit a much

larger database (e.g. , 64 warehouses) given the server memory,

we found that the system throughput for a 64-warehouse

configuration was nearly the same as for the 8-warehouse

one (which is expected given that the entire database is in

memory in both cases). Given that the TPC-C database grows

in size over time as new transactions are issued, we chose a

smaller database to facilitate long running experiments without

running out of memory.

C. Results

All the experimental results we present below were obtained

by running our benchmarks against three different modes of

VoltDB: (a) command logging on and physiological logging

turned off, (b) physiological logging turned on and command

logging turned off, and (c) both command logging and phys

iological logging turned off.

For most direct performance comparisons between the

above three modes, we show plots with the performance metric

on the y-axis and the client rate on the x-axis. Doing so allows

us to compare performance of the three logging modes by

asking a simple question: what throughputllatency/recovery

rate do each of the logging modes have for a given amount of

work to be done per unit time (in this case a client attempting

to execute transactions at a certain rate)?

For all experiments, we set the system snapshot frequency

to 180 seconds. Increasing or lowering this value affects

performance of each logging mode equally as the system does

extra work in the background at runtime in all cases. The

rationale for setting the snapshotting frequency to the order of

a few minutes instead of seconds (or continuous) is that there

is substantial data on the log that must be replayed, which

610

120
�
'0 100
'"

D
C

� 80

� 60
�

i 40

� 20 '"
15 > 0

Command-logging -
Physiological-logging ------

No-logging

i
�
5

50

40

30

20

10

0

Command-logging -
Physiological-logging ------_.

No-logging

/
// /

//-,/

/
//

.---/"

�
15 '"

/, ... --
1"
�
2 '"
'"
i!
<:-

� a:

700

600

500

400

300

200

100

0

Command-logging -
Physiological-logging ------_.

0 � W 00 00 100 1� 1W 100 0 20 40 60 80 100 120 140 160 0 � W 00 00 100 1� 1W 100
Client rate (thousands of Ips) Client Rate (thousands of Ips) Client rate during run before crash (thousands of tps)

Fig. 3 . Voter throughput vs. client rate (both
tps).

Fig. 4. Voter latency in milliseconds vs. client
rate (tps).

Fig. 5. Voter log replay rates (tps).

G
E
.9- 1000 Command-logging -

Physiological-logging ------
No-logging

120 Command-logging -
Physiological-logging ------_.

G
E

1600

1400
Command-logging -

Physiological-logging --------
'0 100 No-logging .9-
'" 800 D
C

�
� 600

'5

i 400

� 200
()

� 80

g- 60

3 40

20

'0 1200 '"
D
C 1000 '" '"
� 800 �
� 600

'" 400

§ 200
()
a. 0 f- 0

'" a: 0
0 10 20 30 40 50 60 0 10 40 50 60 0 10 20 30 40 50

Client rate (thousands of Ips) Client Rate (thousands of Ips) Client rate during run before crash (thousands of tps)

Fig. 6. TPC-C throughput (tpmC) vs. client
rate (tps).

Fig. 7. TPC-C latency in milliseconds vs. Fig. 8. TPC-C log replay rates (tpmC).
client rate (tps).

makes measured recovery rates more reliable and offsets any

dominating replay startup costs that would affect the measured

numbers.

1) Throughput: Figure 3 shows the variation in system

throughput for the voter benchmark as the client rate is

varied from 25,000 transactions per second up to 150,000

transactions per second. All three logging modes (no-logging,

physiological-logging and command-logging) are able to

match the client rate until 80K tps at which physiological

logging tops out while the other two saturate at 95K tps. We

observe that the overhead of command logging is nearly zero.

Due to the extra CPU overhead of creating a log record based

on the insert row's serialized bytes during the transaction,

physiological logging suffers about 15% drop in maximum

throughput at run time. For more complex transactions, phys

iological logging has a higher performance penalty, as we see

next.

Figure 6 shows throughput measured in tpmC achieved by

the three logging modes for the TPC-C benchmark, as the

client rate varies from lOK up to 60K tps. Similar to the results

for the voter benchmark, command logging achieves nearly

the same throughput as the no logging scenario. However, here

physiological logging caps out at about 66% of the throughput

achieved by the other two. In other words, command logging

provides about 1.5 x more throughput than physiological log

ging for the TPC-C benchmark. This is expected behavior be

cause TPC-C transactions are much more complex than voter

transactions, and each one potentially updates many database

records. Extra CPU overhead is incurred in constructing log

record for each of these inserts/updates, and the amount of

logged data also increases (see Section V-C3 for numbers).

The penalty on Voter is lower because the number of log writes

for the vote transaction is small (just one).

Both approaches have short transactions, do better with

command logging, but TPC-C performs more updates per

transaction, and is favored more heavily by command logging.

2) Latency: The variation of transaction latency with client

rates for the voter benchmark is shown in Figure 4. For

client rates less than 50K tps, the system runs well under its

capacity and all logging methods result in a 5-7ms latency.

Note that this latency is dependent on the group commit

frequency, which was fixed at 5ms for this experiment (ob

tained by varying group commit frequencies is an independent

experiment, elided due to space constraints). The latencies

for all methods gradually increase as the database server

approaches saturation load. Command-logging has almost the

same latency as no-logging whereas physiological-logging has

a 15% higher latency. The higher transaction latencies for

client rates greater than the saturation load result from each

transaction waiting in a queue before it can execute. The

queue itself only allows a maximum of 5,000 outstanding

transactions, and the admission control mechanism in VoltDB

refuses to accept new transactions if the queue is full.

In Figure 7, we see that TPC-C performs similarly, except

that physiological logging reaches saturation at about 21K tps,

so that its latency goes up much earlier. The other two logging

modes hit saturation latencies at client rates higher than 30K

tps and both have about the same latency. Due to extra logging

overhead, physiological logging suffers from latencies that are

at least 45% higher for all client rates.

3) Number of Bytes Logged: As noted earlier, the voter

benchmark only has one transaction (the stored procedure

vote). For each transaction initiated by the client, command

logging writes a log record containing the name of this stored

procedure and necessary parameters (phone number and state)

along with a log header. We found that the size of this log

record is always 55 bytes. On the other hand, physiological

logging directly records a new after-image (insert to the votes

table) to the log along with a header, and writes 81 bytes

per invocation of vote. This transaction only inserts data, so

611

60

that the before-image does not exist. Moreover, as discussed

in Section IV , before images can be done away with in any

case. For voter, both the logging techniques only write one

log record per transaction.

The TPC-C benchmark has three different transaction types

which update the database: delivery, neworder and payment.

The above mentioned three different transaction types for

TPC-C together modify 8 out of 9 tables in the TPC-C

database (the item table is read-only). Modifications include

insert, update as well as delete operations on tables. In many

cases, only 1 record is modified per transaction for each table,

but the neworder , orders, order-line and stock tables have

either 10 or 100 records modified per transaction for certain

operations.

For command logging, the three transactions write between

50 (delivery) and 170 (neworder) bytes per transaction (there is

only one log record per transaction). The neworder transaction

logs the highest number of bytes, which is not surprising

given that neworder is the backbone of the TPC-C workload.

Depending on the table that is updated, log record sizes

for physiological logging vary from 70 bytes (New-Order

table) to 240 bytes (Customer table) per record, with most

log records less than 115 bytes in size. Overall, for TPC

C, physiological logging writes about lOx more data per

transaction in comparison to command logging (averaged over

the three transaction types).

4) Log Record Size vs Peiformance: Because physiological

logging writes so much more data than command logging

on TPC-C, we wanted to test if the run-time performance

difference between the two systems on this benchmark was

completely attributable to I/O time. We ran an experiment

in which we truncated the size of physiological logging

records written out per transaction to L OO bytes, which is

approximately what command logging writes on an average for

a TPC-C transaction. The resulting recovery log is unrecover

able/corrupt, but this is not important for the purposes of this

experiment. We found that physiological logging throughput

slightly increases by a mere 1 %, and command logging wins

by nearly the same factor.

Thus, the performance gap at run-time between command

logging and physiological logging is a result of not only the

extra disk I/O that physiological logging needs to do to write

larger records to disk, but also of the higher CPU overhead

incurred in logging activities during transaction execution. As

discussed in Section IV , this overhead incurred by physiologi

cal logging is due to CPU cycles spent generating I/O efficient

differential log records. While the CPU complexity of creating

log records is not a new phenomenon, it becomes significant at

main-memory OLTP speeds, where the actual work performed

by each transaction is small and completes in tens to hundreds

of microseconds.

5) Recovery Times: After a server node crashes and is

brought up again, it must recover to its initial state by first

reading the latest database snapshot into memory with indexes

rebuilt in parallel and then replaying log records. For both

voter and TPC-C, snapshot restore and index reconstruction

take the same amount of time irrespective of the logging mode

being used. If no logging was done at run-time, all transactions

executed after the last snapshot was written to disk will be

permanently lost. Hence, our recovery performance numbers

are for command logging and physiological logging only. Our

implementations for both the logging modes are optimized

to do parallel log replay, each execution site reads from the

shared recovery log and replays all log records corresponding

to its site.

Figure 5 shows the log replay times for the two logging

modes for voter. During recovery, the system replays the log

at maximum speed but does not serve new client transactions

simultaneously, naturally this way recovery rate is not a

function of previous load. Command logging must actually re

execute each transaction, and we see that its L OOK tps recovery

rate is about the same as the maximum throughput it can

achieve at run-time (seen earlier in Figure 3). On the other

hand, for voter, physiological logging is able to replay the log

almost 5 x faster at about 500K tps. This difference is due

to the fact that physiological logging directly records each

transaction's modifications to the log at run-time. It does not

have to repeat its reads or transaction logic during recovery

and is able to recover much faster. The simplicity of voter

transactions ensures that the physiological logging overhead

of parsing each log record and reapplying the relevant updates

is small.

In Figure 8, we see that even for the TPC-C benchmark,

physiological logging also replays at a faster rate compared

to command logging. Command logging can only recover

at about 865K tpmC, which is also its maximum run-time

throughput on an average (Figure 6). However owing to the

increased complexity of TPC-C transactions, physiological

logging replay is only about l.5 x faster than command

logging for TPC-C as opposed to the 5 x speedup for the much

simpler voter benchmark.

While command logging has a longer recovery time, it's im

pact on availability is minimal because all modern production

OLTP systems are engineered to employ replication for high

availability, so that the higher throughput of command logging

at run-time is a good tradeoff for it's slower background

recovery while the other replica nodes continue to serve live

traffic.

Recovery numbers in the two plots just discussed are for

log replay only and do not include log read times. Once a

database snapshot has been restored from disk, the log is read

in chunks by a single execution site and thereafter shared by all

sites on the node during replay; this applies for both command

logging and physiological logging. For both Voter and TPC-C,

the log read in case of command logging added less than 1 %

extra overhead to the replay time, due to small log records

and relatively high per-transaction replay times. Log reads in

physiological logging, in contrast, add a 30% overhead to voter

replay times and about 8% overhead to TPC-C, due to larger

log records and faster re-execution times.

6) Distributed Transactions and Replicated Partitions: As

we noted in Section I, OLTP transactions have become shorter

612

ID ID

� 1 0000 ���������---�
Command-logging -

� 1 0000 �-�-��--�---�
Command- logging -� Physiological- logging � Physiological- logging

No- logging .. N o- logging ..

1 000
--.-.�. __

.

' " " �
1 0

0% 1 % 1 0% 1 00% 0% 1 % 1 0 % 1 00%

u o
:;;
<n
"2
8 Q)
0::

Command
Logging
Preferred , - ' - Physiological

, - ' Logging
, - , , - Preferred

x TPC-C ' -� x TPC-C
� , - / wi added latency
� , - ' (aka TPC-C i n
z , ,)(" Voter 1 989)

Transaction Length
% of d istributed N ew-order transactions - log scale % of distributed New-o rder transactions - log scale

Fig. 9. TPC-C New-order run-time throughput
(tpmC) vs. % of distributed transactions for a
single-node multi-site setup.

Fig. 10. TPC-C New-order run-time through
put (tpmC) vs. % of distributed transactions for
a multi-node 3-way replicated multi-site setup.

Fig. 1 1 . Illustration of when command log
ging is preferred over write-ahead physiologi
cal logging, with experimental results overlaid.

as processors have gotten faster and RAM sizes of tens of

gigabytes have become routine . In this section, we increase

the average transaction length by varying the fraction of

distributed transactions in the workload and see how run-time
performance of each of the three logging approaches changes

as we do so. Our hypothesis is that a longer transaction

length should make physiological logging look better, because

logging will represent a small fraction of the total work the

transaction does.

For all our experiments in this section, we use a modified

TPC-C benchmark consisting of 1 00% New-Order transactions
and vary the fraction of multi-partition New-Order transac

tions. The methodology behind doing so is as follows. In

TPC-C New-Order, an order has between 5 to 15 items,

for an average of 1 0. Each item can come from a remote

warehouse with x% probability (default is 1 %, we vary this) .

Our TPC-C New-order table is partitioned on warehouse-id,
so for a New-order transaction to be multi-partition, at least

one of the items must come from a remote warehouse, and

thus the probability that a transaction is distributed can be

approximated as 1 - (1 - 1�0)
1 0

.

As mentioned in Section V-B, we use a slightly dif

ferent cluster setup for running our distributed transac
tionsireplication experiments. As servers we use for these

experiments have 1 2 cores each, we employ a configuration

with 1 2 execution sites per server node . Our New-order table

is partitioned on warehouse id, and we let each warehouse

partition be owned by an execution site, so that New-order

transactions with an item from a remote warehouse are always
multi-partition.

We start with results for a system setup similar to re

sults presented previously: an asynchronous client issuing

transactions at maximum speed to a single server node with

multiple execution sites with no replication. Figure 9 shows

throughput numbers for this case as we increase the num

ber of multi-partition transactions (latency plots are omitted
due to space constraints, but latency is inversely related to

throughput as shown in previous results.) Because throughput

drops dramatically with even a small fraction of distributed

transactions, both axes on the plot are in log scale with

the 0% x-label (only single-sited transactions) approximated
as 0. 1 % on the plot. Here the numbers for no distributed

transactions (x = 0) are in agreement with those seen in

earlier sections, with command logging having a throughput of

2AM tpmC (slightly below that of no-logging at 2.6M tpmC)

and 1 .5 x that of physiological logging 1 .5 tpmC throughput.

This 1 . 5 x throughput gap between command logging and

physiological logging remains even as distributed transactions
are introduced. This gap slowly drops down, and remains about

l A x even at 50% distributed transactions, until at about 1 00%

distributed transactions, transaction latencies are so high that

all logging approaches provide identical results.

Figure 1 0 shows performance numbers for the different

logging approaches when we have a cluster configuration of

3 server nodes running 12 execution sites each, with each site

replicated three-ways. We still have a TPC-C workload with
1 2 warehouses, with the difference that now each warehouse

partition is stored by three different execution sites. We see that

again, at 0%, the performance gap is as expected, command

logging throughput wins by a factor of almost 2 x , with a

penalty of less than 5% compared to when no logging is
done. For this configuration however, the performance offered

by all three approaches drops quickly as we increase the

fraction of distributed transactions, with a gap of 1 . 2 x in

favor of command logging at 5% distributed transactions,

which closes down to nearly identical throughput for all three
approaches beyond 1 0%. These results are in agreement with

the hypothesis: progressively higher transaction lengths lead

to smaller run-time performance gaps between the different

logging approaches.

Another interesting point to note is that the gap between the

different logging approaches closes slower with no replication

and faster with replication (Figures 9 vs. 1 0) : this is expected

because a 3-way replication setup makes each transaction in
the workload, distributed or not, multi -sited.

We do not show recovery rates due to lack of space here, but

we found that physiological logging is much more efficient at
recovery compared to command logging if the workload has

a very high fraction of distributed transactions.

D. Discussion

Our results shows that command logging has a much lower

run-time overhead than physiological logging (nearly zero

in fact) . This is due to the fact that it does less work at

run-time to generate log records, and also because it writes
less data to disk. In the two benchmarks we evaluated,

command logging was able to achieve as much as a 1 .5 x
performance improvement over our main-memory optimized

613

implementation of physiological logging on TPC-C, and about

1.2 x on Voter. This improved performance comes at the cost

of an increased recovery time for command logging, since

it has to redo all of the work of a transaction, whereas

physiological logging only has to re-apply updates to data

tuples. Recovery times for command logging range from 1.5 x
slower on TPC-C to 5 x slower on Voter. In reality, system

failures are infrequent, and can be masked via high-availability

through replication; this makes recovery speed secondary in

importance to system performance for most systems. Hence,

in modern high-throughput settings, command logging, with

its near-zero overhead at run-time and modest reduction in

recovery times, is the best choice.

In our experiments with high fraction of distributed trans

actions, physiological logging does better, since the overheads

represent a small fraction of overall run-time, and recovery

times for physiological logging become much better than

for command logging. Hence, for applications with complex

or mostly distributed transactions that update few records

(which is not true of most OLTP applications), ARIES-style

physiological logging is probably a better choice. This is also

the reason why ARIES has traditionally been considered the

gold-standard method of recovery: in the 1980's when initial

research on recovery was done, OLTP throughputs were much

lower, and the relative overheads of ARIES-style logging likely

represented a much smaller fraction of the total work done per

transaction. These results are summarized Figure 11.

Our conclusion is that for modern OLTP database systems

that need to process many thousands of transactions per

second, command logging should be the recovery method of

choice, unless for some reason, recovery times are unusually

important for the OLTP system.

V I. GENERALIZING COMMAND LOGGING

A natural question about the command-logging approach

described in this paper is how it would generalize to traditional

disk-based systems and to other main-memory OLTP systems

that use locking. We believe it should generalize well. To make

it work, we need to ensure two properties: first, command log

based recovery needs to start from a transactionally-consistent

snapshot, and second, replaying transactions in the command

log in serial order must result in a re-execution that is

equivalent to the original execution order of the committed

transactions pre-crash.

To ensure the first property, if transactions are short-lived,

there should be no need to write dirty (uncommitted) data to

disk. However, this alone isn't sufficient to ensure that the state

of the database on disk when recovery begins is transactionally

consistent, since a crash may occur while data is being flushed

back, resulting in only part of a transaction's state being on

disk at recovery time. We may be able to atomically flush a set

of pages to disk by relying on batteries in enterprise class disks

to ensure that a set of flushed writes actually make it to disk

even in the event of a power outage or crash. Alternatively, the

same transactionally-consistent snapshotting approach used in

VoltDB could be employed in a disk-based database by issuing

a read-only transaction that reads the entire database and

writes its pages to disk. If the database employs some form of

snapshot-isolation (which most databases, including Postgres,

Oracle, and SQL Server do), such read-only transactions will

not block any other transactions in the system. However, this

requires two copies of the database to be on disk, which may

not be feasible. Exploring the best method for transaction ally

consistent snapshotting of conventional databases, such as

those in [25] , is an interesting area for future work.

For the second property, assuming a transaction ally

consistent checkpoint is available, serial replay from a com

mand log will result in a correct recovery as long as the

transactions in the log represent the serial equivalent commit

order in which transactions were executed pre-crash. This will

be the case assuming: (a) the use of strict two-phase locking

(S2PL) for isolation, (b) no writes of dirty pages of uncom

mitted transactions, obviating the need for undo logging, so

that correctness is ensured despite potential non-deterministic

transaction aborts resulting from deadlocks. Other transac

tional isolation protocols, like serializable snapshot isolation

(SSI) [1] , unfortunately do not guarantee that commit order

is the same as the serial equivalent execution order. Further

more, it's unclear what the semantics of command log-based

recovery are in the face of non-serializable isolation levels like

snapshot isolation (which is widely used in practice). Hence,

another interesting area for future work involves investigating

this relationship.

V II. RELATED WORK

ARIES [20] is considered the gold standard method for

recovery in traditional databases.Most main memory database

recovery techniques proposed in the past [8] [9] [4] [15] are

similar in spirit to ARIES; we briefly go over them here, a

detailed discussion can be found in [5] [6] .

Dewitt et al [3] suggest compressing the log size by writing

only new values to disk but require the presence of stable

memory large enough to hold the write-ahead log for active

transactions. In absence of such storage, they flush log records

in batches (group commit). Both logging modes in our system

(command logging and physiological logging) implement the

group commit optimization.

Li et al [17] also suggest run-time optimizations for reduc

ing log size by using shadow pages for updates but also require

all shadow updates as well as the log buffer to reside in non

volatile memory. Lehman and Carey's recovery algorithm [14]

also requires presence of non-volatile RAM to be able to store

log tails. We do not make such an assumption in our system,

which is impractical on commodity machines, the entire main

memory contents are considered lost after a crash.

Levy and Silberschatz [16] describe an incremental recovery

algorithm for main memory databases, which does not require

recovery to be performed in a quiescent state, allowing trans

action processing in parallel. This is achieved by recovering

database pages individually. VoltDB does not have a concept

of pages; we implement a similar idea by employing parallel

recovery at a per partition level for physiological logging.

614

Achieving the same is harder with command logging owing to

uncertainty about what pages a stored procedure would touch.
Purely logical logging has also been proposed recently [19] .

Our work in this paper applies the logical logging idea in its

extreme to an in-memory database similar in spirit to [12] , and

quantifies via extensive experiments the trade-oft's between a

highly logical command logging vs. a more traditional ARlES

style physiological logging approach.
Recent work by Cao et al describes main-memory check

point recovery algorithms for frequently consistent applica

tionsl [2] , we believe their efficient checkpointing techniques

can be used in combination with our recovery algorithms for

better system performance.
Related work such as [lO] [22] [23] has focused on making

logging more efficient in general by employing ideas such

as reducing log related lock contention. They emphasize that

a separation of transactions from detailed knowledge about

data placement naturally requires logical recovery. Our system

architecture does not employ locking, so these techniques do

not apply.

V III. C ONCLUSION

In this paper, we compared the run-time and recovery

performance of command logging to ARIES-style physiolog

ical logging in high-throughput OLTP settings. Command

logging recovers by re-running committed transactions from a

transaction ally-consistent checkpoint, whereas for physiologi

cal logging, fine-grained updates are recorded at run-time and

the same updates applied at recovery time. We implemented

these techniques in the VoltDB main-memory database system

and found that on a modern machine running two OLTP

benchmarks at high throughputs (in excess of 4K tps per

core), physiological logging imposes significantly higher run

time overheads than command logging, yielding l.2 x to l.5 x
lower throughput. It does, however, recover more quickly, with

recovery times ranging from l.5 x to 5 x faster. Our conclusion

from these experiments is that, since most systems invoke

recovery infrequently, databases focused on high-throughput

transaction processing should implement command logging as

the recovery system of choice.
We believe that these results should also apply to disk

resident databases, since logging represents a significant over

head in these systems as well (hundreds of microseconds per

transaction, according to prior research [7]). Hence, generaliz

ing command logging to a disk-based system is an interesting

area of future work. Doing so is non-trivial as our current

implementation of command logging relies on the fact that our

system recovers from a transactionally-consistent checkpoint

(which does not include any uncommitted data) and that

the command log is written in an equivalent serial order of

execution of the committed transactions in the database.

REFERENCES

[1] M. J. Cahill, U. Rohm, and A. Fekete. Serializable isolation for snapshot
databases. ACM Trans. Database Syst. , 34(4) :20 : 1 -20:42, 2009 .

[2] T. Cao, M. Vaz Salles, B . Sowell, Y. Yue, A. Demers, J. Gehrke, and
W. White. Fast checkpoint recovery algorithms for frequently consistent
applications. SIGMOD ' 1 1 , pages 265-276. ACM, 20 1 1 .

[3] D . J . DeWitt, R . H . Katz, F. Olken, L . D . Shapiro, M . R . Stonebraker,
and D. A. Wood. Implementation techniques for main memory database
systems. SIGMOD ' 84, pages 1-8, New York, NY, USA, 1 984. ACM.

[4] M. H. Eich. Main memory database recovery. In Proceedings of i986
ACM Fall joint computer conference, ACM ' 86, pages 1 226-1232, 1 986.

[5] H. Garcia-Molina and K. Salem. Main memory database systems: An
overview. iEEE Transactions on Knowledge and Data Engineering,

4: 509-5 16, 1 992.
[6] L. Gruenwald, J. Huang, M. H. Dunham, J.-L. Lin, and A. C. Peltier.

Recovery in main memory databases, 1 996.
[7] S . Harizopoulos, D. J. Abadi, S . Madden, and M. Stonebraker. Oltp

through the looking glass, and what we found there. SIGMOD '08,
pages 981-992, New York, NY, USA, 2008. ACM.

[8] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silberschatz, and S. Su
darshan. Dab: A high performance main memory storage manager. In
1. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB '94, pages 48-59.

[9] H. V. Jagadish, A. Silberschatz, and S . Sudarshan. Recovering from
main-memory lapses. VLDB '93 , pages 391-404.

[l 0] R. Johnson, 1. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki.
Aether: a scalable approach to logging. Proc. VLDB Endow. , 3:68 1-692,
September 20 10 .

[l 1] E. P. Jones, D. J. Abadi, and S . Madden. Low overhead concurrency
control for partitioned main memory databases. SIGMOD ' 10, pages
603-6 14, New York, NY, USA, 20 10 . ACM.

[l 2] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. ICDE ' 1 1 , pages
195-206, Washington, DC, USA, 201 1 . IEEE Computer Society.

[l 3] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The objectstore
database system. Commun. ACM, 34(10) : 50-63, Oct. 1 99 1 .

[l4] T. 1 . Lehman and M . J . Carey. A recovery algorithm for a high
performance memory-resident database system. SIGMOD ' 87, pages
1 04-1 17, New York, NY, USA, 1987 . ACM.

[l 5] T. 1. Lehman and M. J. Carey. A concurrency control algorithm for
memory-resident database systems. FOFO ' 89, pages 490-504, London,
UK, 1989. Springer-Verlag.

[l 6] E. Levy and A. Silberschatz. Incremental recovery in main memory
database systems. iEEE Trans. on Knowl. and Data Eng. , 4: 529-540,
December 1 992.

[17] X. Li and M. H. Eich. Post-crash log processing for fuzzy checkpointing
main memory databases. In ICDE, pages 1 17-124, Washington, DC,
USA, 1993. IEEE Computer Society.

[l 8] J.-L. Lin and M. H. Dunham. Segmented fuzzy checkpointing for main
memory databases. SAC '96, pages 1 58-165, New York, NY, USA,
1 996. ACM.

[l 9] D. Lomet, K. Tzoumas, and M. Zwilling. Implementing performance
competitive logical recovery. Proc. VLDB Endow. , 4:430-439, April
201 1 .

[20] C . Mohan, D . Haderle, B . Lindsay, H . Pirahesh, and P. Schwarz. Aries:
a transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Trans. Database Syst. ,
17 :94-1 62, March 1 992.

[2 1] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazieres, S. Mitra, A. Narayanan, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The case for ramclouds: Scalable
high-performance storage entirely in dram. In SIGOPS OSR. Stanford
InfoLab, 2009 .

[22] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented
transaction execution. Proc. VLDB Endow. , 3 :928-939, September 2010.

[23] I. Pandis, P. Toziin, R. Johnson, and A. Ailamaki. Pip: page latch-free
shared-everything oltp. Proc. VLDB Endow. , 4:6 1 0-62 1 , July 201 1 .

[24] A . Pavlo, C . Curino, and Z . Stan. Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems. SIGMOD ' 1 2,
20 12 .

[25] S . Pilarski and T . Kameda. Checkpointing for distributed databases:
Starting from the basics. IEEE Trans. Parallel Distrib. Syst. , 3(5):602-
610 , Sept. 1 992.

[26] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hili, Inc. , New York, NY, USA, 3 edition, 2003 .

[27] Redis. http://redis.io.
[28] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,

and P. Helland. The end of an architectural era: (it's time for a complete
rewrite). In VLDB '07, pages 1 1 50-1 1 60. VLDB Endowment, 2007 .

[29] The TPC-C benchmark. www.tpc.org/tpcc.
[30] VoltDB . http://voltdb.com.

615

