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Abstract—Column store databases allow for various tuple
reconstruction strategies (also called materialization strategies).
Early materialization is easy to implement but generally performs
worse than late materialization. Late materialization is more
complex to implement, and usually performs much better than
early materialization, although there are situations where it is
worse. We identify these situations, which essentially revolve
around joins where neither input fits in memory (also called
spilling joins).
Sideways information passing techniques provide a viable

solution to get the best of both worlds. We demonstrate how early
materialization combined with sideways information passing
allows us to get the benefits of late materialization, without the
bookkeeping complexity or worse performance for spilling joins.
It also provides some other benefits to query processing in Vertica
due to positive interaction with compression and sort orders of
the data. In this paper, we report our experiences with late and
early materialization, highlight their strengths and weaknesses,
and present the details of our sideways information passing
implementation. We show experimental results of comparing
these materialization strategies, which highlight the significant
performance improvements provided by our implementation of
sideways information passing (up to 72% on some TPC-H
queries).

I. INTRODUCTION AND MOTIVATION

In column-store databases, such as the Vertica Analytic
Database [1], different columns are stored separately on
disk (much like a vertically partitioned table in traditional
databases). Since this modification is at the physical storage
layer, column stores still provide the usual relational view of
data, and hence to produce results for any query, the necessary
columns need to be stitched together during query execution.
This process is referred to as tuple reconstruction or mate-
rialization. Abadi et al. [2] studied two tuple reconstruction
strategies – early materialization and late materialization – and
found interesting tradeoffs between the two. In this paper, we
report our experiences with using these strategies in the context
of joins, and highlight some issues not explored in [2].
Early materialization refers to the technique of stitching

columns into partial tuples as early as possible, i.e., during
column scan in query processing. In a column store, other
than the advantage of not having to scan columns not referred
to by the query, the remaining query evaluation looks identical
to query evaluation in a row store. Single table predicates that
have been pushed down can be evaluated in two different
ways (referred to as EM-parallel and EM-pipeline in [2]).
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Fig. 1. Early materialization strategies

The EM-parallel strategy involves fetching a few blocks of
all the columns needed by the query, stitching them together
to form tuples, and then evaluating predicates to eliminate
rows that do not match. The EM-pipeline strategy involves
fetching columns one at a time, evaluating predicates on them
and then fetching from subsequent columns only those row
ids that satisfied the prior predicates. This process is repeated
until all columns needed by the query are fetched, after which
they are stitched together into tuples. Figure 1 illustrates these
two strategies. For early materialized query plans, Vertica uses
the EM-pipeline strategy exclusively, since we have found that
it works well in practice.

Late materialization refers to the technique of fetching
columns on demand for each operator in the query plan. For
example, in a query with multiple joins, while evaluating any
particular join, only the columns needed for that join are
fetched. The output from each join is only the set of matching
row ids, which are used to fetch other columns as needed for
the remaining operators in the query. Since each join has two
inputs, we have a choice of late or early materialization for
each input. Since the output from a join can only preserve the
row id order of one of the inputs, we have found empirically
that it is only useful to late materialize one of the inputs
to the join – fetching columns with out-of-order row ids is
prohibitively expensive. In Vertica, we choose to always early
materialize the “inner” input of the join, which is the build
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(a) Late Materialized Join
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(b) Early Materialized Join

Fig. 2. Late and Early Materialized Joins in Vertica for the query “SELECT C1,C2,D1,D2 FROM C,D WHERE C1=D1”

relation in a hash join1. Figure 2 shows late materialized and
early materialized execution plans as implemented in Vertica
for a simple join query. Henceforth, late-materialized plans
refer to our implementation where only the outer input to a
join is late materialized.
A common pattern in analytic queries is to use joins for

filtering. Late materialization provides significant performance
advantages for such queries since after each join, there are
fewer row ids to fetch off the disk. For large tables, this results
in significant disk I/O savings. The price of this benefit is
complexity – tracking which columns to materialize at what
point involves a lot of bookkeeping in the optimizer, and
execution engine and has to be accounted for in the cost model
during query optimization. It is also very difficult to implement
partial aggregation before joins [3], because the optimizer
needs to weigh the benefit of cardinality reduction (provided
by the pushed-down aggregation operation), against the cost
of fetching extra columns needed for aggregation. It is very
difficult to accurately estimate the number of distinct values of
a number of columns, especially in the presence of predicates,

1Theoretically, for merge joins, there is no difference between the inner
and outer inputs, but due to the usually asymmetric size of join operands in
Vertica, the inner input to a merge join is read before the outer input

which makes it hard for the optimizer to make the correct
choice. In spite of this complexity, the performance advantages
provided by late materialization made it worthwhile for us to
implement it in Vertica’s optimizer and execution engine.
However, we quickly found that there is one scenario

where late-materialized query plans perform much worse than
early-materialized plans, viz. joins where neither input fits in
memory. To see why, consider the join shown in Figure 2 –
if neither input to the join fits in memory, we need to use
an algorithm such as hybrid hash join [4] or sort-merge join
[5]. In a hybrid hash join, both inputs are co-partitioned into
buckets by hashing the join keys, such that each bucket fits
into memory. In this scenario, if the join only outputs row ids,
then reconstructing the tuples after the join will require several
scans of the outer input – as many scans as there are buckets.
Since we know that the outer input does not fit in memory, this
involves multiple scans of a very large table, apart from the
disk I/O for the join itself. In contrast, an early materialized
plan involves only a single scan of the outer input (apart from
the disk I/O for the join).
Similarly, in a sort-merge join, both inputs need to be sorted

according to the join keys. In this situation, if the join only
outputs row ids, they will be out of order. Thus, reconstructing
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the tuples will either require another sort according to row ids,
or random disk I/O apart from the disk I/O for the join itself.
An early materialized plan, on the other hand, again involves
only a single scan of the outer input (apart from the disk I/O
for the join).
It is very difficult to determine with any measure of con-

fidence whether a particular join will spill or not, due to
inaccuracies in cardinality estimation. As a result, it is very
hard to determine whether a query should be planned with
early materialization or late materialization. Early versions of
Vertica put the burden of this choice on the user, with late-
materialized queries erroring out if they encountered a join
that would spill. The user could then retry the query with
early materialization. More recent versions took an optimistic
approach of always planning a query with late materialization,
and if the execution engine encountered a join that would spill,
it would abandon query execution and replan the query with
early materialization. While this increased the usability of the
product by not making the user choose the materialization
strategy, the penalty of abandoning and re-executing a query
can be significant. It is interesting to note that abandoning
query execution, replanning and re-executing the query with
early materialization outperformed late materialized joins that
spilled in our early experiments. This is because the replanning
approach is upper bounded by twice the early-materialized
query plan execution time, whereas late materialized spilling
joins can result in disastrous running times.
Ideally, what we want is a strategy that performs as well

as the better of these strategies for all queries2. We have
found that sideways information passing techniques combined
with early materialization can indeed give us the best of both
worlds.
Sideways Information Passing (SIP) refers to a collection of

techniques that seek to improve the performance of joins by
sending information from one part of the query plan to another,
allowing the database to filter out unneeded data as early as
possible. Passing filter information can be achieved by several
techniques such as Bloomjoins [6] [7], two-way semi-joins [8]
or magic sets [9]. In the context of Figure 2(b), if we pass the
join key values of D1 to the scan on C1, we can filter out non-
matching key values before scanning C2. Readers will note
that this is very similar to the late materialization technique
described above. Used in this form (i.e., passing join keys from
one part of the plan to another), sideways information passing
is a simpler way to gain the benefits of late materialization,
without the bookkeeping complexity. There are other benefits
as well (described in detail in Section V) that arise out of
positive interaction of our SIP implementation with Vertica’s
data model and storage implementation.
It is worth pointing out that this paper is not a comparison

of our SIP implementation with other SIP techniques. It is
equally valid to substitute other SIP techniques to get the same

2For the purposes of this paper, we only consider star/snowflake queries
containing joins, selection, projection and aggregation. Most analytic work-
loads are dominated by such queries, so optimizing their execution provides
a lot of value

benefits described here.
The following list summarizes the lessons learned in imple-

menting early materialization (EM), late materialization (LM),
and sideways information passing (SIP) in Vertica:

• LM is more difficult to implement than EM. LM involves
a lot of bookkeeping complexity in the optimizer and
execution engine to track which columns to materialize
at what point and has to be accounted for in the cost
model during query optimization.

• LM performs better than EM, except for the case of
spilling joins (when neither input fits in memory). In such
case, EM performs generally better.

• In the case of spilling joins, the combination of EM
with SIP performs better than EM alone. For non-spilling
joins, EM with SIP is as good as LM. Hence, the
combination of EM with SIP filters give the best of EM
and LM individually.

The remainder of this document is organized as follows.
Section II describes some related work and highlights dif-
ferences from our work. Section III describes how Vertica
models user data and stores it on disk. Section IV describes
our implementation of sideways information passing in detail.
Section V describes how the interaction of query evaluation
with sideways information passing yields extra benefits in Ver-
tica. Section VI details our experimental results, and Section
VII provides a summary of the paper and some directions for
future work.

II. RELATED WORK

Column Materialization. All column-store databases need
to solve the problem of when to put columns back together
when processing multi-column queries. Abadi et al. present
an analytical study of materialization strategies and discuss
their trade-offs in detail [2]. Their work focused mostly
on predicate evaluation and a few results for joins. Our
work is centered around joins where neither input fits in
memory, which was not explored in [2]. Spilling joins are
a major source of performance problems, so it is important
to study techniques to improve their runtime. Other column-
store databases such as MonetDB [10], HANA [11] and Blink
[12] have also studied tuple reconstruction. MonetDB stores
tuples in order of insertion and uses late tuple materialization.
Idreos et al. proposed in [10] to self-align columns of a
relation based on query predicates using sideways cracker
operators to optimize tuple reconstruction of future queries.
HANA database employs late materialization, but also early
materialization in some cases to reduce operator switching
overhead during query execution. Blink database compresses
columns into fixed-length codes and packs them into word-
sized banks. Queries in Blink are processed by table scans,
and columns are early materialized in hash maps. The issue
presented in this paper, viz. materialization strategies in the
context of spilling joins, is totally irrelevant to these databases,
since they are all in-memory databases. We have seen many
instances when the amount of data users want to analyze in
Vertica far exceeds the amount of memory available; there are
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at least three deployments with over a petabyte in size [1].
Thus, we believe that anyone who wants to build a column
store database that deals with on-disk data can benefit from
our experiences in this matter.
Sideways Information Passing (SIP). Sideways information
passing techniques aim at reducing the amount of state kept
in query plan operators by sending subresults computed in
other parts of the plan. SIP has been studied in the context
of distributed joins to minimize data movement among sites.
Given relations R and S, semi-joins involve shipping R’s
join attributes to the site storing S, where the join happens
and the results are sent back to R’s site for final tuple
reconstruction. [8]. Similarly, Bloomjoins [6] ship only a
compact representation of R’s join attributes using bloom
filters [7] instead of the actual attributes; a small percentage of
false positives is expected, but no false negatives are possible.
Additional techniques, like hash filters [13], in-memory hash
joins [14] [15], or magic sets [9] have also been studied
to prune intermediate results in processing single-site join
queries. More recently, Ives and Taylor have proposed adap-
tive information passing (AIP) schemes [16] to improve the
execution of complex, push-style queries containing correlated
join expressions. AIP has the benefits of prior techniques for
reducing useless intermediate data, but it has the ability to
pass information based on runtime conditions. As subresults
are fully computed, intermediate states (such as magic sets
or hash filters) are sent to other operators to apply filters on
correlated expressions as early as possible. In this paper, we
present our implementation of SIP, though it is possible to
substitute any of these techniques to achieve similar results.
In that sense, our work here is orthogonal to the particular SIP
technique employed.

III. DATA MODEL AND ON-DISK STORAGE IN VERTICA

Vertica models user data as tables of columns (attributes),
though the data is not physically arranged in this manner.
Data is physically stored as projections, which are sorted
subsets of the attributes of a table. Vertica requires at least
one super projection containing every column of the anchoring
table. Projections may be thought of as a restricted form
of materialized view [17], [18]. They differ from standard
materialized views because they are the only physical data
structure in Vertica, rather than auxiliary indexes. Projections
can either be replicated or segmented on some or all cluster
nodes. As the name implies, a replicated projection stores
a copy of each tuple on every projection node. Segmented
projections store each tuple on exactly one specific projection
node. The most common choice is HASH(col1..coln), where
coli is some suitably high cardinality column with relatively
even value distributions, commonly a primary key column.
Each projection column has a specific encoding scheme and
a column may have a different encoding in each projection in
which it appears. Figure 3 presents an example illustrating the
relationship between tables and projections.
Vertica is a column-store database where each column

may be independently retrieved as the storage is physically
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Fig. 3. Relationship between conceptual tables and physical projections.
The sales tables has 2 projections: (1) A super projection, sorted by date,
segmented by HASH(sale id) and (2) A non-super projection containing
only (cust, price) attributes, sorted by cust, segmented by HASH(cust).
Table columns are stored in projections using files on disk. Each column is
stored as a pair of files: a data file, and a metadata file, position index. Each
container contains a subset of complete tuples in a projection.
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SELECT *
FROM fact,dim
WHERE fact.FK = dim.PK

AND dim.B = 5;

Fig. 4. Example Join Query 1.

separate. Data is physically stored in multiple containers on a
standard file system. Each container logically contains some
number of complete tuples sorted by the projection’s sort
order, stored as a pair of files per column: one with the
actual column data, and one with a position index. Data is
identified within each container by a position which is simply
its ordinal position within the file. Positions are implicit and
are never stored explicitly. The position index (pidx) stores
metadata per disk block such as start position, minimum value
and maximum value that improve the speed of the execution
engine and permits fast tuple reconstruction. Complete tuples
are reconstructed by fetching values with the same position
from each column file within a container. Figure 3 presents an
example of how user data is stored on disk in Vertica.

IV. SIDEWAYS INFORMATION PASSING IN VERTICA

In this section, we describe the implementation of sideways
information passing (hereafter referred to as SIP) in the Vertica
Analytic Platform [19]. For the following discussion, we use
the simple query shown in Figure 4 as the running example.
Figure 5 shows one possible query plan for Query 1. As-

sume that the join shown in node n1 is a hash-join operation.
Node n3 indicates that the predicate dim.B = 5 has been
pushed down to the scan.
Without SIP, the input to the join operation would include

every tuple in the fact table. Figure 6 represents the preceding
query taking advantage of SIP to reduce the number of tuples
input to the join operation. Nodes of the query plan in Figure
6 are the same as those of the plan in Figure 5, except that
node n2, representing the outer input, specifies a SIP filter:
hash(FK) IN <hash-table for dim.PK>. The IN predicate
checks whether a particular value appears in a SIP data
structure (a hash table, in this example) and if so, returns
true, or false otherwise. Thus, during the scan of the fact
table, the SIP expression filters out tuples from the fact table
that would not satisfy the join condition (i.e., fact.FK =
dim.PK). In this example, the SIP filter was the join hash
table itself, but other types of filters can be used as well, such
as Bloom filters [7].

A. Algorithm

In this section, we describe the algorithm to create and
distribute SIP filters (expressions) in a query plan.

1) SIP Filter Creation: In Vertica, depending on the type
of join, the optimizer creates one or more SIP filters for each
join node in the plan. Filters are created for all inner joins
and only those outer joins where the preserved relation is the
inner input to a join (for hash joins, the inner input is the build
relation, while the outer input is the probe relation)
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Fig. 5. Plan for query in Figure 4

Fig. 6. SIPS Evaluation for Query 1

For a join with predicates of the form:
OuterExpr1 = InnerExpr1 AND . . .
OuterExprn = InnerExprn,
n+1 SIP filters are created: one for each OuterExpr (1 <=
k <= n), and for the combined set (OuterExpr1, . . .
OuterExprn).
For example, assume a join between two tables fact and

dim as follows:
fact.A1 = dim.B1 AND fact.A2 = dim.B2 AND
fact.A3 = dim.B3.
The optimizer creates four SIP filters - one for each

expression (fact.A1 = dim.B1, fact.A2 = dim.B2,
fact.A3 = dim.B3) and one for the combination
of expressions (fact.A1 = dim.B1 AND fact.A2 =
dim.B2 AND fact.B3 = dim.B3). The SIP filters rep-
resent the following predicates:

• fact.A1 IN (a SIP data-structure S1, e.g., a hash-set of
dim.B1 values)

• fact.A2 IN (a SIP data-structure S2, e.g., a hash-set of
dim.B2 values)

• fact.A3 IN (a SIP data-structure S3, e.g., a hash-set of
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dim.B3 values)
• fact.A1, fact.A2, fact.A3 IN (a SIP data-

structure S4, e.g., the hash-table built for the join, such
as the one shown in Figure 6).

Figures 7(b) and 8(a) present example query plans with SIP
filters created and populated on the join nodes.

2) SIP Filter Distribution: The optimizer creates one or
more SIP filters for each join operator in the query plan.
Initially, the SIP filters are added to the join operator that they
correspond to. Then, the push down process starts, attempting
to push down the SIP filters into the query tree rooted at
the outer input of each join operator according to the rules
described below:

Rule 1: If the current operator is a left outer join3, full outer
join, anti-join (such as joins generated by a NOT IN
clause) or a semi-join involving the ALL operator,
then stop the push down process.

Rule 2: If the current operator is a join, and the outer input
does not contain all the columns needed to evaluate
the SIP filter predicate, then stop the push down
process.

Rule 3: If the current operator is a join, and the outer input to
the join will require sending data across the network,
then stop the push down process.

Rule 4: If the current operator is a group-by, and the SIP filter
contains any aggregation functions (as opposed to
just grouping expressions), then stop the push down
process.

For example, consider the query plan shown in Figure 7(a).
The query plan includes two hash join operators n1 and n2.
The join operator n2 has the join condition fact.FK1 =
dim1.PK, an outer input (node n4) representing a scan of
the fact table and an inner input (node n5) representing a
scan of the dim1 table. The join operator n1 has the join
condition fact.FK2 = dim2.PK, an outer input which is
the output of the join operator n2 and an inner input (node
n3) that represents a scan of table dim2.

As shown in Figure 7(b), the optimizer creates a SIP filter
for each join operator. The join operator n2 has a SIP filter
fact.FK1 IN S1 (filter 1) and the join operator n1 has a
SIP filter fact.FK2 IN S2 (filter 2). S1 and S2 are SIP
filter data structures which are hash tables for tables dim1
and dim2, respectively. Initially, the SIP filters 1 and 2 are
added to each join operator that they correspond to. Then, the
push down process starts, attempting to push down SIP filters
1 and 2 into the outer input of their respective join operators
according to the rules described above. In this example, the
push-down process proceeds as follows. The SIP filter 2
is pushed down to the outer input of the join operator n1.
This is allowed because all four rules are satisfied: the join
operator n1 is an inner join (Rule 1), fact.FK2 will be

3We use the term left outer join here to refer to outer joins where the
preserved relation is the outer input to the join. Recall that in Vertica, the
inner input to a join is processed first

available in the outer input (Rule 2), there is no network
operation involved (Rule 3) and operator n1 is not a group-by
(Rule 4). SIP filters 1 and 2 cannot be pushed down any
further since the outer input (node n4) to the join operator
n2 requires a network operation, viz. resegmentation4 (Rule
3). If there were no resegmentation, then the SIP filters 1 and
2 could have been pushed down all the way to the scan of
the fact table (node n4, since that would have satisfied all
four rules). Figure 7(c) shows the state of the query plan after
SIP filters have been distributed (at the end of the push-down
process).

Figure 8 illustrates a push down that is avoided by Rule 2.
The query plan in Figure 8(a) includes two hash join operators
n1 and n2. The join operator n2 has the join condition
fact.FK1 = dim1.PK, an outer input n4, representing the
scan of fact table, and an inner input n5 representing a scan
of dim1 table. The join operator n1 has the join condition
fact.FK2 + dim1.C = dim2.PK, an outer input which
is the output of the join operator n2 and an inner input n3
which is a scan of table dim2. As before, SIP filters 1 and 2
are created on join operators n2 and n1 respectively (Figure
8(a)). The SIP filter 2 can be pushed down to the outer input
of the join operator n1, as shown in Figure 8(b), since doing
so would not violate any of the push-down rules. Similarly,
the SIP filter 1 can be pushed down to the scan of fact
table (Figure 8(c)). However, the SIP filter 2 cannot be pushed
down any further, because the outer input (node n4) does not
produce the value dim1.C (it comes from the inner input,
node n5). Thus, at the end of the push down process, we may
end up with a query plan in which not all SIP filters have been
pushed down to scans. The SIP filters that end up on the table
scan nodes are the most useful, since they filter out rows as
early as possible in the query plan.
Algorithms 1 and 2 present the pseudo-code for SIP filter

creation and distribution, respectively. Intuitively, the filter
creation algorithm constructs SIP filters by performing a pre-
order traversal on the input query plan. For each join operator
in the query plan, the algorithm creates individual SIP filters
for each equality predicate, and one for the combination of all
equality predicates. The filter distribution algorithm works by
starting from the root of the query plan and pushing down SIP
filters that satisfy rules 1 through 4 (mentioned above) through
the outer input of each join. This process continues recursively
in a pre-order fashion, until no more push-downs are possible.
In other words, the SIP filters are placed as low in the query
plan as possible, while still satisfying the push-down rules.

B. Evaluation of SIP Filters

In this section, we describe how SIP filters are used during
query evaluation, in the context of hash and merge joins5.

4Also referred to as re-partitioning [15]. Resegmentation refers to re-
partitioning data across nodes in a cluster, which is a network operation in
Vertica, due to its shared-nothing architecture

5In Vertica, since data is always stored in sorted order, it is often possible
to perform merge-joins without having to sort data
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(a) A Sample Query Plan.
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(b) SIP Filter Creation.
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(c) SIP Filter Distribution.

Fig. 7. SIP Filter Creation and Distribution Example.
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(a) SIP Filter Creation.
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(b) SIP Filter Push Down step 1.
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(c) SIP Filter Push Down step 2.

Fig. 8. An Example Push Down Avoided by Rule 2.

For hash joins, we reuse the join hash table as the SIP data
structure for the SIP filter created from all the join keys – in
the example in Section IV-A1, this is the filter fact.A1,
fact.A2, fact.A3 IN (SIP data-structure S4). For the
single column SIP filters, we create a fixed-size hash set for
each individual join key. The hash sets are populated while
the hash table for the join is being built. In the example in
Section IV-A1, the SIP data structures S1, S2 and S3 are hash
sets consisting of distinct dim.B1, dim.B2 and dim.B3
values respectively. Once these structures are populated, the
execution engine (EE) evaluates SIP filters as it does any other
predicate.
It is worth mentioning that Vertica maintains the minimum

and maximum values of the column data in each disk block.
Vertica uses these values to prune out blocks that cannot
possibly satisfy the predicate being applied. To take advantage
of this feature, the SIP filter data structures (such as hash tables
or hash sets) are augmented with the minimum and maximum
values among data, in the structure (say [min,max]). Using
the [min,max] values allows block pruning while evaluating
SIP filters during scans.
For SIP filters that have been pushed down to scans, while

the table is scanned, the EE skips reading those blocks that
fall outside [min,max] range of the SIP filter being evaluated.
For blocks that match, the EE filters out tuples whose column
values are absent in the SIP data structure. For example,
consider the SIPS evaluation for query 1 in Figure 6, assuming
a hash join on node n1 – the SIP data structure is augmented
with min = 3 and max = 3 values (since there is only

one tuple (3, 5) in the hash table for dim). Assume that the
fact table is physically split into two blocks, one of which
contains values 1 to 2, and the other contains values 3 to
4 for fact.FK. Then, the EE would skip reading the first
block, since the range [1, 2] does not overlap with the range
[3, 3]. From the second block, the EE only outputs the tuple
(3, qwe), since the value 3 is present in the hash-table for
dim.PK (which is also the SIP data structure).
For merge joins, SIP evaluation proceeds as follows. For

each data block read from the inner input to the join, the
EE builds a hash table consisting of values in the block.
The EE also augments the hash table with the minimum and
maximum values in the block. This hash table forms the
SIP data structure for merge joins. For the single column
SIP filters, the EE creates hash sets as described above for
hash joins, with the exception of using just the values present
in the fetched block of the inner input. Again, once these
structure are created, the SIP filters are identical to normal
predicates. Figure 9 shows the SIP data structure for merge
joins, augmented with the minimum and maximum values.
For SIP filters that have been pushed down to scans, the

scan proceeds as follows:
1) Based on the block-level [min,max] values, the execu-

tion engine skips blocks whosemax values are less than
the minimum value in merge-join SIP structure. For a
merge join, the data in the projection is sorted according
to the join keys, and hence the skipped blocks will form
a contiguous prefix of the column data.

2) For blocks that overlap with the [min,max] values in
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Algorithm 1 The SIP Filter Creation Algorithm,
CreateSIPFilters
Input: Root R of a Query Plan P .
Output: Query Plan, Ps with initialized SIP Expressions.

1: if R is not a Join operator then
2: CreateSIPFilters(Input(R));
3: return; {Just process child and exit}
4: else
5: join ← R;
6: if join is a Left-Outer Join or Full-Outer Join or Anti-

Join or Semi-Join with ALL operator then {Rule 1}
7: CreateSIPFilters(InnerInput(join));
8: CreateSIPFilters(OuterInput(join));
9: return; {Just process children and exit}
10: end if
11: if OuterInput(join) needs a network operation then

{Rule 3}
12: CreateSIPFilters(InnerInput(join));
13: CreateSIPFilters(OuterInput(join));
14: return; {Just process children and exit}
15: end if
16: Initialize a SIP Filter List, runtimeFilters;
17: joinPredicates ← getJoinPredicatesFor(join);
18: for each predicate pred in joinPredicates do
19: if pred is an equality predicate then
20: Create a SIP filter s for pred;
21: Add s to runtimeFilters;
22: end if
23: end for
24: if size(runtimeFilters) >1 then
25: Create a SIP filter s for all join keys involved in

equality predicates;
26: Add s to runtimeFilters;
27: end if
28: Store runtimeFilters in OuterInput(join);
29: CreateSIPFilters(InnerInput(join));
30: CreateSIPFilters(OuterInput(join));
31: end if

the SIP data structure, if the tuple’s column values are
less than themax in the SIP data structure, then the hash
table (or hash set) is probed, and only values present in
the structure are output.

3) The EE continues the above step, until the scanned
column values reach or exceed the maximum value in
the SIP structure. After that, another block from the
inner input is fetched, a new SIP structure for that block
is created and the whole process repeats until no more
data can be fetched from either side.

For example, consider the query plan shown in Figure 9,
which is a merge join between the fact and dim table on the
search condition fact.FK = dim.FK, with an additional
predicate dim.B = 5, pushed down to dim table. Fact

Algorithm 2 The SIP Filter Distribution Algorithm,
DistributeSIPFilters
Input: Root R of Query Plan Ps with initialized SIP
Expressions.
Output: Query Plan, Pd with distributed SIP Expressions.

1: if R is a Group-By operator then
2: groupby ← R
3: runtimeFilters ← getSIPFiltersFor(groupby);
4: for each filter in runtimeFilters do
5: if filter is in terms of just grouping keys of groupby

then {Rule 4}
6: Push filter to Input(groupby);
7: end if
8: end for
9: DistributeSIPFilters(Input(groupby));
10: return;
11: end if
12: if R is a Join operator then
13: join ← R;
14: if join is a Left-Outer Join or Full-Outer Join or Anti-

Join or Semi-Join with ALL operator then {Rule 1}
15: DistributeSIPFilters(InnerInput(join));
16: DistributeSIPFilters(OuterInput(join));
17: return; {Just process children and exit}
18: end if
19: if OuterInput(join) needs a network operation then

{Rule 3}
20: DistributeSIPFilters(InnerInput(join));
21: DistributeSIPFilters(OuterInput(join));
22: return; {Just process children and exit}
23: end if
24: runtimeFilters ← getSIPFiltersFor(join);
25: for each filter in runtimeFilters do
26: if filter can be applied in OuterInput(join) then {Rule

2}
27: Push filter to OuterInput(join);
28: end if
29: end for
30: DistributeSIPFilters(InnerInput(join));
31: DistributeSIPFilters(OuterInput(join));
32: end if

table is sorted on column fact.FK and dim is sorted on
dim.PK. In this example, only the highlighted rows shown
in Figure 9, are fetched from dim table, since they alone
satisfy the predicate, dim.B = 5. A hash-table with the
fetched dim.PK values, augmented with [min,max] = [3, 8]
is constructed. Finally, the only rows that flow from the
outer table (fact) into the merge-join operator are rows with
fact.FK values 3, 4 and 8.

C. Adaptive Evaluation

The power of SIP filters stems from the ability to filter
out rows as early as possible during query execution. This
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Fig. 9. SIP Evaluation for Merge Joins.

works really well when joins are used to filter out irrelevant
information. However, there are classes of queries that do not
use joins for filtering – for example, consider the following
query:

SELECT c_mktsegment, SUM(o_totalprice)
FROM orders JOIN customer

ON o_custkey = c_custkey
GROUP BY c_mktsegment;

The join between orders and customer is used to
denormalize the schema rather than filter out data. For such
joins, the additional overhead of evaluating a SIP filter is a
waste, since it will not filter out any rows. Even in filtering
joins, if the join predicate has low selectivity, the overhead
of evaluating SIP filters could be detrimental to overall query
performance.
One way of dealing with this situation is to not create SIP

filters for join predicates that have low selectivity. However,
query optimizers rely on estimates of join selectivity, which
can be quite error prone. Another option is adaptive evalu-
ation, i.e., the query execution engine stops evaluating SIP
filters if they are not “useful”. In Vertica, we chose the latter
approach, with “useful” being defined as follows – for each
SIP filter the EE maintains the number of rows it was applied
on (Ninput), and the number of rows that satisfied the predicate
(Noutput). If the ratio

Noutput

Ninput
is above a threshold (say 0.9) for

the first several thousand input values (say 10,000), then the
engine stops evaluating the predicate (and wherever possible,
stops fetching the associated column values from disk).
While this is a simple heuristic that can miss optimization

opportunities in certain pathological cases, we have found that
it works well in practice. Other techniques are possible, which
we have not evaluated.

V. SECONDARY BENEFITS

In addition to the advantages described in the previous
sections, we have observed several minor, but ubiquitous, situ-
ations where sideways information passing aids performance.
In this section we describe two features of Vertica’s column-
store architecture that are enhanced by our implementation of
sideways information passing and show by inference that SIP
is a particularly potent tool for column-stores in general.

A. Interaction with Ordinary Predicates

It is well established in database literature that predicate
pushdown and related techniques [20] improve query perfor-
mance by filtering out irrelevant data as early as possible.
Column-stores are no exception in this matter, and the Vertica
query optimizer tries to push down predicates as far as possible
in a query plan. In Vertica, the order of evaluation of pushed-
down predicates matters much more than in row-stores. This is
primarily due to how Vertica stores data on disk (described in
detail in Section III) – it is more efficient to evaluate predicates
according to the sort-order of the projection being scanned.
For example, if a projection for the orders table is sorted
on the columns (o_orderdate, o_shippriority), it
is more efficient to evaluate predicates on the o_orderdate
column before predicates on any other column. This is usually
because columns near the front of the sort order compress
really well, so require a lot less disk I/O to scan.
One of the fundamental value propositions of column-

store architectures is late materialization, which allows the
execution engine to fetch columns as needed for joins and
other operations. However, as we saw in Section I, late
materialization requires the execution engine to fetch columns
in the order required by joins. This order may be different from
the sort order of the projection being scanned, resulting in the
access pattern for filtering joins being less efficient than the
evaluation of pushed-down predicates. In essence, there is a
trade-off between performing joins according the sort order of
the projection versus performing them based on the estimated
selectivity and cost.
However, SIP filters, by the time they are ready to be

evaluated during a scan, look identical to ordinary pushed-
down predicates. Thus, the optimizer plans join orders based
on selectivity and cost estimates, while the execution engine
applies SIP filters and pushed-down predicates in the most
efficient order for the projection being scanned.

B. Effects of Encoded Data

Vertica aggressively encodes and compresses data before
storing it to disk since disk bandwidth is typically more expen-
sive than CPU cycles [21]. Predicates on columns whose data
is encoded in certain formats, such as run-length encoding,
can be applied directly on the encoded data, thus bypassing
the overhead of decompression and reducing the quantity of
data to be copied and processed through the joins. This is
particularly advantageous for low cardinality columns that are
run-length encoded. Consider the following query:
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SELECT *
FROM fact JOIN dim ON

fact.A1 = dim.B1 AND
fact.A2 = dim.B2

WHERE dim.B3 = 5;

As described in Section IV, we create three SIP filters
– one each for fact.a1 = dim.b1 and fact.a2 =
dim.b2, and one for the combined expression. If fact.a1
is run-length encoded, but fact.a2 is not, then evaluating
the combined join predicate effectively requires decoding
fact.a1, which is inefficient. However, by pushing the SIP
filter fact.a1 IN <hash set of dim.b1 values>
to the scan on fact, the execution engine can evaluate that
predicate directly on the encoded column, potentially resulting
in huge performance gains, especially when there are only a
few distinct values in the hash-set.

VI. PERFORMANCE EVALUATION

In this section, we present some experimental results
that demonstrate the improvements in query execution times
achieved through the use of sideways information passing. For
the experiments, we used a single node with two Intel Xeon
X5670 processors [22], 96GB of RAM and a 4.2 TiB RAID-5
disk drive. We loaded a 1TB TPCH dataset on the node for the
following experiments. All queries were run with cold caches.

A. Comparison with Late Materialization

Figure 10 shows the run times of eight TPC-H queries6 for
the following three query evaluation strategies:

EM Query executed with early materialization, no SIP
LM Query executed with late materialization, no SIP
EMSIPQuery executed with early materialization, with SIP

as described in Section IV
The EM strategy can be thought of as baseline query

performance, and has been normalized to 1 time unit for
all queries. The comparison between EM and LM strategies
demonstrates that for most queries, it is better to use LM.
This is also something we have observed in our experience
with real-world customer scenarios. This is one of the reasons
we chose to implement late materialization in our optimizer
and execution engine, despite its complexity. Query 5 is an
exception in this matter, precisely because of the issue of
spilling joins – the join between lineitem and orders
does not fit in memory on the machine we ran the experiments
on. Vertica tries running the query with a late-materialized
plan, then abandons and replans it with early materialization
since a join spilled to disk. In this particular case, the wasted
effort of executing the query with late materialization gets
hidden by the fact that the file caches are warm when the
replanned query starts executing. As mentioned in Section I,

6We omitted several queries from the graph in the interest of clarity. Q1,
Q6 do not have joins, Q13 has a left-outer join and Q14 does not have any
filtering joins, so are irrelevant to our discussion. Q4, Q7-9, Q15-16, Q19,
Q21-22 showed the same trend as Q3, i.e., no significant difference between
the strategies.

Column Name Type
date col date

TABLE I
DATE FILTER TABLE

Strategy Time Units
EM 1.00
LM 1.00

EMSIP 0.02

TABLE II
INTERACTION WITH ORDINARY PREDICATES

early prototypes of late-materialized spilling joins performed
so badly that we never put them into production.
The most interesting thing to note about Figure 10 is

the performance of the EMSIP strategy – we see that it
provides comparable performance to the better of LM and
EM strategies for most queries, and for four queries (TPCH
Query 5, 17, 18 and 20), it performs even better than LM.
In Query 5, the main benefit comes being able to eliminate
rows of the lineitem table early. If the join had not spilled,
we would have expected to see similar performance with
the LM strategy. In Query 17, the primary reason for the
increased performance of the EMSIP strategy is the push-
down of SIP filters into the correlated subquery. Without SIP,
the entire lineitem table gets scanned and aggregated on
the l_partkey column before the join with the outer query
block is performed. With SIP, however, the set of matching
p_partkey values gets passed into the subquery, resulting
in the fetching and aggregation of a lot fewer rows. Used in
this way, the SIP filters provide some of the benefits of magic
sets [9]. Query 18 and 20 are similar – they have correlated
subqueries through which SIP filters get pushed, resulting in
the large performance gains.
Query 10 demonstrates a case where SIP is slightly worse

than late materialization. In this query, the join predicate
between customer and orders is not selective, so in spite
of the adaptive evaluation of SIP filters, the overhead of
copying extra columns made EMSIP slightly worse than LM.
However, EMSIP still shows a 30% improvement over the
EM strategy.

B. Interaction with Ordinary Predicates

Consider the following query (based on the TPC-H schema
and an additional table date_filter shown in Table I):

SELECT o_orderpriority, COUNT(*)
FROM orders
WHERE o_orderdate in (SELECT date_col

FROM date_filter)
AND o_totalprice > 1000.0

GROUP BY o_orderpriority;

The query essentially computes the number of orders for
each order priority, for a list of order dates specified in a sep-
arate table, where each order is over a thousand dollars. This
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Fig. 10. Normalized Query Times

type of query is commonly generated by business intelligence
(BI) tools, where a list of desired values for some columns are
stored in a table (the date_filter table in this example). In
general, this allows for more maintainable application design,
since specifying the list of values as an IN list can result in
unwieldy queries. Another example of such a query is in the
context of stock data – the list of symbols to filter on may be
provided by a table or subquery, while the date range may be
specified as a simple predicate.

Table II shows the normalized run times for the LM, EM
and EMSIP strategies. We see that the EMSIP strategy is
around fifty times faster than either the EM or LM strate-
gies. The big performance gain for EMSIP comes from the
ability of the execution engine to apply the SIP filter on the
o_orderdate column before applying the ordinary predi-
cate on o_totalprice. The o_orderdate column was
the first in the projection sort order, and run-length encoded
as well, thus allowing for very quick predicate evaluation. In
the LM strategy, without SIP, the execution engine evaluates
the predicate on o_totalprice first, and then fetches the
o_orderdate column for the join, which is less efficient
(as noted in Section V-A).

Strategy Time Units
EM 1.00
LM 1.00

EMSIP 0.01

TABLE III
EFFECTS OF ENCODED DATA

C. Effects of Encoded Data

Consider the following query (based on the TPC-H schema,
but not a TPC-H query):

SELECT COUNT(*) FROM lineitem
WHERE (l_shipdate, l_orderkey) IN

(SELECT o_orderdate+1, o_orderkey
FROM orders
WHERE o_totalprice > 550000.0);

The query essentially finds the number of line items that
were shipped one day after they were ordered, for expensive
orders (in this case, expensive is defined as the total price over
550,000 dollars). The projection for lineitem was sorted on
the l_shipdate column, which was also run-length encoded
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(RLE). This query has the same form as the one mentioned
in Section V-B, so we expect to see a significant performance
improvement with SIP. Table III shows the normalized query
times for this query, and we see that the EMSIP strategy
performs two orders of magnitude better than either the EM
or LM strategies.
This type of query is common in the financial sector,

where join predicates involve stock symbols (which are low-
cardinality and compress well with RLE) as well as time-
stamps (which are high cardinality and usually not RLE).

VII. CONCLUSIONS

Column-stores allow for interesting query processing tech-
niques, such as the choice of materialization strategies and the
choice of optimal predicate evaluation orders. We highlighted
issues in choosing the right materialization strategy in the
context of joins, especially ones where neither input fits in
memory. We demonstrated that sideways information passing
combined with early materialization allows us to get the
best of both worlds, resulting in significant performance im-
provements for join queries in analytic workloads. This work
presents the practical implications and empirical performance
evaluation of applying SIP techniques, late materialization, and
exploiting characteristics of the Vertica Analytic Platform [19]
for processing complex queries.
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