
Scaling Up Concurrent Main-Memory Column-Store Scans:
Towards Adaptive NUMA-aware Data and Task Placement

Iraklis Psaroudakis? ‡ Tobias Scheuer‡ Norman May‡

Abdelkader Sellami‡ Anastasia Ailamaki?

?EPFL, Lausanne, Switzerland
{first-name.last-name}@epfl.ch

‡SAP SE, Walldorf, Germany
{first-name.last-name}@sap.com

ABSTRACT
Main-memory column-stores are called to efficiently use mod-
ern non-uniform memory access (NUMA) architectures to
service concurrent clients on big data. The efficient usage
of NUMA architectures depends on the data placement and
scheduling strategy of the column-store. Most column-stores
choose a static strategy that involves partitioning all data
across the NUMA architecture, and employing a stealing-
based task scheduler. In this paper, we implement different
strategies for data placement and task scheduling for the
case of concurrent scans. We compare these strategies with
an extensive sensitivity analysis. Our most significant find-
ings include that unnecessary partitioning can hurt through-
put by up to 70%, and that stealing memory-intensive tasks
can hurt throughput by up to 58%. Based on our analysis,
we envision a design that adapts the data placement and
task scheduling strategy to the workload.

1. INTRODUCTION
Contemporary analytical workloads are characterized by mas-
sive data and high concurrency, with hundreds of clients
[31]. The key comparative criterion for analytical relational
database management systems (DBMS) is their efficiency
in servicing numerous clients on big data. For this reason,
many analytical DBMS, e.g., SAP HANA [14] or Oracle
[18] (see Section 3 for additional examples), opt for a main-
memory column-store instead of a disk-based row-store typ-
ically employed for OLTP workloads [32]. The column-wise
in-memory representation minimizes the amount of data to
read, as only the necessary columns are accessed. Data is
typically compressed, e.g., using dictionary encoding, and
processed in parallel using SIMD and multiple CPU cores [14].

Main-memory column-stores need to efficiently exploit the
increasing amount of DRAM and multi-core processors. Pro-
cessor vendors are scaling up hardware by interconnecting
sockets of multi-core processors, each with its own memory
controller and memory [5]. Memory is decentralized, form-
ing a non-uniform memory access (NUMA) architecture.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

0
1
2
3
4
5
6
7
8

1 4 16 64 25
6

10
24

Th
ro

ug
hp

ut
(x

10
4

q/
m

in
)

of concurrent clients

NUMA-agnostic
NUMA-aware

0
50

100
150
200
250

NU
M

A-
ag

no
st

ic
NU

M
A-

aw
ar

e

M
em

or
y

Th
ro

ug
hp

ut
(G

iB
/s

)

S4
S3
S2
S1

5×

(a) (b)

Figure 1: (a) Impact of NUMA. (b) Memory
throughput of the sockets for the case of 1024 clients.

NUMA introduces new performance challenges, as com-
munication costs vary across sockets [10, 27], and the band-
width of the interconnect links is an additional bottleneck
to be considered (see Section 2). The column-store needs to
become NUMA-aware by handling the placement of its data
structures across sockets, and scheduling the execution of
queries onto the sockets. Figure 1a shows the performance
difference between a NUMA-agnostic and a NUMA-aware
column-store as they evaluate an increasing number of an-
alytical clients on a machine with four sockets (see Section
6 for more details). In this scenario, NUMA-awareness sig-
nificantly improves throughput, by up to 5×. By avoiding
inter-socket communication, the memory bandwidth of the
sockets can be fully utilized, as shown in Figure 1b.

In the literature, there has been a recent wave of related
work for NUMA-aware analytical DBMS. Their majority
employs a static strategy for data placement and scheduling.
For example, HyPer [23] and ERIS [17] partition all data
across sockets and parallelize queries with a task scheduler.
The task scheduler consists of a pool of worker threads. Each
worker processes local tasks or steals tasks from other work-
ers. The trade-offs between different data placement and
task scheduling strategies have not been yet fully analyzed.

Contributions. In this paper, we describe and implement
data placement and task scheduling strategies for concurrent
scans in main-memory column-stores. Through a sensitivity
analysis, based on a commercial column-store (SAP HANA),
we identify the trade-offs for each strategy under various
workload parameters. Our main contributions are:

• We present a novel partitioning scheme for dictionary-
encoded columns, supporting quick repartitioning, for
skewed scan-intensive workloads (see Section 4).

• We show that unnecessary partitioning for highly con-
current memory-intensive workloads can hurt through-

1442

put by up to 70% in comparison to not partitioning
(see Section 6.1). Hot data in skewed workloads should
be partitioned until socket utilization is balanced.

• We show that stealing memory-intensive tasks can hurt
throughput by up to 58% (see Section 6.2). The task
scheduler needs to support tasks that can prevent be-
ing stolen by another socket (see Section 5).

• Based on the implications of our sensitivity analysis,
we envision a design that can adapt the task scheduling
and data placement (by moving and partitioning hot
data) strategy to the workload at hand (see Section 7).

2. BACKGROUND
In this section, we give a quick overview of different NUMA
architectures (which we use in our experiments), and mem-
ory allocation facilities in the operating system (OS).

NUMA architectures. Figure 2 shows a NUMA server
with 4 sockets of 15-core Intel Xeon E7-4880 v2 2.50GHz
(Ivybridge-EX) processors. Each core has two hardware
threads, a 32KiB L1, and a 256 KiB L2 cache. The cores
in a socket share a 37.5MB L3 cache. Each socket shares 2
memory controllers (MC) [1], configured in “independent”
mode for the highest throughput [2]. Each MC supports 2
Intel SMI interfaces [2]. Each SMI supports 2 memory chan-
nels (buses), with up to 3 DDR3 DIMM attached on each
channel. Our configuration has one 16GiB DDR3 1600MHz
DIMM per channel. The sockets are interconnected to en-
able accessing remote memory of another socket. Each socket
has 3 Intel QPI (QuickPath Interconnect). Each QPI has
a 16GiB/s bandwidth that supports data requests and the
cache coherence protocol [1]. The majority of NUMA ar-
chitectures today are cache coherent (ccNUMA). The inter-
connect topology, the interconnect protocol, and the cache
coherence protocol are specific to each system and vendor.

NUMA introduces new considerations for software perfor-
mance, in comparison to UMA [10]: (a) accesses to remote
memory are slower than local memory, (b) the bandwidth of
a MC can be separately saturated, and (c) the bandwidth of
an interconnect can be separately saturated. To understand
how these factors vary, we show in Table 1 local and inter-
socket latencies, and peak memory bandwidths for 3 ma-
chines (measured with Intel Memory Latency Checker v2).

MC0

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

16
GB

Socket 1

Socket 3

Socket 2

Socket 4

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

C3
L1
L2

MC0

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

C3
L1
L2

MC0

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

C3
L1
L2

MC0

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

C3
L1
L2

Figure 2: 4-socket server with Ivybridge-EX CPU.

Table 1: Local and inter-socket idle latencies, and
peak memory bandwidths of three different servers.

Statistic
Local latency
1 hop latency

Max hops latency
Local B/W
1 hop B/W

Max hops B/W
Total local B/W

4×Ivybridge-EX
150 ns
240 ns
240 ns

65 GiB/s
8.8 GiB/s
8.8 GiB/s
260 GiB/s

32×Ivybridge-EX
112 ns
193 ns
500 ns

47.5 GiB/s
11.8 GiB/s
9.8 GiB/s

1530 GiB/s

8×Westmere-EX
163 ns
195 ns
245 ns

19.3 GiB/s
10.3 GiB/s
4.6 GiB/s

96.2 GiB/s

The first is the one of Figure 2, the second is a rack-scale
SGI UV 300 system with 32 sockets of Intel Xeon E7-8890
v2 2.80GHz (Ivybridge-EX) processors, and the third con-
sists of 2 IBM x3950 X5 boxes with a total of 8 sockets of
Intel Xeon E7-8870 2.40GHz (Westmere-EX) processors.

While the 4-socket machine is fully interconnected, the
topologies of the 8-socket and 32-socket machines have mul-
tiple hops. The max hop latency on the 4-socket and 8-
socket machines is more than 30% slower than the local la-
tency, and around 5× slower on the 32-socket machine. The
inter-socket bandwidth decreases by an order of magnitude
with multiple hops. Also, the total local bandwidth of the
8-socket machine is not the aggregated local bandwidth of
each socket, due to its broadcast-based snooping cache co-
herence protocol, that stresses the interconnects. Ivybridge-
EX processors use directory-based cache coherence.

The lack of knowledge and control about inter-socket rout-
ing or the cache coherence, hinders the ability to handle per-
formance optimization similarly to a distributed network.
NUMA-awareness is typically achieved in a simple way: op-
timizing for faster local accesses instead of remote accesses,
and avoiding unnecessary centralized bandwidth bottlenecks.

OS memory allocation facilities. The OS organizes
physical memory into fixed-sized (typically 4KiB) pages [19].
When an application requests memory, the OS allocates new
virtual memory pages. Application libraries are responsible
for organizing smaller allocations. Typically, virtual mem-
ory is not immediately backed by physical memory. On the
first page fault, the OS actually allocates physical memory
for that page. In a UMA system, performance is not affected
by the physical location of virtual memory. In a NUMA
system, however, the performance of a NUMA-agnostic ap-
plication can degrade substantially (see Figure 1).

A moderate solution is to use interleaving, distributing
pages in a round-robin fashion across all sockets. This avoids
worst-case performance scenarios with unnecessary central-
ized bandwidth bottlenecks, and averages memory latencies.
It involves, however, a lot of remote memory accesses.

A NUMA-aware application should control and track the
physical location of its virtual memory [19]. A simple strat-
egy is to use the default first-touch policy: on the first
page fault, the OS allocates physical memory from the local
socket (unless it is exhausted). For stronger control, addi-
tional facilities are provided. In Linux, e.g., move pages can
be used to query and move already touched virtual memory.
We use these facilities in our data placement strategies.

3. RELATED WORK
NUMA-aware DBMS need to address two major dimensions:
(a) data placement, and (b) scheduling tasks across sockets.
We begin by mentioning how related work handles these di-

1443

mensions, continue with NUMA-aware database operators,
and finish with black-box approaches for NUMA-awareness.

Data placement. Many DBMS that do not mention ad-
vanced NUMA capabilities, indirectly rely on the first-touch
policy, e.g., Vectorwise [36], IBM DB2 BLU [30], and the
column-store of Microsoft SQL Server [21].

A few research prototypes explicitly control data place-
ment. HyPer [23] follows a static strategy: it chunks all
objects, and distributes the chunks uniformly over the sock-
ets. ERIS [17] employs range partitioning and assigns each
partition to a worker thread. ERIS dynamically adapts the
sizes of the partitions to battle workload skewness. This is
similar to what we propose. Moreover, we show that unnec-
essary partitioning has a significant overhead on large-scale
NUMA topologies. Partitioning should be used only for hot
data, and the granularity should be adjusted judiciously.

ATraPos [27] also uses dynamic repartitioning for OLTP
workloads, to avoid transactions crossing partitions and av-
oid inter-partition synchronization. ATraPos optimizes for
the latency of transactions, while we focus on the memory
bandwidth and CPU utilization of all sockets. In contrast
to HyPer, ERIS, and ATraPos, we analyze data placement
strategies for dictionary-encoded columns as well.

Task scheduling. Task scheduling is an indirection layer
between the OS and the execution engine. Operations are
encapsulated in tasks, and a pool of worker threads is used
to process them. In our previous work, we showed how task
scheduling can be used in a NUMA-agnostic main-memory
column-store to efficiently process mixed OLTP and OLAP
workloads [28, 29]. We showed how stealing and a flexible
concurrency level can help to saturate CPU resources with-
out oversubscribing them, and how a concurrency hint can
be used to adjust the task granularity of analytical partition-
able operations to avoid unnecessary scheduling overhead.
In this work, we make our task scheduler NUMA-aware.

Since our previous work, task scheduling has been promi-
nent in NUMA-related work. In HyPer, each worker pro-
cesses local data chunks through a whole pipeline of opera-
tors [23]. HyPer uses task stealing. We show that stealing
should be avoided for memory-intensive tasks such as scans.

ERIS uses a worker per core, which processes tasks tar-
geting a particular data partition [17]. ERIS uses the whole
system, and it is not clear how this design can handle full
query execution plans, intra- and inter-operator parallelism.
Our NUMA-aware task scheduler handles all the workload’s
generic tasks. ATraPos’s data-oriented execution model uses
a worker per partition, similar to ERIS [27].

In the realm of commercial DBMS, IBM DB2 BLU pro-
cesses data in chunks so that they fit in the CPU cache [30].
Each worker processes one chunk at a time and can steal
chunks. Since NUMA-aware data placement is not specif-
ically mentioned, chunks may not be local to the worker
thread. The vanilla version of Vectorwise [36] uses static
parallelism during query execution. A recent thesis [16] de-
scribes how to break query plans into stages and parallelize
them using a task scheduler. Stealing from remote sockets
is allowed based on the priority of unscheduled tasks and
the contention of the sockets. In this paper, we show that
stealing should be prevented for memory-intensive tasks.

NUMA-aware operators. There is related work on stan-
dalone operators as well. E.g., Albutiu et al [6] show that

prefetching can hide the latency of remote accesses, con-
structing a competitive sort-merge join. Hash-joins, how-
ever, are shown to be superior [8, 20]. Yinan et al [25] opti-
mize data shuffling on a fully-interconnected NUMA topol-
ogy. Most related work, however, optimize for low concur-
rency, using the whole machine. In this work, we handle
numerous concurrent analytical operations such as scans.

Black-box approaches. DINO [10], Carrefour [13], or the
new automatic NUMA balancing of Linux, monitor perfor-
mance metrics to predict an application’s behavior. They at-
tempt to improve performance by moving threads and data
to balance cache load, opt for local memory accesses, and
avoid bandwidth bottlenecks. Results for DBMS, however,
are typically sub-optimal. A more promising approach is
presented by Giceva et al [15] for DBMS evaluating a pre-
defined global query plan. In the end, the DBMS needs to
become NUMA-aware itself to optimize performance.

4. DATA PLACEMENT STRATEGIES
We start this section by describing the basic data structures
in a main-memory column-store. We continue by outlining
data placement strategies for them. Finally, we describe how
we keep metadata information about the data placements.

4.1 Main-memory column-stores
The data of an uncompressed column can be stored sequen-
tially in a vector in main-memory [14, 18, 21, 23]. Compres-
sion techniques are typically employed to reduce the amount
of consumed memory, and potentially speed up processing.
The simplest and most common compression is dictionary
encoding [24]. In Figure 3, we show the data structures that
compose a column in a generic column-store (naming can be
different), along with an optional index.

The indexvector (IV) is an integer vector of dictionary-
encoded values, called value identifiers (vid). The po-
sition (pos) relates to the row in the relation/table. The
dictionary stores the sorted real values of vid. Fixed-width
values are stored inline, while variable-length ones may re-
quire, e.g., using pointers or prefix-compressed storage for
strings. A value lookup in the dictionary can be done with
binary search, but one can also implement predicates like
less-or-equal directly on the vid. The IV can be further
compressed using bit-compression, i.e., using the least num-
ber of bits (called bitcase) to store the vid. Vectorization
enables the efficient implementation of scans, including their
predicates, using SIMD. In this paper, we use scans imple-
mented with SSE instructions on bit-compressed IV [33].

An optional index (IX) can speed up low selectivity
lookups without scanning the IV. The simplest IX consists
of two vectors. Each position of the first correlates to a vid,

Anna
Bree
Carl

Emma
Evie

value

... so
rt

ed

vid

Index-
vector (IV)

Dictionary Index
(IX)

15
3
6
7
0
1
4
8

...

pos

0
1
3
4
6

...

ix

0
1
2
3
4

vid

0
1
2
3
4

pos vid

0
1
2
3
4

3
3
6
1
4

...

Figure 3: Example of a dictionary-encoded column.

1444

and holds an index towards the second. The second vector
holds the, possibly multiple, positions of a vid in the IV.

4.2 Data placement of columns
In this section, we propose and analyze the trade-offs of three
data placement strategies, shown in Figure 4. In Table 2,
we summarize which workload properties best fit each data
placement and a few of their key characteristics.

Round-robin (RR). The simplest data placement is plac-
ing a whole column on a single socket. This means that
queries wishing to scan this column, or do index lookups,
should run and parallelize within that socket, to keep mem-
ory accesses local. A simple way to exploit this data place-
ment for multiple columns, is to place each column on a
different socket in a round-robin way.

As we show in our experiments, RR is not performant for
low concurrency, because a query cannot utilize the whole
machine, or for skewed workloads, because placing more
than one hot column on a socket creates a hotspot on that
socket. Additionally, our evaluation shows that for high
concurrency, query latencies suffer a high variation, in com-
parison to the following partitioning strategies.

Indexvector partitioning (IVP). To overcome the afore-
mentioned negative implications of RR, we present a novel
data placement that partitions the IV across the sockets.
This can happen quickly and transparently, by using, e.g.,
move pages in Linux, to change the physical location of the
involved pages without affecting virtual memory addresses.
A scan can be parallelized within the socket of each part,
potentially using all sockets.

The disadvantage of IVP is that there is no clear choice
how to place the dictionary or the IX. Unless the column
has sorted values, the ordering of the vid in the IV does
not follow the same ordering as the vid of the dictionary
and the IX. Thus, we interleave them across the sockets, in
order to average out the latency of memory accesses during
materialization (converting qualifying vid to real values from
the dictionary – see Section 5.2) and during index lookups.

As we show in the experiments, the disadvantage of IVP
results in high selectivity scans and index lookups suffer-
ing decreased performance in comparison to the other data
placements. Although a high selectivity scan can scan the
parts of the IV locally, the dominating materialization phase
involves potentially numerous remote accesses to the inter-
leaved memory of the dictionary. Similarly, index lookups
suffer from remote accesses to the interleaved index.

Furthermore, both IVP and the following physical parti-
tioning suffer from overhead when a column is partitioned
across a high number of sockets. The reason is that each

COLi

IV
IX

Di
ct

COLi

IV
IX

Di
ct

COLi

IV
IX

Di
ct

P1 P2 P3 P4

Round-robin (RR)

S1

S2

S3

S4

Physically partitioned (PP)IV partitioned (IVP)

Figure 4: Different data placements of a dictionary-
encoded column, with an index, on 4 sockets.

Table 2: Workload properties best fitted for each
data placement, and a few key characteristics.

Data
placement

Concur-
rency

Selecti-
vities

Workload
distrib.

Latency
distrib.

Memory
consumed

Readjust-
ment

Large-scale
overhead

RR High All Uniform Unfair Normal Quick Low

IVP All
Low (w/o
index) &
medium

Uniform
& skewed Fair Normal Quick High

PP All All Fair High Slow HighUniform
& skewed

operation needs to be split into all partitions. As we show
in our experiments, unnecessary partitioning can have a sig-
nificant overhead. It should be used only for hot columns
when the workload is skewed.

Physical partitioning (PP). To overcome the limitations
of IVP, we can opt for an explicit physical partitioning of
the table. PP can use a hash function on a set of columns,
a range partitioning on a column, or a simple round-robin
scheme [4, 18]. All columns are split into the parts de-
fined by the PP. PP is useful for improving the performance
through pruning, i.e., skipping a part if it is excluded by the
query predicate, and for moving parts in a distributed envi-
ronment (see, e.g., SAP HANA [4] and Oracle [18]). In this
paper, we use PP to place each part on a different socket.
Since we wish to evaluate NUMA aspects, we avoid exploit-
ing the pruning capability in our sensitivity analysis.

The advantage of PP is that each part of a column can be
allocated on a single socket. A scan is split into each part.
The materialization phase for each part takes the qualifying
vid of the scan and uses the local dictionary to materialize
the real values. In contrast to IVP, PP is thus performant
for high-selectivity queries and index lookups as well.

The disadvantages of PP are two-fold. First, PP is heavy-
weight and time-consuming to perform or repartition. The
DBMS needs to recreate the components of all parts of the
columns. For this reason, IVP is preferable for workloads
that are intensive on scanning the IV, since IVP is faster
to perform, and can be applied to a subset of the table’s
columns. The second disadvantage of PP is its potentially
increased memory consumption. Although it results in non-
intersecting IV across the parts of a column, the dictionaries
and the IX of multiple parts may have common values. For
large data types, e.g., strings, this can be expensive. The
only case where this does not occur is if the column has
values sorted according to the PP partitioning scheme.

Other data placements. We note that the aforemen-
tioned data placements are not exhaustive. For example,
one can interleave columns across a subset of sockets. Or,
one can replicate some or all components of a column on a
few sockets, at the expense of memory. Replication is an
orthogonal issue. The three basic data placements we de-
scribe are a set of realistic choices. More importantly, our
experiments show how their basic differences affect the per-
formance of different workloads, and motivate a design that
adapts the data placement to the workload at hand.

4.3 Tracking and moving memory
We need a way to expose a column’s data placement. When
scheduling scans, e.g., we need to be able to query the phys-
ical location of a column, the location of a component of a

1445

0x1000 0x2000 0x3000 0x4000 0x5000

0x6000 0x7000 0x8000 0x9000 0xa000

...

...

S1

S2

S3

S4

0x2000 0x4000 0x8000
2 2 3
1 2 2

0000... 0000... 1100...

#1 #2 #3
First page address (64 bits)
Number of pages (32 bits)

Socket (8 bits)
Interleaving pattern (256 bits)

Vector of ranges

3Summary: pages per socket (256 · 32 bits) 4 0 0 ...

Figure 5: Example of a PSM after adding the virtual
memory ranges we wish to track (bold lines).

column, and the location of a specific position in the vector
of a component. To satisfy these requirements, we design a
novel class, Page Socket Mapping (PSM), that summa-
rizes the physical location of virtual address ranges.

In Figure 5, we show an exemplary PSM. The figure de-
picts a piece of virtual memory consisting of ten 4KiB pages.
Each box includes the base address of each page.1 The color
signifies the socket where the page is physically allocated.
Assume that we wish to keep metadata about the physical
location of virtual address ranges [0x2000, 0x6000) and
[0x8000, 0xb000). This example can represent a tiny col-
umn, without an index, placed with IVP, where the first
range holds the IV, partitioned across sockets S1 and S2,
and the second range holds the interleaved dictionary.

The PSM maintains an internal vector of ranges. Each
range consists of a virtual page address, the number of sub-
sequent pages, and the socket where they are physically al-
located. If the range is interleaved, the interleaving pattern
signifies the participating sockets, and then the socket num-
ber denotes the starting socket. The ranges are sorted by
the virtual address of their base page. We choose a vector of
ranges to optimize for reading the PSM instead of changing
it. Looking up the physical location of a pointer includes a
quick binary search on the ranges’ first pages, and, in case
the range is interleaved, following the interleaving pattern.
Furthermore, we maintain another vector, which keeps a
summary of the number of pages on each socket.

When we add virtual address ranges to the PSM, it maps
them to page boundaries, checks which pages are not already
included, and calls move pages on Linux, not to move them
but to find out their physical location. The algorithm goes
through their physical locations, collapsing contiguous pages
on the same socket into a new range for the internal vector.
It detects an interleaving pattern when every other page is
allocated on a different socket, following the same recur-
ring pattern. When the pattern breaks, the new interleaved
range is inserted in the internal vector, and the algorithm
continues. The summary vector is updated accordingly.

PSM objects support additional useful functionality. We
can remove memory ranges, add or subtract another PSM,
ask for a subset of the metadata in a new PSM, and get
the socket where the majority of the pages are. More im-
portantly, we can also move a range to another socket or
interleave it. The PSM uses move pages to move the range,
and update the internal information appropriately.

The space used by a PSM depends on the number of stored
ranges. For the indicative sizes of Figure 5, we assume that

1For simplicity, we display the last 4 hexadecimal characters
of the 64-bit addresses instead of all 16 characters.

a range can contain a maximum of 232 pages (or 16TiB for
4KiB pages), and that a machine can have up to 256 sockets.
The size of a PSM is 360·r+8192 bits, where r is the number
of stored ranges. Let us examine the size of the metadata
for a column on a 32-socket machine. We intend to attach a
PSM to the IV, dictionary, and IX of a column, so that the
scheduler can query the physical location of any component.

If a column is placed wholly on a socket, then r = 1 for
the IV and the dictionary, and r = 2 for the IX (contains 2
vectors). The metadata is 26016 bits, or 3KiB. If a column
is placed with IVP across all sockets, then r = 32 for the
IV, r = 1 for the interleaved dictionary, and r = 2 for the
interleaved IX. The metadata is 37176 bits, or 5KiB. If a
column is physically partitioned, with 32 parts, each part is
wholly placed on a socket. The metadata is around 102KiB.
The size of the metadata is not large, compared to the typi-
cal sizes of columns (at least several MiB). We note that one
can decrease the space substantially by losing some accuracy
and the capability of querying specific virtual addresses: not
storing ranges, and keeping only the summary vector.

5. NUMA-AWARE TASK SCHEDULING
We begin this section by describing our NUMA-aware task
scheduler. We then continue with outlining the different
task scheduling strategies for concurrent scans, considering
also the data placements of Section 4.

5.1 Task scheduler infrastructure
For a summary of task scheduling and our previous work,
see Section 3. In this paper, we extend our task scheduler for
NUMA-aware workloads. Tasks need to be able to choose
the socket on which to run, and the task scheduler to reflect
the topology of the machine. The design of our task sched-
uler is shown in Figure 6. Upon initialization, the sched-
uler divides each socket into one or more thread groups
(TG). Small topologies are assigned one TG per socket,
while larger topologies are assigned a couple TG per socket.
Hyperthreads (HT) are grouped in the same TG. Figure 6
depicts the TG for a socket of the 4-socket machine we de-
scribed in Section 1. The main purpose of multiple TG per
socket is to decrease potential synchronization contention
for the contained task priority queues and worker threads.

Inside a thread group. Each TG contains two priority
queues for tasks. The first has tasks that can be stolen by
other sockets. The second has tasks that have a hard affin-
ity and can only be stolen by worker threads of TG of the
same socket. As our experimental evaluation shows, sup-
porting bound tasks is essential for memory-intensive work-
loads. The priority queues are protected by a lock. Lock-free

HT1
HT2

C1

... ...

Th
re

ad
gr

ou
p

1

So
ck

et
1

Th
re

ad
gr

ou
p

Priority
Queue

Hard Priority
Queue

Working
threads

Free
threads

Parked
threads

Inactive
threads

t
t

t
t
t

HT1
HT2

C2
HT1
HT2

C7
HT1
HT2

C8
HT1
HT2

C15

Th
re

ad
gr

ou
p

2

Figure 6: NUMA-aware task scheduler design.

1446

implementations for approximate priority queues [7] can be
employed for cases of numerous short-lived tasks where syn-
chronization becomes a bottleneck. This is not the case for
our experiments, mainly due to the concurrency hint (of our
previous work [28]) that dynamically adjusts the task gran-
ularity of analytical operations, including scans, depending
on the workload concurrency.

Each TG maintains a number of worker threads, which are
distinguished to working, inactive, free, and parked. Work-
ing threads are those currently handling a task. Inactive
threads are those currently sleeping in the kernel due to
a synchronization primitive, while handling a task. Free
threads wait on a semaphore to be woken up by the sched-
uler to get a newly inserted task. Parked threads, similarly
to free threads, wait on a semaphore to be woken up in cases
when there are no free threads. The difference between free
and parked threads is that free threads wake up periodically
to check for tasks, and the number of free threads cannot
pass the number of H/W contexts of the TG.

The task scheduler strives to keep the number of working
threads equal to the number of H/W contexts of each TG.
In cases where tasks may block and become inactive, the
scheduler wakes up free or parked threads to correct the
number of working threads [28].

Main loop of a worker thread. The worker firstly checks
that it is allowed to run, by checking that the number of
working threads is not larger than the number of the H/W
contexts of the TG. If it is, it goes to free mode, if the
number of free threads is less than the H/W contexts of the
TG, else it goes to park. If it is allowed to run, it peeks in
the two priority queues to get the element with the highest
priority. If there are no tasks in the TG, it attempts to steal
a task from the priority queues of the other TG of the same
socket. If there are no tasks, it goes around the TG of all
sockets, stealing tasks (not from the hard priority queues).
If the worker thread finally has a task, it executes it, and
loops again. If no task is finally found, it goes to free mode.

Watchdog. We use a watchdog thread to speed up task
processing [28]. It wakes up periodically to gather statistics
and goes around all TG to check their number of working
threads. If a TG is not saturated, but has tasks, it signals
more free or unparked worker threads, or even creates new
worker threads. If a TG is saturated, but has more tasks, it
also monitors that, in order to wake up free threads in other
TG that can potentially steal these tasks.

Task priorities. In this work, we do not set the user-
defined priority of tasks [35]. Internally, however, the sched-
uler augments the user-defined priority of a task with more
information. One crucial part is the time the related SQL
statement was issued. The older the timestamp, the higher
the priority of related tasks. For our experimental evalua-
tion, this means that the tasks generated during the execu-
tion of a query are handled more or less at the same time.

Task affinities. A task can have an affinity for a socket, in
which case it is inserted in the priority queue of one of the
TG of the socket. Additionally, the task can specify a flag
for hard affinity so that it is inserted into the hard priority
queue. In case of no affinity, the task is inserted into the
priority queue of the TG where the caller thread is running
(for potentially better cache affinity).

By default, for NUMA-agnostic workloads, we do not bind
worker threads to the H/W contexts of their TG. This is
because the OS scheduler is sometimes better in balanc-
ing threads to improve the performance. We bind a worker
thread to the H/W contexts of their TG only when it is
about to handle a task with an affinity. And while the next
task also has an affinity, the thread continues to be bound,
otherwise it unbinds itself before running a task without
an affinity. This gives us the flexibility to compare the
OS scheduler, by not assigning affinities to tasks, against
NUMA-aware scheduling by assigning affinities to tasks.

5.2 NUMA-aware scheduling of scans
To achieve NUMA-awareness, tasks need to consult the PSM
of the data they intend to process to define their affinity. In
Figure 7, we show the execution phases of a query selecting
data from a single column, assuming the column is placed
using IVP: (a) finding the qualifying matches, and (b) ma-
terializing the output. Next, we describe these phases.

Finding the qualifying matches. Depending on the
predicate’s estimated selectivity, the optimizer may either
scan the IV, or perform a few lookups in the index (if avail-
able). For both cases, the query first needs to encode its
predicate with vid. For a simple range predicate, the bound-
aries are replaced with the corresponding vid. If the pred-
icate is more complex, a list of qualifying vid is built and
used during the scan or the index lookups.

In the case of a scan, it is parallelized by splitting the IV
into a number of ranges and issuing a task per range. The
task granularity is defined by the concurrency hint [28], to
avoid too many tasks under cases of high concurrency, but
also opt for maximum parallelism under low concurrency. In
the case of IVP, as in the example, we round up the number
of tasks to a multiple of the partitions, so that tasks have a
range wholly in one partition. We define a task’s affinity by
consulting the PSM of the IV for the task’s range.

In the case of index lookups, the operation is not paral-
lelized. For each qualifying vid, the IX is looked up to find
the qualifying positions of the IV. The affinity of the single
task is defined as the location of the IX. If it is interleaved,
as in the example with IVP, we do not define an affinity.

The qualifying matches can be stored in two potential for-
mats. For high selectivities, a bitvector format is preferred
where each bit signifies if the relevant position is selected.
For low selectivities, a vector of qualifying IV positions is
built. Both formats consume little space, and we do not
track their location on memory with a PSM.

Output materialization. Since we know the number of
the qualifying matches, we allocate the whole output vector.

IX

IV

① ②

sc
an

(a) (b)

lo
ok

up
s Output

Dict

vid
①

②
③

S1

S2

S3

S4

-o
r-

Figure 7: Task scheduling (a) for a scan or index
lookups to find qualifying matches, and (b) for the
output materialization, for an IVP-placed column.

1447

Similar to the scan, we parallelize materialization by split-
ting the output into ranges and issuing a task per range.
A task, for each qualifying position of its range, finds the
relevant vid through the IV. Then it finds the real value by
consulting the dictionary, and finally writes it to the output.

Because different partitions of the IV may produce more
or less qualifying matches, the output may have unbalanced
partitions. To define task affinities, we need a short prepro-
cessing. Going through all qualifying matches to figure out
the exact boundaries is costly. Thus, we divide the output
vector length by the number of H/W contexts of the ma-
chine, to make fixed-sized regions, and find the location of
their boundaries by consulting the PSM of the IV. We coa-
lesce contiguous regions on the same socket, to make up the
final list of partitions (visualized in Figure 7). For each par-
tition, we issue a correspondingly weighted number of tasks
with the affinity of that partition’s socket, taking care that
the number of tasks does not surpass the concurrency hint,
and that each partition has at least one task.

Figure 7 hints that we place the partitions to their cor-
responding socket. Unfortunately, allocating a new output
vector in order to specify its location turns out to have a
bad performance. Especially for high-selectivity concurrent
scans, it involves numerous page faults with heavy synchro-
nization in the OS. This is one reason why SAP HANA
implements its own allocators [4] to re-use virtual memory.
Furthermore, we note that using move pages to move the
partitions also runs into a similar problem in the OS. Thus,
for concurrent workloads, re-using virtual memory for the
output vectors, even if writes are remote accesses, is better
than explicitly placing the pages of the output vectors.

Remaining data placements. Figure 7 describes how a
scan is scheduled when the selected column is placed with
IVP. In the case of RR, where a column is allocated on one
socket, the same scheduling is involved, but without figuring
out the boundaries of the partitions of the output vector.

In the case of PP, the phase of finding qualifying matches
occurs once per part, concurrently. There is a single output
vector, with a length equal to the sum of the lengths of
the results of each part. The preprocessing phase of the
materialization happens once, in a similar way as in the
case of IVP, by considering that partitions of the IV are
now separate IV. The materialization phase occurs once per
part, concurrently, and each one knows the region of the
single output vector where to write the real values.

6. EXPERIMENTAL EVALUATION
In this section, we present a sensitivity analysis of concur-
rent scans for different data placement and task scheduling
strategies, under various workload parameters. We use a
prototype built on SAP HANA (SP9), a commercial main-
memory column-store DBMS. We extend the execution en-
gine of SAP HANA with our new NUMA-aware data place-
ments (see Section 4) and task scheduling (see Section 5).

For all experiments, we warm up the DBMS first. We
make sure that all clients are admitted, and we disable query
caching. In several cases, we present additional performance
metrics gathered from Linux, SAP HANA, and H/W coun-
ters (using the Intel Performance Counter Monitor tool).

We generate a dataset with a large table, taking up 100GiB
of a flat CSV file. It consists of 100 million rows, an ID inte-
ger column as the primary key, and 160 additional columns

of random integers generated with a uniform distribution.
We use bitcases 17 to 26 in a round-robin fashion for the
160 columns, to avoid scans with the same speed [33].

We use a Java application on a different machine to gener-
ate the workload. The clients connect and build a prepared
statement for each column: SELECT COLx FROM TBL WHERE

COLx >= ? AND COLx <= ?. We note that we experiment
with queries selecting a single column for simplicity. The
implications of our evaluation are relevant for queries that
have a predicate on multiple columns or project multiple
columns also. In the former case, the first phase of Figure 7
is repeated (in parallel) for each column, to find the quali-
fying positions. In the latter case, the materialization phase
of Figure 7 is repeated (in parallel) for each column.

After the statements are prepared, each client continu-
ously picks a prepared statement to execute. There are no
thinking times. The client does not fetch the results, other-
wise the network transfer would dominate. We focus on the
time required to create the results (that could potentially
be used as intermediate results for higher-level operators).
We measure the total throughput (TP) over 2’ and report
the average throughput per minute. 2’ are sufficient, since
all TP results we present are at least one order of magni-
tude more than the number of clients. The additional per-
formance metrics presented are averaged over the whole 2’
period. Every data point and metric presented is an average
of 3 iterations with a standard deviation of less than 10%.

The data placement strategies we compare are:

• Round-robin (RR). Each column is allocated on one
socket, in a round-robin fashion.

• Indexvector partitioning (IVP). The IV of each col-
umn is partitioned equally across the sockets.

• Physical partitioning (PP). The table is physically
partitioned according to ranges of the ID column. The
number of equally-sized ranges is the number of the
sockets. Each part is placed on a different socket.

The task scheduling strategies we compare are:

• OS. We do not define task affinities, and we do not
bind worker threads, leaving the scheduling to the OS.

• Target. We define task affinities. Tasks may be stolen.

• Bound. We define task affinities, and set the hard
affinity flag for tasks. Inter-socket stealing is prevented.

The workload parameters we vary are:

• Concurrency. The number of clients in the workload.

• Indexes. Whether indexes can be used or not. In the
majority of the experiments, we do not use indexes.

• Selectivity. The selectivity of the range predicates.

• Column selection. The probability that a column
may be selected. Can either be uniform or skewed.

• Parallelism. We can disable intra-query parallelism,
to execute each query in one task. In the majority of
the experiments, intra-query parallelism is enabled.

The main server we use is the 4-socket Ivybridge-EX of
Table 1. In certain cases, we present results from the other
two servers, to show how some implications change due to
different hardware. On all servers, the OS is a 64-bit SMP
Linux 3.0.101 (SUSE Enterprise Server 11 SP3).

1448

6.1 Uniformly distributed workload
In this section, we evaluate a uniform workload, i.e., clients
pick a column to query, randomly with uniform distribution.

6.1.1 Impact of scheduling
This experiment aims to show the largest performance differ-
ence between NUMA-agnostic and NUMA-aware execution.
We use RR to place the columns on the 4-socket server.
Intra-query parallelism is enabled, and the selectivity of the
queries is low (0.001%). Indexes are not used, thus scans
are used, and the workload is memory-intensive. The TP
and relevant performance metrics are shown in Figure 8.

Performance metrics include the CPU load, the number
of tasks, and the number of tasks stolen across sockets. For
the case of 1024 clients, performance metrics include the
last-level cache (LLC) load misses (local and remote), the
memory throughput of each socket, the instructions per cy-
cle (IPC), the total traffic through the QPI, and the total
data (without the cache coherence) traffic through the QPI.

0
10
20
30
40
50
60

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
4
8

12
16

1 4 16 64 25
6

10
24

Ta
sk

s(
x1

06)

Clients

OS Target Bound

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

0
10
20
30
40
50

O
S

Ta
rg

et
Bo

un
d

LL
C

lo
ad

m
iss

es
(x

10
10

)

Remote Local 0

2

4

6

8

10

1

Q
PI

tr
af

fic
(T

B)

0
50

100
150
200
250

O
S

Ta
rg

et
Bo

un
dM
em

or
y

TP
(G

iB
/s

)

S4 S3 S2 S1

0
4
8

12
16

1 4 16 64 25
6

10
24St
ol

en
ta

sk
s(

x1
05)

Clients

0

1

2

1

IP
C

0
1
2
3
4
5
6

1

Q
PI

da
ta

tr
af

fic
(T

B)

OS Target Bound

Performance metrics for the case of 1024 concurrent clients

Figure 8: Evaluating the OS, Target, and Bound
scheduling strategies, with RR-placed columns.

There is a 5× TP improvement with the Target and Bound
strategies, over the OS, mainly due to the improved mem-
ory throughput. The LLC load misses, most of which are
prefetched, are almost 5× more, and mostly local compared
to the mostly remote misses of OS. The number of processed
tasks is 5× higher, and IPC is also 5× higher due to faster
memory accesses. QPI data traffic is reduced analogously,
but cache coherence traffic is generated indirectly, even with
local accesses, and cannot be avoided.

Overall, Bound achieves better throughput than Target.
Although stealing improves CPU load, it hurts throughput
for memory-intensive workloads due to the incurred remote
accesses and stress on the QPI. We see this effect again later.

Implications. NUMA-awareness can significantly improve
the performance of memory-intensive workloads. Memory-
intensive tasks should be bound to the socket of their data.

6.1.2 Impact of the cache coherence protocol
Figure 9 shows the results of the previous experiment on the
8-socket Westmere-EX machine. Bound decreases the QPI
data traffic, but the total traffic is increased, due to the
broadcast-based cache coherence protocol (see Section 2).

Due to the saturation of the QPI, we cannot fully exploit
the memory bandwidth of all sockets simultaneously. Thus,
Bound improves performance only by 2× compared to OS.

0
5

10
15
20
25
30

1 4 16 64 25
6

10
24TP

(x
10

3
q/

m
in

)

Clients

Bound

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

OS Target Bound

0
5

10
15
20
25
30

1

Q
PI

tr
af

fic
(T

B)

0
20
40
60
80

100

O
S

Ta
rg

et
Bo

un
d

M
em

or
y

TP
(G

iB
/s

) S8
S7
S6
S5
S4
S3
S2 0

2

4
6
8

10

1

Q
PI

da
ta

tr
af

fic
(T

B)

OS Target Bound

Performance metrics for the case of 1024 clients

Figure 9: As Figure 8, on the 8-socket server.

Implications. H/W characteristics, such as the cache co-
herence protocol, can affect the NUMA impact we observe.

6.1.3 Impact of parallelism and data placement
We continue with the previous experiment, using Bound, but
with different data placements, on the 4-socket machine. We
trigger intra-query parallelism in this experiment, to show
the effect of issuing a single task for each query versus mul-
tiple tasks that can potentially be distributed across the
partitions of a column. The results are shown in Figure 10.

0

20

40

60
1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

RR IVP PP

0
10
20
30
40
50

RR IV
P PPLL
C

lo
ad

m
iss

es
(x

10
10

)

Remote Local

0

20

40

60

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients
0

10
20
30
40
50

RR IV
P PPLL

C
lo

ad
m

iss
es

(x
10

10
)

w/o parallelism w/ parallelism w/o parallelism w/ parallelism

Performance metrics for 1024 clients

Figure 10: The effect of intra-query parallelism on
the RR, IVP, and PP data placement strategies.

Intra-query parallelism is useful for low concurrency, since
it can use more CPU resources and achieve better through-
put. Also, parallelism is required when columns are parti-
tioned. Otherwise, the single task has to access remotely the
sockets of the remaining partitions. Parallelism, however, is
not required for RR and high concurrency, since the single
task is wholly local to the socket of a column. All parallel
versions of the three data placements reach the same TP for
high concurrency. IVP has slightly more remote accesses
than PP, since the dictionary is interleaved.

Although the same throughput is reached with parallelism,
there is a difference between the data placements. In Figure
11, we show violin plots of the query latency distributions.
All have the same average latency. RR, however, is unfair,
with more variance. IVP and PP have most latencies closer

0
3
0
0
0

256 1024

Clients

RR

L
a
te

n
cy

(m
s)

0
1
5
0
0

256 1024

Clients

IVP

L
a
te

n
cy

(m
s)

0
1
5
0
0

256 1024

Clients

PP

L
a
te

n
cy

(m
s)

Figure 11: Violin plots of the latency distributions.

1449

to the average. This is because in RR, queries queue up and
execute on the socket level. With IVP and PP, each query
parallelizes across all sockets, and because the tasks are pri-
oritized according to the query’s timestamp, they complete
approximately in the order they were received.

Implications. Intra-query parallelism is required for par-
titioned data. Partitioning has a fair latency distribution.

6.1.4 Impact of scale on data placement
Although partitioning can achieve the same performance as
RR on the 4-socket machine, this is not the case for large-
scale machines. We evaluate the previous experiment with
different partitioning granularities on the 32-socket machine.
We increase the number of partitions up to 32, when each
column is partitioned across all sockets. We take care to
distribute the partitions in a round-robin manner around
the sockets. For this reason, the case of one partition per
column degenerates to RR. We show the results for IVP in
Figure 12, for 1024 concurrent clients, and for all scheduling
strategies. We note that the implications are similar for PP.

0
5

10
15
20

1

TP
(x

10
4

q/
m

in
)

0
5

10
15
20

1

TP
(x

10
4

q/
m

in
)

0
5

10
15
20

1

TP
(x

10
4

q/
m

in
) RR

IVP2
IVP4
IVP8
IVP16
IVP32OS Target Bound

Figure 12: Combinations of scheduling strategies
and IVP granularities, on the 32-socket machine.

Bound is the best, while OS is the worst and is not af-
fected by the placement. Target achieves significantly less
throughput than Bound, because on this machine there are
much higher chances of stealing a memory-intensive task.
Stealing stresses the remote memory controller and the in-
terconnects due to increased traffic. For RR, Target has
around 58% worse throughput than Bound. We revisit this
effect later in Section 6.2.1.

An important implication is that as the number of par-
titions increases, the performance of Target and Bound de-
creases significantly. This is due to the overhead of par-
allelizing queries across numerous sockets. This overhead
is unnecessary, since the workload is uniformly distributed
and RR can already saturate the machine. As shown, RR
and IVP2 are comparable. Partitioning across more sock-
ets, however, incurs overhead. Partitioning across all sockets
decreases the throughput by around 70% compared to RR.

Interestingly, this implication is not true for all cases of
concurrency. As shown in Figure 13, for low concurrency,
partitioning either matches or surpasses RR. For high con-
currency, however, partitioning proves worse than RR.

0
5

10
15
20

1 4 16 64 25
6

10
24TP

(x
10

4
q/

m
in

)

Clients

Target

0
5

10
15
20

1 4 16 64 25
6

10
24TP

(x
10

4
q/

m
in

)

Clients

RR
IVP8
IVP32

Bound

Figure 13: Scaling up the number of concurrent
clients with different partitioning granularities.

Implications. Unnecessarily increasing the number of par-
titions has an overhead that depends on the scale of the
NUMA topology and the concurrency of the workload.

6.1.5 Impact of selectivity
In this experiment, we vary the selectivity from 0.001% up to
10%. We enable indexes, evaluate 1024 clients, and use RR
and Bound, on the 4-socket machine. We note that Target
achieves similar results since the workload is uniform and
the concurrency is high. The results are shown in Figure 14.

0
5

10
15
20
25
30
35

0.
00

1%
0.

01
%

0.
1% 1% 10

%

LL
C

lo
ad

m
iss

es
(x

10
10

) Remote
Local

0
50

100
150
200

0.
00

1%
0.

01
%

0.
1% 1% 10

%

M
em

or
y

TP
(G

iB
/s

) S4
S3
S2
S1

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7

1

TP
(q

/m
in

) 0.001%
0.01%
0.1%
1%
10%

107

106

105

104

103

102

10
1

Figure 14: Evaluating different selectivities.

As expected, throughput drops as we increase the selec-
tivity. The optimizer chooses to perform index lookups for
selectivities 0.001%-0.1%, as implied by the low memory
throughput and the number of LLC misses. For larger selec-
tivities, it chooses scans. For selectivity 1%, scans dominate
the execution, as is shown by the high memory through-
put and the large number of LLC misses. The workload
is more memory-intensive. For selectivity 10%, however,
the materialization phase dominates the execution. Since
the materialization consists of random accesses due to the
dictionary, it is more CPU-intensive, and we observe less
memory throughput and a lower number of LLC misses.

Implications. For a dictionary-encoded column, with an
index, the selectivity changes the critical path of execution.
It consists of CPU-intensive index lookups for low selectiv-
ities, memory-intensive scans for intermediate selectivities,
and CPU-intensive materializations for high selectivities.

6.2 Skewed workload
In this section, we use a skewed workload. Clients have a
20% probability of choosing a random column from the first
80 columns of the dataset, and a 80% probability of choosing
one from the remaining 80 columns.

6.2.1 Impact of stealing memory-intensive tasks
We perform the same experiment of Section 6.1.1. We use
RR, and we intend to see the effect of scheduling strategies
on performance. The results are shown in Figure 15.

0

10

20

30

40

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

OS Target Bound

0
5

10
15
20
25
30
35

O
S

Ta
rg

et
Bo

un
d

LL
C

lo
ad

m
iss

es
(x

10
10

)

Remote Local

0
50

100
150
200

O
S

Ta
rg

et
Bo

un
dM
em

or
y

TP
(G

iB
/s

)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 15: Evaluating the OS, Target, and Bound
scheduling strategies, with RR-placed columns.

1450

Bound still achieves the best throughput, even though
it underutilizes the machine. As implied by the memory
throughput, only two sockets contain the hot set of columns.

One would expect that Target achieves better through-
put, since it utilizes more CPU resources. It decreases the
throughput, however, by around 15%. This is because the
two hot sockets are already saturated. Remote accesses to
these sockets prevent some local accesses from queuing in
the memory controllers fast. Also, increased traffic stresses
the interconnects. We observe a similar effect in Section
6.1.4, where Target hurts throughput by around 58%.

Implications. Allowing stealing for memory-intensive tasks
can decrease throughput by up to 58%.

6.2.2 Impact of partitioning
To battle skewness, apart from collocating hot and cold
columns, one can partition hot columns. Figure 16 shows
the results of the previous experiment using Bound, but eval-
uating the different data placements and partitioning types.
IVP and PP achieve the best throughput as RR in the case of
the uniform workload of Section 6.1.1. Skewness is smoothed
out since queries are parallelized across all sockets.

0
10
20
30
40
50
60

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

RR IVP PP

0
10
20
30
40
50

RRIVP PP

LL
C

lo
ad

m
iss

es
(x

10
10

)

Remote Local

0
50

100
150
200
250

RR IV
P PP

M
em

or
y

TP
(G

iB
/s

)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 16: Evaluating the RR, IVP, and PP data
placements, with the Bound scheduling strategy.

PP has less CPU load due to the concurrency hint being
considered for every part, resulting in a smaller number of
tasks than IVP. Even with more CPU load, however, PP
cannot achieve a better throughput since the memory band-
width is already saturated. Due to space limitations, we
do not include Target. We note that it achieves a better
throughput for low concurrency, and a similar throughput
for high concurrency, since worker threads find local tasks
and steal fewer tasks than in the case of RR.

Implications. Partitioning can significantly help in smooth-
ing skewed memory-intensive workloads.

6.2.3 Impact of partitioning type
One needs to consider two things for choosing between IVP
and PP. Firstly, PP is expensive to perform as it recreates
columns. PP on this dataset takes around 18’, compared to
4’ for IVP, and consumes around 8% more memory because
dictionaries contain recurrent values. Secondly, IVP inter-
leaves the IX and the dictionary, which may be inefficient
for index lookups and intensive materialization phases.

As a practical example, Figure 17 shows the results of
the previous experiment with a high selectivity of 10%. Ex-
ecution is dominated by the CPU-intensive materialization
phase, which involves random accesses to the dictionary. PP
is better, since it involves more local accesses. The through-
put of IVP ultimately decreases due to remote accesses.

0

2
4

6

8

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

RR IVP PP

0

5

10

15

20

RR IV
P PPLL
C

lo
ad

m
iss

es
(x

10
10

)

Remote Local

0
20
40
60
80

100
120

RR IV
P PP

M
em

or
y

TP
(G

iB
/s

)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 17: As Figure 16, with a high selectivity.

Implications. To battle the skewness of IV-intensive work-
loads, IVP is a quick solution. PP is slower to perform, but
best for battling skewness in all workloads.

6.2.4 Impact of stealing CPU-intensive tasks
Stealing can be helpful, as long as tasks are CPU-intensive
so that the incurred remote traffic does not stress the inter-
connects. Figure 18 shows the results of the previous exper-
iment with high selectivities, but with the Target strategy.
Stealing now does not hurt as in the case of Section 6.2.1.

0

2
4

6

8

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

RR IVP PP

0

5

10

15

20

RR IV
P PPLL
C

lo
ad

m
iss

es
(x

10
10

)

Remote Local

0
20
40
60
80

100
120

RR IV
P PP

M
em

or
y

TP
(G

iB
/s

)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 18: As Figure 17, with Target.

Stealing does not improve IVP and PP since they were
already saturating CPU resources, but improves RR, which
now has full CPU load and achieves the same throughput as
IVP. Stealing incurs remote accesses, and both RR and IVP
are still worse than PP which results in more local accesses.

Implications. Inter-socket stealing should be allowed for
CPU-intensive tasks.

6.3 TPC-H and SAP BW-EML benchmarks
The implications of our analysis largely apply to the data
placement of whole tables and to the scheduling of aggrega-
tions as well. We parallelize aggregations similarly to scans,
and we define task affinities similarly (see Section 5.2). In
this section, we show the impact of different strategies for
placing tables and scheduling queries on the throughput of
two benchmarks dominated by scans and aggregations.

For the first benchmark, we use TPC-H [12] with a scaling
factor 100 (100GiB flat files). We measure the throughput
(queries per hour) of TPC-H Q1 instances, with random
parameters (see clause 2.4.1.3 [12]), which are continuously
issued by 32 concurrent clients (who can saturate resources
due to intra-query parallelism). The evaluation of TPC-H
Q1 is dominated by aggregations on a single table (lineitem).

For the second benchmark, we measure the throughput
of the reporting load of SAP BW-EML [3, 9].2 BW-EML
is representative of realistic SAP BW (business warehouse)
industrial workloads. It uses an application server to host

2We refer the reader to an IBM redbook [11] for a more
detailed introduction to BW-EML and sample statements.

1451

BW users who query a database server. Throughput is mea-
sured in navigation steps (or queries) per hour. At the core
of the data model, there are 3 InfoCubes, each modeling
multidimensional data with an extended star schema [22].
The major part of the execution consists of queries which
are dominated by scans and aggregations on the InfoCubes.
Every presented measurement uses the maximum number of
users that can be serviced without timeouts. Our dataset
has 1 billion records (around 800GiB of flat files).

To evaluate BW-EML, we split the 32-socket rack-scale
machine into two 16-socket ones, each hosting the applica-
tion and the database server (running our prototype of SAP
HANA) respectively. We use the database server for TPC-H
as well. We evaluate the impact of different PP granularities,
and the impact of Target and Bound, on the throughput.
For each granularity, we distribute the table partitions in a
round-robin manner around the sockets. Similar to Section
6.1.4, the case of one partition per table degenerates to RR.
Due to legal reasons, throughput results are normalized to
undisclosed constants c1 and c2, corresponding to the maxi-
mum observed throughput for TPC-H and BW-EML respec-
tively. This does not hinder us from comparing the impact
of the different data placement and scheduling strategies on
the throughput. The results are shown in Figure 19.

0
0.2
0.4
0.6
0.8

1

RR PP
2

PP
4

PP
8

PP
16

Th
ro

ug
hp

ut
(c

1
·Q

ph
H)

0
0.2
0.4
0.6
0.8

1

RR PP
2

PP
4

PP
8

PP
16

Th
ro

ug
hp

ut
(c

2
·n

av
.s

te
ps

/h
)

Target
Bound

TPC-H Q1 instances (SF = 100) SAP BW-EML (SF = 1 billion rows)

Figure 19: TPC-H and SAP BW-EML with different
PP granularities, and different scheduling strategies.

TPC-H is severely skewed, since Q1 queries one table. In-
creasing the number of partitions improves performance as
queries are gradually executed locally on more sockets. Our
measurements show that Q1 is CPU-intensive as its execu-
tion is dominated by the multiplications of its aggregations.
Due to this, Target is better than Bound. For Bound, in-
creasing the number of partitions results in utilizing more
sockets, finally matching the throughput of Target.

BW-EML, in contrast, has simpler aggregation expres-
sions and is memory-intensive. Thus, Bound is better than
Target, even if it underutilizes the machine (as in the case
of RR), as stolen tasks incur remote accesses and stress the
QPI. This is why the performance of Target remains low.
Increasing the number of partitions up to 4 improves the
performance of Bound, since the 3 InfoCubes are fully con-
suming the memory bandwidth of 12 sockets. Further par-
titioning, however, is unnecessary since the machine is satu-
rated, and creates an overhead (as in Section 6.1.4 for IVP).

Implications. The implications are in line with our scan
benchmarks. First, memory-intensive tasks should be bound,
while CPU-intensive tasks not. Second, only hot data should
be partitioned, up to the point that the CPU and memory
bandwidth utilization is balanced across all sockets.

7. TOWARDS AN ADAPTIVE DESIGN
Our analysis shows that a main-memory column-store needs
a task scheduling and data placement strategy that adapts

to the workload. Considering the implications of our anal-
ysis, we envision an adaptive design. The design, shown in
Figure 20, comprises of three components: (a) the catalog,
(b) the task scheduler, and the (c) data placer.

Catalog. The catalog holds information about the tables,
their columns, and whether a table is physically partitioned
(see Section 4). The second table of the figure, e.g., has
two physical partitions. Through the catalog, the PSM of
the components (indexvector, dictionary, index) of any col-
umn can be accessed. Task creators can consult the PSM to
define a socket affinity for their tasks.

Task scheduler. The task scheduler needs to be NUMA-
aware by supporting task affinities (see Section 5). We en-
vision that task creators assign estimated performance met-
rics to tasks, e.g., their memory bandwidth consumption. A
black-box approach using H/W counters can be employed
to find performance metrics (see Section 3). Task creators
can set the hard affinity flag of a task based on whether its
performance metrics indicate a memory-intensive task.

Data placer. The data placer initially places data items
(tables or columns) across the sockets with RR. Afterwards,
it continuously runs the workflow of Figure 20 to balance
the CPU and memory bandwidth utilization of all sockets
by moving or repartitioning data items. The utilization can
be measured with H/W counters.

If the utilization across sockets is unbalanced, the data
placer finds the hottest, most utilized, socket. By examining
its active tasks, and their performance metrics, it discerns
the hottest data item. If the hottest data item is not dom-
inating the utilization of the socket, the data placer moves
it to the coldest socket. If it is dominating the utilization of
the socket, it increases its number of partitions, either with
IVP, if the data item services tasks that mostly scan the IV
of the columns, or PP otherwise (see Section 4). The new
partition is moved to the coldest socket.

In case the socket utilization is balanced, the data placer
iterates over the catalog to find partitioned data. For each
partitioned data item, it decides if it is cold by examining if
any active tasks are processing it. If a partitioned data item
is cold, the data placer decreases its number of partitions.

TBL1 PART1 COLa
PSMDict

PSMIV
COLb

TBL2 PART1 COLx
COLy

PART2 COLx
COLy

PSMIX

Priority
Queue

Hard Priority
Queue

t
t

t
t

run()
Socket = 1
Hard aff. =
Performance
metrics

Data placer (flowchart)Place data using RR

Unbalanced? Find most
hot socket

Find most
hot data

Partition? IV-intensive?

Move to coldest socket

Partition
with IVP

Partition
with PP

Place new partition

Yes

No

No Yes

Cold data?

Decrease number of partitions

Yes

Iterate catalog Partitioned?
Continue Yes

NoNoEnd Yes

No

Socket 1 TG 1

Task schedulerCatalog

Figure 20: Our envisioned adaptive design.

1452

8. DISCUSSION AND OUTLOOK
Applicability. To support our strategies for data place-
ment and task scheduling, a main-memory column-store can
be augmented with two functionalities. First, adopt PSM in
order to realize the RR, IVP, and PP data placements (see
Section 4). Second, the task scheduler needs to support a
socket affinity and a hard affinity for tasks (see Section 5).

Compression. Most column-stores use dictionary encod-
ing such as Microsoft SQL Server [21], IBM DB2 BLU [30],
Oracle [18], and MonetDB [26]. Our analysis can also extend
to columns without a dictionary. In this case, the output of
a scan is written directly without a dictionary. Our novel
IVP can be as efficient as PP for high selectivities as well.

Moreover, our scans are implemented using SSE over bit-
compressed IV [33]. IV can be further compressed using,
e.g., run-length or prefix encoding, and scans can use the
new AVX2 instructions [34]. Different compression forms,
however, do not change the basic implications for placing
data and scheduling tasks. Decompression may modify the
CPU- and memory-intensity of tasks. In this case, our en-
visioned adaptive design can accommodate them.

Additional operators. We are working on extending our
analysis and our envisioned design to incorporate more com-
plex operators, such as joins. We intend to use similar data
placement and task scheduling strategies. What we need to
consider additionally for, e.g., joins, is the placement of the
data structures used internally in the operator, and placing
correlated data on the same socket or on nearby sockets.

9. CONCLUSIONS
In this paper, we show that main-memory column-stores
should depart from a static data placement and task schedul-
ing strategy on NUMA machines, towards a strategy that
adapts to the workload. We describe and implement various
strategies for concurrent scans. For task scheduling, we dis-
tinguish between Target, and Bound. For data placement,
we distinguish between RR, our novel IVP, and PP. Our
extensive sensitivity analysis of the strategies, under vari-
ous workload parameters, shows that (a) stealing memory-
intensive tasks can hurt throughput by up to 58%, and that
(b) unnecessary partitioning can hurt throughput by up to
70%. Based on our analysis, we envision an adaptive de-
sign that balances the utilization of all sockets. Partitioning
should be used only for hot data in case of skewed work-
loads, and the number of partitions should be increased up
to the point that utilization across sockets is balanced.

10. REFERENCES
[1] Intel Xeon Processor E7 Family Uncore Performance

Monitoring, 2011. http://www.intel.com/.
[2] Intel Xeon Processor E7 v2 2800/4800/8800 -

Datasheet - Vol. 2, 2014. http://www.intel.com/.
[3] SAP BW Enhanced Mixed Load benchmark, 2015.

http://global.sap.com/campaigns/benchmark/.
[4] SAP HANA Platform SQL and System Views

Reference, 2015. http://help.sap.com.
[5] A. Ailamaki et al. How to stop under-utilization and

love multicores. In SIGMOD, pp. 189–192, 2014.
[6] M.-C. Albutiu et al. Massively Parallel Sort-Merge

Joins in Main Memory Multi-Core Database Systems.
VLDB, 5(10):1064–1075, 2012.

[7] D. Alistarh et al. The SprayList: A Scalable Relaxed
Priority Queue. In PPoPP, pp. 11–20, 2015.

[8] C. Balkesen et al. Multi-Core, Main-Memory Joins:
Sort vs. Hash Revisited. VLDB, 7(1):85–96, 2013.

[9] T. Becker et al. Searching for the Best System
Configuration to Fit Your BW?, Nov. 2012.
http://scn.sap.com/docs/DOC-33705.

[10] S. Blagodurov et al. A Case for NUMA-aware
Contention Management on Multicore Systems. In
USENIXATC, pp. 557–558, 2011.

[11] W. Chen et al. Architecting and Deploying DB2 with
BLU Acceleration. IBM Redbooks, 2014.

[12] TPC-H Benchmark Rev. 2.17.1. http://www.tpc.org.
[13] M. Dashti et al. Traffic Management: A Holistic

Approach to Memory Placement on NUMA Systems.
In ASPLOS, pp. 381–394, 2013.

[14] F. Färber et al. The SAP HANA Database – An
Architecture Overview. IEEE Data Eng. Bull.,
35(1):28–33, 2012.

[15] J. Giceva et al. Deployment of Query Plans on
Multicores. VLDB, 8(3):233–244, 2014.

[16] T. Gubner. Achieving Many-Core Scalability in
Vectorwise. Master’s thesis, TU Ilmenau, 2014.

[17] T. Kissinger et al. ERIS: A NUMA-Aware In-Memory
Storage Engine for Analytical Workloads. In ADMS,
pp. 74–85, 2014.

[18] T. Lahiri et al. Oracle Database In-Memory: A Dual
Format In-Memory Database. In ICDE, 2015.

[19] C. Lameter et al. NUMA (Non-Uniform Memory
Access): An Overview. ACM Queue, 11(7):40, 2013.

[20] H. Lang et al. Massively Parallel NUMA-aware Hash
Joins. In IMDM, 2013.

[21] P.-A. Larson et al. Enhancements to SQL server
column stores. In SIGMOD, pp. 1159–1168, 2013.

[22] T. Legler et al. Data Mining with the SAP NetWeaver
BI Accelerator. In VLDB, pp. 1059–1068, 2006.

[23] V. Leis et al. Morsel-Driven Parallelism: A
NUMA-Aware Query Evaluation Framework for the
Many-Core Age. In SIGMOD, pp. 743–754, 2014.

[24] C. Lemke et al. Speeding up queries in column stores:
a case for compression. In DaWaK, pp. 117–129, 2010.

[25] Y. Li et al. NUMA-aware algorithms: the case of data
shuffling. In CIDR, 2013.

[26] S. Idreos et al. MonetDB: Two decades of research in
column-oriented database architectures. Data
Engineering, page 40, 2012.

[27] D. Porobic et al. ATraPos: Adaptive transaction
processing on hardware Islands. In ICDE, pp.
688–699, 2014.

[28] I. Psaroudakis et al. Task Scheduling for Highly
Concurrent Analytical and Transactional
Main-Memory Workloads. In ADMS, pp. 36–45, 2013.

[29] I. Psaroudakis et al. Scaling Up Mixed Workloads: A
Battle of Data Freshness, Flexibility, and Scheduling.
In TPCTC, pp. 97–112, 2015.

[30] V. Raman et al. DB2 with BLU Acceleration: So
much more than just a column store. VLDB,
6(11):1080–1091, 2013.

[31] P. Russom. Best Practices Report: High-Performance
Data Warehousing, 2012. http://tdwi.org/.

[32] M. Stonebraker et al. The end of an architectural era
(it’s time for a complete rewrite). In VLDB, pp.
1150–1160, 2007.

[33] T. Willhalm et al. SIMD-Scan: Ultra Fast in-Memory
Table Scan using on-Chip Vector Processing Units. In
VLDB, volume 2, pp. 385–394, 2009.

[34] T. Willhalm et al. Vectorizing database column scans
with complex predicates. In ADMS, pp. 1–12, 2013.

[35] F. Wolf et al. Extending Database Task Schedulers for
Multi-threaded Application Code. In SSDBM, 2015,
to appear.

[36] M. Zukowski et al. Vectorwise: Beyond Column
Stores. IEEE Data Eng. Bull., 35(1):21–27, 2012.

1453

http://www.intel.com/
http://www.intel.com/
http://global.sap.com/campaigns/benchmark/
http://help.sap.com
http://scn.sap.com/docs/DOC-33705
http://www.tpc.org
http://tdwi.org/

	Introduction
	Background
	Related work
	Data placement strategies
	Main-memory column-stores
	Data placement of columns
	Tracking and moving memory

	NUMA-aware task scheduling
	Task scheduler infrastructure
	NUMA-aware scheduling of scans

	Experimental evaluation
	Uniformly distributed workload
	Impact of scheduling
	Impact of the cache coherence protocol
	Impact of parallelism and data placement
	Impact of scale on data placement
	Impact of selectivity

	Skewed workload
	Impact of stealing memory-intensive tasks
	Impact of partitioning
	Impact of partitioning type
	Impact of stealing CPU-intensive tasks

	TPC-H and SAP BW-EML benchmarks

	Towards an adaptive design
	Discussion and Outlook
	Conclusions
	References

