
Generating code for holistic query evaluation

Abstract— We present the application of customized code
generation to database query evaluation. The idea is to use
a collection of highly efficient code templates and dynamically
instantiate them to create query- and hardware-specific source
code. The source code is compiled and dynamically linked to
the database server for processing. Code generation diminishes
the bloat of higher-level programming abstractions necessary for
implementing generic, interpreted, SQL query engines. At the
same time, the generated code is customized for the hardware it
will run on. We term this approach holistic query evaluation. We
present the design and development of a prototype system called
HIQUE, the Holistic Integrated Query Engine, which incorporates
our proposals. We undertake a detailed experimental study of the
system’s performance. The results show that HIQUE satisfies its
design objectives, while its efficiency surpasses that of both well-
established and currently-emerging query processing techniques.

I. INTRODUCTION

This paper presents the application of customized code gen-
eration for the purpose of efficient database query processing.
Our approach stems from template-based programming. The
idea is to use code templates for the various query processing
algorithms and then dynamically instantiate them and compose
them in a single piece of source code that evaluates the query.
Dynamic template instantiation removes the deficiencies of all
high-level abstractions that are necessary for implementing
generic query evaluators in current query engine designs.
Moreover, since the code is dynamically generated, it can be
customized to exploit the architectural characteristics of the
hardware it will execute on. We term this approach holistic
query evaluation, as the key premise is that one should take
a holistic view of both the query being evaluated and the
host hardware. The resulting performance advantage in main-
memory execution is substantial; for instance, it reaches a
factor of 167 over established database technology in TPC-H
Query 1. The novelty we claim is that template-based code
generation can be generalized to efficiently process any type
of query without affecting orthogonal aspects of the database
system.
Motivation. Traditionally, query processing algorithms have
focused on minimizing disk I/O while their in-memory effi-
ciency has been considered to be a secondary priority. For
contemporary servers with large amounts of memory, it is
conceivable for a large portion of the on-disk data –or even
the entire database– to fit in main memory. In such cases, the
difference in access latency between the processor’s registers
and main memory becomes the performance bottleneck [1].
To optimize such workloads, one needs to carefully “craft”
the executed code so as to minimize the processor stall time

during query execution.
Existing work has identified the data layout as the main

bottleneck that prevents contemporary processor designs with
multiple levels of cache memories from exploiting their full
potential in database workloads. We argue that changing the
storage layer is a radical departure from existing designs.
We identify the biggest problem with the design of a query
engine to be the compilation of SQL queries in operator plans
and the generality of the common operator interface, namely
the iterator model. The latter results in a poor utilization of
CPU resources. Its abstract implementation and the frequent
use of function calls inflate the number of instructions and
memory accesses required for query evaluation. The use of
generic code does not permit its customization according
to the characteristics of both the executed queries and the
hardware platform. SQL and query processing in main memory,
however, exhibit a strong potential for exploiting just-in-time
compilation. We take this idea to the extreme.
Code generation for query evaluation. Ideally, query pro-
cessing code should optimally use the cache hierarchy and
reduce the number of instructions needed for query evaluation.
At the same time, one would want to keep the compositional
aspects of the iterator model and not affect separate system
modules. To that end, we introduce a novel query evaluation
technique that we term holistic query evaluation. The idea
is to inject a source code generation step in the traditional
query evaluation process. The system should look at the entire
query and optimize it holistically, by generating query- and
hardware-specific source code, compiling it, and executing it.

Our approach has multiple benefits: (a) the number of
function calls during query evaluation is minimized; (b) the
generated code exhibits increased data locality, therefore mak-
ing optimal use of cache-resident data; (c) code generation and
compilation allow the use of compiler optimization techniques
targeting each individual query, an extra optimization level on
top of conventional query optimization; and (d) the generated
code approaches the performance of hard-coded evaluation
plans. The model is flexible and does not affect other or-
thogonal system aspects, such as storage management and
concurrency control.

Using this framework, we have developed a prototype holis-
tic query engine and compared its performance to both iterator-
based solutions and existing database systems. The results
(a) quantify the advantage of per-query code generation over
generic query operator implementations, and (b) demonstrate
a superiority of the holistic approach over both iterator-based
and hardware-conscious systems in a subset of the TPC-H

Konstantinos Krikellas 1, Stratis D. Viglas 2, Marcelo Cintra 3
School of Informatics, University of Edinburgh, UK

1 k.krikellas@sms.ed.ac.uk
2 sviglas@inf.ed.ac.uk

3 mc@inf.ed.ac.uk

978-1-4244-5446-4/10/$26.00 © 2010 IEEE ICDE Conference 2010613

Fig. 1. The architecture of modern CPUs

benchmark, therefore proving its viability as an alternative
query engine design.

The rest of this paper is organized as follows: in Section II
we describe current processor and compiler technologies and
conventional query engine design. Related work is presented
in Section III. In Section IV we present the design of a system
based on holistic evaluation. Our approach to code generation
and our query evaluation algorithms are given in Section V,
while in Section VI we experimentally evaluate the perfor-
mance of the proposed model. Finally, we draw conclusions
and identify future research directions in Section VII.

II. BACKGROUND

A. Hardware primer

Modern CPUs process multiple instructions simultaneously
through pipelining and superscalar execution [14]. If the CPU
supports out-of-order execution, instructions waiting for data
transfer or other instructions to execute first yield for ready-
to-execute instructions following in the pipeline. Out-of-order
execution hides stalls, but offers limited advantages when the
executed code includes consecutive memory requests and long
data and control dependency chains, which are common in
database workloads.

The substantial latency for transferring data from main
memory to the processor’s registers is countered with multiple
levels of cache memory. The closer a level is to the processor,
the smaller and faster it is to access it. Cached data is organized
in fixed-length chunks, each termed a cache line: the data
exchange unit with the main memory. Modern processors
incorporate a very fast to access level-1 (L1) cache, divided
in the Instruction (I1) cache and the Data (D1) cache; a larger
but moderately fast to access level-2 (L2) cache; and, in some
models, an even larger but much slower to access level-3 (L3)
cache. Caches exploit both temporal locality (data tend to be
repeatedly accessed within a short period) and spatial locality
(contiguously allocated data tend to be accessed in unison).
Non-blocking operation and superscalar execution allow for
multiple pending memory operations, thus overlapping fetch
latencies. Data-intensive workloads restrict this operation: the
cache controller can only serve a limited number of concurrent
requests and therefore becomes saturated. While caches can

serve most of the processor’s instruction and data requests, the
remaining ones (cache misses) are expensive and can become
a performance bottleneck.

To aid the caches, latest processors incorporate hardware
prefetchers that identify the instructions and data likely to
be accessed shortly and prefetch them into the appropriate
cache level [10]. Current CPUs, as shown in Figure 1, employ
multiple prefetching units tightly coupled with the cache
hierarchy. The simplest ones are capable of detecting sequen-
tial patterns. The more advanced ones closely monitor the
addresses touched by the processor to identify more complex
access patterns by (a) keeping the history of accesses for a
small number of the most frequently accessed addresses, and
(b) tracking the distance (stride) between successive fetches.

To quantify the impact of hardware prefetching, we mea-
sured the data access latency for sequential and random access
inside the memory hierarchy of a system using an Intel Core 2
Duo 6300 processor, clocked at 1.86GHz.1 The results showed
that, while all accesses to the D1-cache have a uniform cost of
3 CPU cycles, there is a significant difference when switching
from sequential to random access in the L2-cache: the former
takes 9 cycles and the latter 14 cycles. The gap grows when a
data access cannot be served from caches, as sequential access
in main memory costs 28 cycles, while random access costs
77 cycles or more.

B. Drawbacks of iterators
Most query engines are based on the iterator model [11].

This model provides an abstract interface used for streaming
tuples across query operators, in the form of three functions:
(a) open(), designating the start of information exchange
and initialization of internal operator state, (b) get next(),
for propagating tuples between operators, and (c) close(),
denoting the end of processing and allowing the operators
to free up their resources. Query plans are then organized
as pipelined binary trees of operators communicating through
iterator calls.

Though generic, the iterator model exhibits a large number
of function calls. For each in-flight tuple the system makes at
least two calls: one for the caller to request it and one for the
callee to propagate it. The number of function calls further
grows as iterators need to be generic. Their functions may be
virtual to be dynamically bound to the data types they process,
which implies that all field accesses and comparisons may
require a function call. Each function call updates the stack
register and saves/restores the contents of the CPU registers
to/from the stack. With tens of registers in current CPUs,
frequent function calls may lead to significant overhead, as a
substantial percentage of CPU time is spent without any actual
contribution to result computation. Moreover, since a function
call is a jump in the executed code, it forces a new instruction
stream to be loaded in the pipeline, thus limiting superscalar
execution.

In addition to stack interaction, there is also overhead at
the data level. Each iterator maintains internal state; iterator

1The results were extracted using the RightMark Memory Analyzer [22].

614

calls require several memory operations for accessing and
updating the iterator state, each call potentially triggering
cache misses. Moreover, iterator state manipulation interferes
with data stream accesses. Even if the data access pattern
is sequential it will be frequently interrupted, thus reducing
the efficiency of hardware prefetching. Note that the iterator
interface does not control the data flow of pipelined operators,
as each operator implementation is independent. Consequently,
pipelined iterator calls may introduce cache contention and
evict cache lines from each other’s data-set, leading to cache
thrashing.

C. Compiler optimization

Developers rely on the compiler to transform the code in
ways that reduce processor stalls during execution. Since the
compiler generates the executable code, it can optimize it
for the target architecture and hardware platform. The code
is transformed in ways that (a) keep the execution pipeline
full of independent instructions, (b) distribute variables to
registers in ways that encourage their reuse, and (c) group
together accesses to the same data [16]. These optimizations
result in increased parallelism, reduced memory accesses and
maximized cache locality, thus limiting processor stalls.

The iterator model, however, prevents the compiler from
applying such optimizations. Each iterator call triggers a chain
of function calls that will eventually produce a single tuple.
The compiler cannot factor this out and identify the (possibly
iterative) access pattern over the input, as interprocedural
analysis and optimizations are much more limited than in-
traprocedural ones. Moreover, conditions and jumps in the
code due to function calls disrupt the instruction sequence
and reduce the range of code the compiler can examine in
unison for optimization opportunities. This is aggravated by
certain parameters necessary for iterator instantiation (e.g.,
predicate value types and offsets inside tuples) being only
specified at run-time. These ambiguities refrain the compiler
from applying a substantial part of its code optimization
techniques on iterator implementations.

III. RELATED WORK

It has long been known that processors are designed for
complex numerical workloads over primitive data types and
are not well-tailored for database workloads. The authors
of [23] measured performance not only in terms of response
time, but also in terms of hardware performance metrics. They
also proposed various modifications to improve the behavior
of join algorithms on contemporary processors. Regarding the
storage layer, it was soon realized that the established N-ary
Storage Model (NSM) penalized execution for the common
case of only a small number of fields in each tuple being
necessary during query evaluation. This lead to the intro-
duction of vertical partitioning and the Decomposed Storage
Model (DSM) [9], where each tuple field is separately stored.
This layout reduces the amount of data touched during query
evaluation and allows for the use of array computations when
implementing the operators. This change of storage layout,

however, implied revisiting all query evaluation algorithms.
It also affected not only the design of the query engine, but
also other orthogonal aspects of a DBMS, e.g., concurrency
control. In [2] the Partition Attributes Across, or PAX, storage
model was introduced. The idea is that although pages still
provide a tuple-level interface, the tuples within a page are
vertically partitioned, thus greatly enhancing cache locality.
This hybrid approach combines the benefits of NSM and DSM
while requiring only moderate changes to the database system.

In the context of the iterator model, a buffering operator
was proposed in [25] to increase the tuple granularity in inter-
operator communication. This resulted in a measurable reduc-
tion in the number of iterator calls across the operator pipeline,
but had no effect on the number of evaluation function calls in
the body of the operator. In [20] it was proposed that multiple
aggregation operations can be combined in a single blocking
operator that executes these operations over a sequence of
tuples through array computations. Common computations
across the aggregation functions are performed only once and
stored as intermediate results; array computations are used
to evaluate aggregates, a technique more in line with the
superscalar design of modern processors.

The state-of-the-art in main-memory query execution is
MonetDB [3], [18] where, in addition to vertical decompo-
sition, the entire query engine is built on the notion of array
manipulation, with sophisticated query processing techniques
(e.g., radix-cluster hash join) having been developed in that
context. Though MonetDB’s engine employs a different data
flow than that of traditional DBMSs, it still is an operator-
based approach, tightly connected to the DSM. It also re-
quires materializing all intermediate results, thus reducing
the opportunities for exploiting cache locality across separate
query operators. These restrictions led to the introduction of
MonetDB/X100 [4], [26], where the idea of the blocking
operator [20] was coupled with a column-wise storage layout.
The use of compound vectorized primitives for performing
all computations achieved performance comparable to that of
hard-coded implementations.

Prefetching is another area that has received attention,
with [7], [8] presenting ways of employing software prefetch-
ing in hash join evaluation. Though this approach may improve
response times, it introduces the need for dynamically calculat-
ing the prefetching distance according to the CPU’s frequency,
cache latencies, and the run-time load. Inaccuracies result in
failing to prefetch the required data on time, or polluting the
cache with not immediately needed data. Besides, the cache
controller treats software prefetching instructions as hints and
may ignore them if there are pending fetch requests. We have
therefore chosen not to employ software prefetching in our
implementation.

Although a primitive form of code generation was used
even in System-R [5], the adoption of the iterator model [11]
has dominated query engine design. Code generation was
revisited in the Daytona data management system [13], which
was capable of on-the-fly generation of query-specific code.
It relied, however, on the operating system to perform most

615

Fig. 2. Holistic query engine overview

of the functionality a DBMS would traditionally provide (e.g.,
buffering, concurrency control). Similarly, the authors of [21]
presented a Java prototype system employing dynamic query
compilation. Still, this system employed iterators for operator
communication and execution, using the code generator only
to remove virtual functions from the body of iterators. More-
over, it did not present any novel query processing options,
e.g., joins were exclusively evaluated through preconstructed
join indexes.

IV. SYSTEM OVERVIEW

In this section we present the design of a query engine
employing code generation as the underlying principle for ef-
ficient query evaluation. Our system is named HIQUE, standing
for Holistic Integrated Query Engine. It has been implemented
in C/C++ and compiled using the GNU gcc compiler, over the
GNU Linux operating system. It adopts the traditional client-
server model, i.e., multiple clients communicate with the query
engine.
Storage layer. We have adopted the N-ary Storage Model
(NSM) as a storage layout, with tuples consecutively stored
in pages of 4096 bytes. The system, however, is not tied to
the NSM in any way; any other storage model, such as the DSM
or the PAX models, can be used and our proposals will still
be applicable. Each table resides in its own file on disk, and
the system’s storage manager is responsible for maintaining
information on table/file associations and schemata. A buffer
manager is responsible for buffering disk pages and providing
concurrency control; it uses the LRU replacement policy. In
addition to standard files, the system uses memory-efficient
indexes, in the form of fractal B+-trees [6], with each physical
page divided in four tree nodes of 1024 bytes each.
Query processing. The route of a query through the system
is shown in Figure 2. The first module is the SQL parser.
Our SQL grammar supports conjunctive queries with equi-joins
and arbitrary groupings and sort orders. It does not support
(a) statistical functions in aggregate values, and (b) nested
queries. We believe, however, these to be straightforward
extensions that do not restrict the generality of the holistic
evaluation model.

The SQL parser checks the query for validity against the
system catalogue and outputs an internal query representation
for the optimizer. The latter chooses the optimal evaluation
plan using a greedy approach, with the objective of minimizing

the size of intermediate results. It also chooses the optimal
evaluation algorithm for each operator and sets the parameters
used for the instantiation of the code generator’s templates (see
Section V for more details).

The output of the optimizer is a topologically sorted list
O of operator descriptors oi. Each oi has as input either
primary table(s), or the output of oj , j < i. The descriptor
contains the algorithm to be used in the implementation of
each operator and additional information for initializing the
code template of this algorithm. Effectively, this list describes
a scheduled tree of physical operators since there is only
one root operator. It is organised so that the first elements
describe the joins of the query, followed by any aggregation
and sorting operations (unary operators, at most one descriptor
for each). The optimizer keeps track of interesting orders [5]
and join teams [12], grouping together join operations and
avoiding re-sorting where possible. The code generator will
then traverse the topologically sorted list and emit a set of
functions containing the source code for each operator. This
is done in two steps per operator:

1) Data staging: all input tables are scanned, all selec-
tion predicates are applied, and any unnecessary fields
are dropped from the input to reduce tuple size and
increase cache locality on subsequent processing. Any
pre-processing needed by the following operator, e.g.,
sorting or partitioning, is performed by interleaving the
pre-processing code with the scanning code. The output
is then materialized (though not on disk, if the staged
input is small enough to fit in main memory).

2) Holistic algorithm instantiation: the source code that
implements each operator is generated. This code is
an instantiation of the appropriate holistic algorithm
template, as described in Section V-B.

By looking at the inputs of each operator the code generator
composes the operator implementations to generate a final
function. This function evaluates the entire query and is to
be called by the query engine. The final step of the code
generation process is to insert all generated functions into a
new C source file.

Once the query-specific source code has been generated, a
system call invokes the compiler to compile the source file
into a shared library file. This step allows the application
of aggressive compiler optimizations that target the code of
the specific query. The shared library file is then dynamically

616

Input: 1. Topologically sorted list of operators O,
2. Code templates for data staging (TS),

join evaluation (TJ) and aggregation (TA)
Output: Query-specific C source file
1. for each join operator jm ∈ O
2. retrieve code template tsm ∈ TS to stage jm’s inputs
3. for each input in of jm

4. instantiate tsm for in
5. generate C function csmn for staging in
6. retrieve code template tjm ∈ TJ for jm’s algorithm
7. instantiate tjm for jm

8. generate C function cjm to evaluate join
9. if ∃ aggregate operator a ∈ O
10. retrieve code template tsa ∈ TS to stage a’s input
11. instantiate tsa for a
12. generate C function csa for staging a
13. retrieve code template ta ∈ TA for a’s algorithm
14. instantiate ta for a
15. generate C function ca to compute aggregate values
16. if ∃ ordering operator s ∈ O
17. retrieve code template ts ∈ TS for sorting
18. instantiate ts and generate sorting C function cs
19. traverse O to compose the function cm calling all functions
20. write all generated functions to a new source file F
21. return F

Fig. 3. The code generation algorithm

linked and loaded by the query executor. The latter calls
the dynamically loaded function to evaluate the query and
redirects the output to the client.

V. CODE GENERATION

In this section we present the implementation of the code
generator. The code generator uses a template-based approach.
Each algorithm is represented as an abstract template, which
is instantiated according to the execution plan.

A. Implementation

The code generator accepts as input the output of the
optimizer (i.e., a topologically sorted list O of operator de-
scriptors) and produces a C source file of query-specific code.
The generation algorithm is shown in Figure 3. As mentioned,
each descriptor contains the algorithm to be implemented,
along with the necessary parameters for instantiating code
templates. These parameters include the predicate data type(s),
information about the operator’s inputs, be they primary tables
or intermediate results, and the output schema.

Code generation progresses as follows: the generator tra-
verses the operator descriptor list processing the join operators
first (Lines 1 to 8 in Figure 3) and moving on to any aggrega-
tion (Lines 9 to 15) and ordering operators (Lines 16 to 18).
For each operator the generator emits functions that (a) stage
the input (one function per input table), and (b) execute the
operator’s algorithm. These functions are built by retrieving
the appropriate code template (e.g., Lines 2 and 6 for joins) and
instantiating it according to the parameters of the operator’s
descriptor (e.g., Lines 4 and 7). Given that operator descriptors
in O contain information about how operators are connected,
the last bit of code generation is to traverse O and generate a
main (composing) function that calls all evaluation functions

in the correct order, ensures the correct (de)allocation of
resources and sends the output to the client (Line 19). Finally,
all generated functions are put into a new C source file, in the
same order as they have been generated.

B. Algorithms and code templates

The goal of holistic algorithms is to use code generation to
customize well-known data processing algorithms into more
hardware-efficient implementations. Per-query code generation
allows the following query-level optimizations: (a) attribute
types are known a priori, which means we can revert separate
function calls for data accessing and predicate evaluation to
pointer casts and primitive data comparisons, respectively; and
(b) fixed-length tuples inside each page can be accessed as an
array through pointer arithmetic and direct referencing. The
system is aware of the differences in latency for accessing
each level of the memory hierarchy. Recall from Section II
that switching from sequential to random access may even
double the latency on accesses outside the D1-cache; moving
one layer down the memory hierarchy increases latency by one
order of magnitude. The generated code therefore (a) examines
the input in blocks that fit inside the D1- or the L2-cache,
(b) maximizes reuse by performing multiple operations over
cache-resident data, and (c) strives for random access patterns
appearing only inside the D1-cache, as this is the only level
where the fetch cost is the same for both sequential and
random access.

As an example of generated code, Listing 1 shows the C
code for filtering the tuples of a table. By employing type
information (int in this case) and using array accesses, we
can eliminate all function calls (but the unavoidable for loading
pages and generating the output), saving a large number
of CPU cycles. We also reduce the number of instructions
executed, as we evaluate predicates over primitive data types.
Moreover, the use of array computations allows the code to
exploit the processor’s superscalar design. The lack of function
calls in the inner loop, in combination with directly accessing
tuples and their fields by reference, further aids the compiler
in optimizing the generated code in ways that efficiently
distribute data to registers and favor cache reuse.
Input staging. The staging algorithms include sorting, parti-
tioning, and a hybrid approach. Sorting is performed by using
an optimized version of quicksort over L2-cache-fitting input
partitions and then merging them. Partitioning is either fine,
through mapping attribute values to partitions, or coarse, by
using hash and modulo calculations to direct tuples to parti-
tions. Fine-grained partitioning is used when the partitioning
attribute has a small enough number of distinct values, so
that a value-partition map comfortably fits inside the cache
hierarchy. For each input tuple, the map is looked up for the
corresponding partition. We maintain a sorted array of attribute
values and use binary search for lookups. In case the directory
spans the lower cache level, searching it may trigger expensive
cache misses, so coarse-grained partitioning proves more
efficient. However, since the generated partitions in the latter
case contain multiple attribute values, increasing reuse through

617

1 // loop ove r pages
2 f o r (i n t p = start_page ; p <= end_page ; p++) {
3 page_str ∗page = read_page (p , table) ;
4 // loop ove r t u p l e s
5 f o r (i n t t = 0 ; t < page−>num_tuples ; t++) {
6 vo i d ∗tuple = page−>data + t ∗ tuple_size ;
7 i n t ∗value = tuple + predicate_offset ;
8 i f (∗ value != predicate_value) con t i n u e ;
9 add_to_result (tuple) ; // i n l i n e d

10 }}

Listing 1. Optimized table scan-select

1 /∗ I n l i n e d code to hash−p a r t i t i o n or s o r t i n p u t s ∗/
2
3 hash join : // examine c o r r e s p ond i n g p a r t i t i o n s t o g e t h e r
4 f o r (k = 0 ; k < M ; k++) {
5 // update page bounds f o r both k−th p a r t i t i o n s
6 hybrid hash−sort−merge join : // s o r t p a r t i t i o n s
7
8 f o r (p_1 = start_page_1 ; p_1 <= end_page_1 ; p_1++) {
9 page_str ∗page_1 = read_page (p_1 , partition_1 [k]) ;

10 f o r (p_2 = start_page_2 ; p_2 <= end_page_2 ; p_2++) {
11 page_str ∗page_2 = read_page (p_2 , partition_2 [k]) ;
12
13 f o r (t_1 = 0 ; t_1 < page_1−>num_tuples ; t_1++) {
14 vo id ∗tuple_1 = page_1−>data + t_1 ∗ tuple_size_1 ;
15 f o r (t_2 = 0 ; t_2 < page_2−>num_tuples ; t_2++) {
16 vo id ∗tuple_2 = page_2−>data + t_2 ∗ tuple_size_2 ;
17
18 i n t ∗value_1 = tuple_1 + offset_1 ;
19 i n t ∗value_2 = tuple_2 + offset_2 ;
20 i f (∗ value_1 != ∗value_2) {
21 merge join : // update bounds f o r a l l l o o p s
22 cont inue ;
23 }
24 add_to_result (tuple_1 , tuple_2) ; // i n l i n e d
25 }}}}}

Listing 2. Nested-loops template for join evaluation

sorting the partitions can help subsequent processing. This
leads to a class of what we term hybrid hash-sort algorithms,
which are applicable in certain join evaluation and aggregation
scenarios. These algorithms prove efficient if the number of
partitions is big enough so that the largest partition fits in the
L2-cache.
Join evaluation. All join evaluation algorithms use the com-
mon nested-loops template shown in Listing 2; the difference
across algorithms lies in how their inputs have been staged.
The template uses an array-like sequential access pattern,
which favors the utilization of the hardware prefetcher on
the first iteration over each page’s tuples. Subsequent tuple
iterations will be performed over cache-resident pages without
any cache misses.

Merge join assumes the input has been previously sorted
(Line 1). Join evaluation then progresses by linearly examining
the input tables (M is set to 1 in Line 4). The bounds of the
loops (both in terms of starting and ending pages per table, and
in terms of starting and ending tuples per page) are constantly
updated as the merging process progresses (Line 21). This is
controlled by a condition variable that can take one of three
values: the first means that there is no match between the
current tuples; the second means that at least one match has
been found and we should continue scanning inner tuples for
matches; the last means that the group of inner matching tuples
has been exhausted, so we need to advance the outer tuple and
backtrack to the beginning of the group of matching inner

tuples. If each tuple of the outer loop matches at most once
with tuples from the inner loop, the access pattern is linear
for both inputs; backtracking to the beginning of a group of
matching inner tuples is quite likely to result in cache hits,
since small groups will tend to be resident in the L2-, or even
the D1-cache.

Partition join builds upon Grace hash join [17]. The input
tables are first finely or coarsely partitioned in M partitions
each (Line 1); the corresponding partitions (Lines 3 to 5) are
then joined using nested-loops join. For fine-grained parti-
tioning, all tuples inside corresponding partitions will match.
For coarse-grained partitioning, each tuple will match with
none, some, or all tuples of the corresponding partition. To
that end, we do not use any hash table as it would lead
to uncontrollable random access patterns. Instead, we prefer
to first sort the partitions (Line 6) and then use merge join
for each pair of corresponding partitions, an algorithm we
term hybrid hash-sort-merge join. Note that if the size of
the partitions is smaller than half that of the L2-cache, by
sorting pairs of corresponding partitions just before joining
them (instead of during data staging), we ensure that they are
L2-cache-resident during join evaluation.

Furthermore, the nested-loops template enables pipelined
evaluation of multiple joins without materializing intermediate
results, thus radically reducing memory operations and pro-
cessor stalls. This is applicable in multi-way join queries with
join teams, i.e., sets of tables joined on a common key. Such
queries are quite common, e.g., in star-schemata or key-foreign
key joins. Notions like hash teams and interesting orders,
are handled by our model by increasing loop nesting. The
template of Listing 2 needs to be slightly modified to support
join teams. First, all input tables are properly staged (sorted
or partitioned). Then, for each input table the code generator
emits one loop over its pages and one over its tuples, with the
page loops preceding the tuple loops and following the same
table order. The code layout resembles the layout suggested
by the loop-blocking code optimization technique [16], which
enhances cache locality.
Aggregation. The aggregation algorithms depend on input
staging. Sort aggregation implies that the input has already
been sorted on the grouping attributes. The input is then
linearly scanned to identify the different groups and evaluate
the aggregate results for each group on-the-fly. For hybrid
hash-sort aggregation, the input is first hash-partitioned on
the first grouping attribute and then each partition is sorted
on all grouping attributes. Aggregation then progresses in a
single scan of each sorted partition.

Another option is to use value directories for each grouping
attribute. This is applicable if the total size of the directories
for all grouping attributes is small enough to fit inside the
cache hierarchy, so as to avoid directory lookups triggering
cache misses. In this case, map aggregation is evaluated
in a single linear scan of the input without requiring any
prior staging. To do so, we maintain one value directory
per grouping attribute, as shown in Figure 4(a) for three
attributes, and one array per aggregate function holding ag-

618

R.a
value id
100 0
200 1
300 2

R.b
value id

A 0
B 1
C 2

R.c
value id

Europe 0
Asia 1

Africa 2
America 3

(a) Multiple mapping directories

Offset(R.a = 200, R.b = C, R.c = Asia)
= R.a[200] · |R.b| · |R.c|+ R.b[C] · |R.c|+ R.c[Asia]
= 1 · 3 · 4 + 2 · 4 + 1 = 21

(b) Offset of aggregate value

Fig. 4. Group directories for aggregation

gregate values. Assuming that Mi is the map for attribute
i and Mi[v] gives the identifier for value v of attribute i,
one can then reduce the multi-dimensional mapping of tuple
(v1, v2, . . . , vn), for grouping across n attributes, to the scalar∑n

i=1 (Mi[vi]
∏n

j=i+1 |Mj |), where |Mi| is the size of the
mapping table for attribute i. The previous formula maps each
combination of values to a unique offset in the aggregate
arrays, the latter holding (

∏n
i=1 |Mi|) values each. An example

of applying the formula is shown in Figure 4(b). Aggregate
evaluation then progresses as follows: for each input tuple, the
grouping attribute maps are used to identify the offset of the
group the tuple belongs to. Then, the corresponding variables
for this group in each aggregate array are updated with the
current values of the aggregate functions.

In all cases, the code generator inlines the code that identi-
fies the groups and applies the aggregate functions. The lack
of function calls is particularly important in aggregation: it
allows the compiler to generate executable code that widely
reuses registers in a computationally-intensive operation. The
optimized code minimizes the frequency of interruptions to the
execution sequence due to stack interaction, avoids multiple
evaluation of common arithmetic expressions, and reduces the
number of data accesses per tuple.

C. Development

The main challenges in engineering a code generator for
query evaluation were (a) the identification of common code
templates across different algorithms, (b) the interconnection
of different operators, since no common interface is present
any more, and (c) the verification of correctness of the
generated code for all supported operations.

The holistic evaluation model eases those problems. The
main advantage is that its algorithms exploit generic code
templates for all operations. Data staging employs the template
of Listing 1; sorting and partitioning operations can be inter-
leaved inside the code. For join evaluation, the nested-loops
template of Listing 2 is used in each case, with differences
between algorithms either being taken care of through staging,
or through extra steps inside the loops. For instance, for hash
join, the segments corresponding to Lines 3 to 5 are included
and the ones for Lines 6 and 21 are excluded; including the last
two code segments will turn the algorithm into hybrid hash-
sort-merge join. Aggregation extends the template of Listing 1
by injecting code for tracking different groups and computing
the aggregate functions. Furthermore, operators are connected
by materializing intermediate results as temporary tables inside
the buffer pool and streaming them to subsequent operators.

TABLE I
INTEL CORE 2 DUO 6300 SPECIFICATIONS

Number of cores 2
Frequency 1.86GHz
Cache line size 64B
I1-cache 32KB (per core)
D1-cache 32KB (per core)
L2-cache 2MB (shared)
L1-cache miss latency (sequential) 9 cycles
L1-cache miss latency (random) 14 cycles
L2-cache miss latency (sequential) 28 cycles
L2-cache miss latency (random) 77 cycles
RAM type 2x1GB DDR2 667MHz

The experience of developing HIQUE has verified these
claims. The introduction of new algorithms or even new
operators required more effort to extend the parser and the
optimizer than to extend the generator. As a general methodol-
ogy of introducing algorithms, we would first create a model
implementation of the new algorithm and compare it to the
existing templates. In most cases, the new algorithm resulted
in a few different lines of code when compared to the existing
evaluation algorithms. We would then extend the templates and
the code generator to support the new algorithm. This process
was further aided by the output of the code generator being a
C source code file: the compiler helped the developer to easily
identify errors in the generated code and reduce the number
of iterations needed to fully support the new algorithm.

VI. EXPERIMENTAL STUDY

To test the viability of code generation as a general solution
to query evaluation we experimented with different aspects of
the system. Our aim was to measure (a) the superiority of
the holistic model over the traditional iterator-based approach,
(b) the effect of compiler optimizations on the code generated
by HIQUE, (c) the competitiveness of the system in comparison
to other approaches, both research and commercial ones, on
established benchmark queries, and (d) the penalty for gener-
ating, compiling, and linking query-specific code at runtime.

We report results on the currently dominant x86-64 proces-
sor architecture. Our system had an Intel Core 2 Duo 6300 dual
core processor, clocked at 1.86GHz. The system had a physical
memory of 2GB and was running Ubuntu 8.10 (64 bit version,
kernel 2.6.27); HIQUE’s generated code was compiled using the
GNU compiler (version 4.3.2) and with the -O2 compilation
flag. More detailed information about the testing platform can
be found in Table I. The cache latencies were measured using
the RightMark Memory Analyser [22].
Metrics and methodology. All queries were run in isolation
and were repeated ten times each. Each query ran in its own
thread, using a single processor core. We did not materialize
the output in any case, as the penalty of materialization is
similar for all systems and configurations. We report average
response times for each system, with the deviation being less
than 3% in all cases. We also used hardware performance
events as metrics. We obtained the latter with the OPro-
file [19] tool, which collects sampling data from the CPU’s
performance event counters. We broke down the execution
time into instruction execution, D1-cache miss stalls, L2-cache

619

0.15

0.20

0.25

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.05

0.10

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE

Ti

(a) Execution time breakdown for Join Query #1

0.60

0.80

1.00

1.20

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.20

0.40

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE

Ti

(b) Execution time breakdown for Join Query #2

CPI Retired Function D1-cache D1-cache prefetch L2-cache prefetch
instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.613 100.00 100.00 100.00 8.33 43.28
Optimized iterators 0.628 91.81 66.99 94.20 10.64 68.35
Generic hard-coded 0.569 53.47 33.87 51.85 27.78 86.84
Optimized hard-coded 0.498 27.63 1.29 39.31 25.00 89.47
HIQUE 0.475 26.22 1.08 36.67 25.00 92.11

(c) Hardware performance metrics for Join Query #1

CPI Retired Function D1-cache D1-cache prefetch L2-cache prefetch
instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.697 100.00 100.00 100.00 30.67 87.27
Optimized iterators 0.729 95.65 86.86 97.49 30.31 92.20
Generic hard-coded 0.720 67.32 49.56 61.95 60.55 86.38
Optimized hard-coded 0.750 56.80 32.75 56.13 60.95 89.93
HIQUE 0.769 56.62 32.37 54.03 61.07 89.97

(d) Hardware performance metrics for Join Query #2

Fig. 5. Join profiling

miss stalls and other pipeline resource stalls.2 To account for
hardware prefetching, we assumed sequential access latencies
for prefetched cache lines and random access latencies for all
other cache misses. This allows for approximate calculation of
the cost of cache misses, as the non-blocking design of cache
memory allows the CPU to continue executing instructions
while fetching data. Still, this methodology provides a good
approximation of actual cache miss stall times. In addition to
the execution time breakdown, we also calculate the Cycles
Per Instruction (CPI) ratio, the minimum value being 0.25 for
Intel Core 2 Duo processors (i.e., four instructions executed in
parallel per CPU cycle). We also measured samples for retired
instructions, function calls and D1-cache accesses, normalized
to the highest value among the compared configurations for
each query. Finally, we report the prefetching efficiency ratio,
defined as the number of prefetched cache lines over the total
number of missed cache lines.

A. Iterators versus holistic code

To quantify the iterator model’s deficiency compared to
the proposed holistic model, we compared the following
implementations: (a) an iterator-based one using generic func-
tions for predicate evaluation, (b) a type-specific version
of iterators with inlined predicate evaluation, (c) a hard-
coded implementation using generic functions for predicate
evaluation and tuple accesses, (d) an improved hard-coded
version with direct tuple accesses using pointer arithmetic,
and (e) the code generated by HIQUE, that further inlines
predicate evaluation. We favored the generic implementations

2Other pipeline resource stalls are defined as resource stalls that are not
due to D1- or L2-cache misses – see also [15].

by separately compiling the code for each query (including all
parameters for instantiating the statically pipelined iterators),
thus allowing their extended optimization by the compiler. For
join evaluation, we experimented with (a) two tables of 10,000
tuples of 72 bytes each using merge-join, with each outer
tuple matching with 1,000 inner tuples, and (b) two tables of
1,000,000 tuples of 72 bytes each using hybrid-join, with each
outer tuple matching with 10 inner tuples. For aggregation,
we used a table of 1,000,000 tuples of 72 bytes each, two
sum functions, and we selected as the grouping attribute one
field with either (a) 100,000 distinct values, or (b) 10 distinct
values. We employed hybrid aggregation in the first case and
map aggregation in the second. All join and grouping attributes
were integers. We used both response times and hardware
performance events as metrics. We present the results for join
evaluation in Figure 5 and for aggregation in Figure 6.

The first join query is inflationary, as it produces 10,000,000
tuples when joining two tables of 10,000 tuples each. In
this case, the nested-loops-based template for join evaluation
proves very efficient, as HIQUE is almost five times faster
than the iterator implementations. The time breakdown in
Figure 5(a) shows that all versions exhibit minimal memory
stalls, so the difference in execution time is exclusively due to
the lack of function calls, the reduction in retired instructions,
and the elimination of resource stalls. Note that the generated
code requires 26.22% of the instructions, 36.67% of the data
accesses and 1.08% of the function calls when compared to
the generic iterator version, as shown in Figure 5(c). Besides,
the CPI ratio improves by 22.5% and closes in to the ideal
value of 0.25. One can also observe that the efficiency of
hardware prefetching more than doubles as the code becomes

620

0.30

0.40

0.50

0.60

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.10

0.20

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE

Ti

(a) Execution time breakdown for Aggregation Query #1

0.04

0.05

0.06

0.07

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.01

0.02

0.03

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE

Ti

(b) Execution time breakdown for Aggregation Query #2

CPI Retired Function D1-cache D1-cache prefetch L2-cache prefetch
instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.796 100.00 100.00 100.00 19.16 94.76
Optimized iterators 0.798 95.35 92.48 99.88 21.73 91.95
Generic hard-coded 0.872 59.85 86.83 91.19 56.79 85.59
Optimized hard-coded 0.875 54.99 77.74 89.32 56.82 86.12
HIQUE 0.919 53.86 68.65 81.63 56.90 88.95

(c) Hardware performance metrics for Aggregation Query #1

CPI Retired Function D1-cache D1-cache prefetch L2-cache prefetch
instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.791 100.00 100.00 100.00 75.71 95.05
Optimized iterators 0.881 81.85 94.06 74.79 93.18 93.17
Generic hard-coded 0.936 67.62 65.35 60.21 78.93 93.44
Optimized hard-coded 0.904 53.13 32.67 52.72 78.37 95.57
HIQUE 0.899 41.89 4.95 46.13 70.39 95.86

(d) Hardware performance metrics for Aggregation Query #2

Fig. 6. Aggregation profiling

more query-specific, both for the D1- and the L2-cache.
The second join query uses two larger tables as inputs and

has much lower join selectivity. In this case, the majority of
the execution time is spent on staging the input, i.e., hash-
partitioning it and sorting the partitions. Since all versions
implement the same algorithm, use the same type-specific im-
plementation of quicksort, and display similar access patterns,
the differences in execution times are narrowed. As shown
in Figure 5(b) HIQUE is almost twice faster than the iterator-
based versions. The penalty for memory stalls is similar in all
cases, as expected. The reduction in retired instructions, data
accesses and function calls is still significant, according to
Figure 5(d), but does not reach the levels of the previous query.
Note that the CPI ratio increases for hard-coded versions. This
is due to the retirement of fewer instructions in total, so the
contribution of costly memory operations to the CPI is more
substantial. Prefetching efficiency doubles for the D1-cache
and is approximately 90% for the L2-cache in all cases.

In terms of aggregation, the first benchmark query was
evaluated using the hybrid hash-sort algorithm. In this case
staging dominates execution time, as aggregation is evaluated
in a single scan of the sorted partitions. Still, as shown in
Figure 6(a), HIQUE maintains an advantage of a factor of 1.61
over iterators. The use of the same partitioning and sorting
implementations leads to similar memory stall costs for all
code versions. The difference in execution times mainly stems
from the reduction in instructions, data accesses and function
calls, according to Figure 6(c). Observe that the efficiency of
the D1-cache prefetcher increases three times, while that of
the L2-cache reaches almost 90% for all implementations.

In the case of the proposed map-based algorithm, aggre-

gation is evaluated in a single pass of the input without any
need for intermediate staging. This allows the code generator
to inline all group tracking and aggregate calculations in a
single code segment. As shown in Figure 6(b), the code
generated by HIQUE outperforms generic iterators by almost
a factor of two. Memory stalls dominate execution time for
the HIQUE version (though their effect might be alleviated
from the operation of non-blocking caches), as the aggregate
calculations require only a few instructions per tuple. Also
shown in Figure 6(b), the reduction in function calls is gradual
as the code becomes more query-specific and reaches 4.95%
for the most optimized hard-coded version. Furthermore, the
linear scan of the input helps the hardware prefetchers achieve
high levels of efficiency, over 70% for the D1-cache and near
95% for the L2-cache in all cases.

We next examined the efficiency of compiler optimizations
on the iterator-based and the hard-coded implementations. We
compiled the various implementations with compiler optimiza-
tions disabled (by setting the optimization flag to -O0 for the
GNU compiler) and ran the same join and aggregation queries.
The results are presented in Table II. Naturally, the differences
between the various code versions are more tangible when
there are no compiler optimizations, since the compiler can
apply some of the optimizations that are included in the code
generation process. For example, the compiler may inline the
functions for predicate evaluation, so the differences between
the last two implementations are narrowed in all queries, but
become apparent when the -O0 optimization flag is used.

The results show that compiler optimizations are most
efficient in the first join query, resulting in speedups between
2.67 and 4.85, as the loop-oriented code transformations can

621

TABLE II
EFFECT OF COMPILER OPTIMIZATION (RESPONSE TIMES IN SECONDS)

Join Query #1 Join Query #2 Aggregation Query #1 Aggregation Query #2
-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

Generic iterators 0.802 0.235 1.953 0.995 1.225 0.527 0.136 0.060
Optimized iterators 0.618 0.231 1.850 0.990 1.199 0.509 0.113 0.055
Generic hard-coded 0.430 0.118 1.421 0.688 0.586 0.344 0.095 0.051
Optimized hard-coded 0.267 0.055 1.225 0.622 0.554 0.333 0.080 0.038
HIQUE 0.178 0.054 1.138 0.613 0.543 0.326 0.070 0.033

improve performance on iterative tuple processing. For the rest
of the queries the speedup is almost a factor of two. Since we
compile the code for each query and for all implementations,
the speedup is significant even for the iterator-based ones.
Moreover, the compiler is less efficient on the hard-coded
implementations: the source code is already minimalistic and
contains various optimizations (e.g., loop blocking, function
inlining). Still, the simplicity of the code and the lack of
function calls allows the compiler to further improve the hard-
coded versions resulting in significant speedups.

B. Performance of holistic algorithms

We now move on to examine the performance of the
proposed algorithms while varying the characteristics of the
input and the predicates to be applied. We compared the
optimized iterator-based versions of the proposed algorithms
with the code HIQUE generates for each query. In Figure 7(a)
we examine scalability in join evaluation. We used two tables
with a tuple size of 72 bytes. Each outer tuple matched with
ten inner tuples on integer join attributes. The cardinality of
the outer table was set to 1,000,000, while the inner one’s
varied between 1,000,000 and 10,000,000. The results show
that all algorithms scale linearly, with iterator-based hash-sort-
merge-join having similar performance to HIQUE’s merge-join.
As expected, the generated version of the hash-sort-merge join
outperforms all other versions by a substantial margin, proving
its efficiency in a wide range of input cardinalities.

In multi-way queries, the evaluation of multiple joins using
a single segment of deeply-nested loops improves performance
as the generated code does not require materialization of
intermediate results. To verify this, we joined one table of
1,000,000 tuples with a varying number of tables of 100,000
tuples each, on a single join attribute. All tables had 72-bytes-
sized tuples, while the output cardinality was 1,000,000 in all
cases. We compared the binary iterator-based merge-join, its
equivalent when generated by HIQUE, and the code versions
when join teams where enabled in HIQUE, using either merge-
or hybrid-join. The results of Figure 7(b) show that although
iterator-based merge-join takes advantage of sorted orders, it
is widely outperformed by its holistic equivalent. Furthermore,
the adoption of join teams radically reduces execution time,
with the difference between HIQUE and iterators reaching a
factor of 3.32 when joining eight tables. The extension of the
nested-loops join template to support join teams therefore pays
off in the case of multi-way join queries.

Highly-selective join predicates are expected to increase the
difference in performance between the iterator and the holistic
model. This is due to the number of iterator calls growing
larger and the join evaluation cost surpassing that of input

staging; the latter cost is similar for all implementations. This
is shown in Figure 7(c) for joining two tables of 1,000,000
tuples each. Each input tuple was 72 bytes wide, while
the number of inner matching tuples per outer tuple varied
between 1 and 1,000. The results show that the gap between
the iterator-based and the holistic implementations widens
quickly as join selectivity increases and reaches a factor of
five for 1,000 matches per outer tuple.

The salient factor in aggregation performance is the domain
of the grouping attribute(s). If this domain allows the value
directories and the aggregate arrays (see also Section V-B) to
simultaneously fit in the lowest cache level, map aggregation
is expected to outperform the algorithms that require input
staging. We show the effect of the grouping attribute’s range in
Figure 7(d). The input table had 1,000,000 tuples of 72 bytes
each. We used two sum functions and one grouping attribute
as we varied the number of distinct values between 10 and
100,000. The results verify that, for small numbers of groups,
map aggregation is highly efficient, both in its iterator-based
and its holistic form. However, sort and hybrid aggregation
are only moderately affected by the number of groups. They
perform better than map aggregation when the auxiliary data
structures of the latter (i.e., the value directory for the grouping
attribute and the aggregate arrays) span the L2-cache, the
difference approaching a factor of two for 100,000 groups.

C. TPC-H benchmark

The last set of experiments is over the standard and more re-
alistic TPC-H benchmark [24]. We benchmarked HIQUE against
three database systems: (a) PostgreSQL (version 8.2.7), a
widely-used and high-performance open-source DBMS over
NSM that employs the iterator model, (b) a commercial system,
which we refer to as System X for anonymity, also using NSM
and iterators but employing software prefetching instructions
to reduce cache miss stalls, and (c) MonetDB (version 5.8.2),
an architecture-conscious DBMS that uses a DSM-based storage
layer and column-wise evaluation algorithms. This choice
allowed the comparison of different storage systems and query
engine designs, with PostgreSQL representing the traditional
I/O-optimized design, System X bridging the gap between I/O-
and CPU-bound execution with software prefetching, and Mon-
etDB being a design optimized for main-memory execution.

We used the benchmark’s generator to generate a data-set
with a scaling factor of one. The tables were not altered in
any way (e.g., sorted) before being imported to the systems.
The “raw” data-set size was approximately 1.3GB, without
indexes, thus fitting in our system’s main memory. We built
indexes in all systems, gathered statistics at the highest level
of detail, and set the memory parameters to allow in-memory

622

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

Input cardinality (Millions)

Merge - Iterators
Hybrid - Iterators
Merge - HIQUE
Hybrid - HIQUE

(a) Join scalability

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2 3 4 5 6 7 8

T
im

e
(s

)

Number of joined tables

Merge - Iterators
Merge - HIQUE (binary)

Merge - HIQUE (team)
Hybrid - HIQUE (team)

(b) Multi-way joins

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

T
im

e
(s

)

log10(matching tuples)

Merge - Iterators
Hybrid - Iterators
Merge - HIQUE
Hybrid - HIQUE

(c) Join predicate selectivity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

)
log10(group cardinality)

Sort - Iterators
Hybrid - Iterators

Map - Iterators
Sort - HIQUE

Hybrid - HIQUE
Map - HIQUE

(d) Grouping attribute cardinality

Fig. 7. Join and aggregation performance

 0

 10

 20

 30

 40

 50

 60

 70

T
im

e
(s

)

59.353

37.185

1.376 0.356

PostgreSQL
System X
MonetDB

HIQUE

(a) Query #1
 0

 1

 2

 3

 4

 5

T
im

e
(s

)

4.549

2.477

0.628
0.411

PostgreSQL
System X
MonetDB

HIQUE

(b) Query #3
 0

 1

 2

 3

 4

 5

 6

T
im

e
(s

)

5.091

2.091

0.795 0.971

PostgreSQL
System X
MonetDB

HIQUE

(c) Query #10

Fig. 8. TPC-H Queries

execution. We experimented with TPC-H Queries 1, 3 and 10.
These include highly selective join predicates that cannot be
evaluated as join teams, as well as aggregation operations
of a varying number of grouping attributes and aggregate
functions. TPC-H tables have wide tuples spanning multiple
cache lines, with only a few fields actually needed by any
query. Thus, the expectation is for MonetDB to benefit from
vertical partitioning and outperform all NSM-based systems.

TPC-H Query 1 is an aggregation over almost the entire
lineitem table (about 5,900,000 tuples) and produces four
output groups. As the two aggregation attributes have a product
of distinct value cardinalities equal to six, the most appropriate
holistic aggregation algorithm is map aggregation. The results
in Figure 8(a) show HIQUE outperforming MonetDB by a factor
of four and the other NSM-based systems by two orders of mag-
nitude, reaching a 167-fold advantage over PostgreSQL. This
is due to the holistically generated code: it inlines all selection,
grouping, and aggregation operations in a single succinct code
block that lacks function calls and is tailored towards efficient
register utilization. The measured performance translates to

662.16 millions of CPU cycles, which is comparable to that
of MonetDB/X100’s DSM-based approach and 30% faster
than MonetDB/X100’s NSM-based approach [26]. Hence, we
posit that HIQUE generates code that is identical to a hard-
coded implementation, thus achieving maximum efficiency in
aggregation (at least for NSM-based systems).

The remaining queries test join evaluation, aggregation, and
sorting. The holistic optimizer stages all inputs before further
operations. This is expensive over the benchmark tables, as
only a small portion of each tuple is used by the query
operators. The queries are a perfect match for DSM systems,
like MonetDB: through vertical partitioning only the required
fields for each operator are fetched. As a result HIQUE is 34.5%
faster and 18.1% slower in Queries 3 and 10 respectively, when
compared to MonetDB. Compared to the NSM systems, HIQUE
outperforms PostgreSQL and System X by a substantial factor,
ranging between 2.2 and 11.1.

The TPC-H results prove the viability of holistic evaluation in
a realistic query workload. The holistic model provides code
simplicity and enhances cache locality during execution, there-

623

TABLE III
QUERY PREPARATION COST

TPC-H Query SQL processing (ms) Compilation (ms) File sizes (bytes)
Parse Optimize Generate with -O0 with -O2 Source Shared library

#1 21 1 1 121 274 17,733 16,858
#3 11 1 2 160 403 33,795 24,941
#10 15 1 4 213 619 50,718 33,510

fore reducing the number of instructions and data accesses
required to evaluate queries. That way, both the processor and
the memory subsystem are stressed to a lower extent, leading
to a significant speedup of query evaluation. This allowed
our NSM-based system to achieve performance that was so far
conceivable only for systems employing vertical partitioning.

D. Code generation cost

The drawback of per-query code generation is the overhead
for emitting and compiling query-specific source code. To
quantify this cost we report in Table III the preparation times
for the TPC-H queries. We separately show the query parsing,
optimization, code generation and compilation times, as well
as the sizes of the generated source and shared-library files.
The time for parsing, optimizing, and generating code is
trivial (less than 25ms). Compiling the generated code takes
longer and compilation time depends on the optimization level.
Compilation takes 121–213ms with no optimizations (-O0
compiler flag), but needs 274–619ms when the optimization
level is increased (-O2 compiler flag). The generated source
and shared library file sizes are less than 50 kilobytes.

Preparation time is not negligible and can be a significant
portion of execution time for short-running queries. In such
cases it is preferable to avoid applying compiler optimizations
that increase compilation time; the gain in execution time
will be intangible. Additionally, it is common for systems to
store pre-compiled and pre-optimized versions of frequently
or recently issued queries. This is certainly applicable in
HIQUE, especially if we take into account the small size of the
generated binary files. Besides, in most cases the performance
benefits outweigh the generation cost.

VII. CONCLUSIONS AND FUTURE WORK

We have presented the case for holistic query evaluation.
The proposed technique is based on generating query-specific
code that integrates multiple query operations in succinct code
constructs. The generation process uses code templates for
each query operator and builds query-specific code with the
following objectives: (a) minimum function calls, (b) reduced
instructions and memory accesses, and (c) enhanced cache lo-
cality. The proposed model exhibits a substantial performance
advantage when implemented over the NSM-based storage
layer. It also does not affect any orthogonal aspects of a
DBMS like concurrency control and recovery. To verify the
advantages of the proposed holistic model, we implemented
HIQUE — the Holistic Integrated Query Engine. Extensive
experiments with a variety of data-sets and query workloads
proved HIQUE’s potential for per-query code generation, verify-
ing the efficiency of our approach in main-memory execution.

The next step is to extend our approach for multithreaded
processing. Current processor designs integrate multiple cores
sharing the lowest on-chip cache level. Though this design
widens opportunities for parallelism, it introduces resource
contention. We believe that code generation is advantageous
for such designs: one can accurately specify the code segments
that can be executed in parallel, thus reducing synchronization
overhead and memory bandwidth requirements.

REFERENCES

[1] Anastassia Ailamaki et al. DBMSs on a Modern Processor: Where Does
Time Go? In The VLDB Journal, 1999.

[2] Anastassia Ailamaki et al. Weaving Relations for Cache Performance.
In The VLDB Journal, 2001.

[3] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications. PhD thesis, Universiteit van Amsterdam, 2002.

[4] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR, 2005.

[5] Donald D. Chamberlin et al. A history and evaluation of System R.
Commun. ACM, 24(10), 1981.

[6] Shimin Chen et al. Fractal prefetching B+-Trees: optimizing both cache
and disk performance. In SIGMOD, 2002.

[7] Shimin Chen et al. Improving hash join performance through prefetch-
ing. In ICDE, 2004.

[8] Shimin Chen et al. Inspector Joins. In VLDB, 2005.
[9] George P. Copeland and Setrag Khoshafian. A Decomposition Storage

Model. In SIGMOD, 1985.
[10] Jack Doweck. Inside Intel Core Microarchitecture and Smart Memory

Access, 2005. White paper.
[11] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM

Comput. Surv., 25(2), 1993.
[12] Goetz Graefe et al. Hash Joins and Hash Teams in Microsoft SQL

Server. In VLDB, 1998.
[13] Rick Greer. Daytona And The Fourth-Generation Language Cymbal. In

SIGMOD, 1999.
[14] John Hennessy and David Patterson. Computer architecture: a quanti-

tative approach. Morgan Kaufmann, 2006.
[15] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-

oper’s Manual, 2008.
[16] Ken Kennedy and John R. Allen. Optimizing compilers for modern

architectures: a dependence-based approach. Morgan Kaufmann Pub-
lishers Inc., 2002.

[17] Masaru Kitsuregawa et al. Application of Hash to Data Base Machine
and Its Architecture. New Generation Comput., 1(1), 1983.

[18] S. Manegold et al. What happens during a Join? - Dissecting CPU and
Memory Optimization Effects. In VLDB, 2000.

[19] OProfile. A System Profiler for Linux, 2008. http://oprofile.
sourceforge.net/.

[20] Sriram Padmanabhan et al. Block Oriented Processing of Relational
Database Operations in Modern Computer Architectures. In ICDE, 2001.

[21] Jun Rao et al. Compiled Query Execution Engine using JVM. In ICDE,
2006.

[22] RightMark. RightMark Memory Analyser, 2008. http://cpu.
rightmark.org/products/rmma.shtml.

[23] Ambuj Shatdal et al. Cache Conscious Algorithms for Relational Query
Processing. In VLDB, 1994.

[24] Transaction Processing Performance Council. The TPC-H benchmark,
2009. http://www.tpc.org/tpch/.

[25] Jingren Zhou and Kenneth A. Ross. Buffering database operations for
enhanced instruction cache performance. In SIGMOD, 2004.

[26] Marcin Zukowski et al. DSM vs. NSM: CPU performance tradeoffs in
block-oriented query processing. In DaMoN, 2008.

624

