
Design and Evaluation of Main Memory
Hash Join Algorithms for Multi-core CPUs

Spyros Blanas Yinan Li Jignesh M. Patel
University of Wisconsin–Madison

{sblanas, yinan, jignesh}@cs.wisc.edu

ABSTRACT

The focus of this paper is on investigating efficient hash join
algorithms for modern multi-core processors in main mem-
ory environments. This paper dissects each internal phase
of a typical hash join algorithm and considers different al-
ternatives for implementing each phase, producing a family
of hash join algorithms. Then, we implement these main
memory algorithms on two radically different modern multi-
processor systems, and carefully examine the factors that
impact the performance of each method.

Our analysis reveals some interesting results – a very sim-
ple hash join algorithm is very competitive to the other
more complex methods. This simple join algorithm builds a
shared hash table and does not partition the input relations.
Its simplicity implies that it requires fewer parameter set-
tings, thereby making it far easier for query optimizers and
execution engines to use it in practice. Furthermore, the
performance of this simple algorithm improves dramatically
as the skew in the input data increases, and it quickly starts
to outperform all other algorithms. Based on our results,
we propose that database implementers consider adding this
simple join algorithm to their repertoire of main memory
join algorithms, or adapt their methods to mimic the strat-
egy employed by this algorithm, especially when joining in-
puts with skewed data distributions.

Categories and Subject Descriptors

H.2.4. [Database Management]: Systems—Query pro-

cessing, Relational databases

General Terms

Algorithms, Design, Performance

Keywords

hash join, multi-core, main memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

1. INTRODUCTION
Large scale multi-core processors are imminent. Modern

processors today already have four or more cores, and for the
past few years Intel has been introducing two more cores
per processor roughly every 15 months. At this rate, it
is not hard to imagine running database management sys-
tems (DBMSs) on processors with hundreds of cores in the
near future. In addition, memory prices are continuing to
drop. Today 1TB of memory costs as little as $25,000. Con-
sequently, many databases now either fit entirely in main
memory, or their working set is main memory resident. As
a result, many DBMSs are becoming CPU bound.

In this evolving architectural landscape, DBMSs have the
unique opportunity to leverage the inherent parallelism that
is provided by the relational data model. Data is exposed
by declarative query languages to user applications and the
DBMS is free to choose its execution strategy. Coupled
with the trend towards impending very large multi-cores,
this implies that DBMSs must carefully rethink how they
can exploit the parallelism that is provided by the modern
multi-core processors, or DBMS performance will stall.

A natural question to ask then is whether there is anything
new here. Beginning about three decades ago, at the incep-
tion of the field of parallel DBMSs, the database community
thoroughly examined how a DBMS can use various forms of
parallelism. These forms of parallelism include pure shared-
nothing, shared-memory, and shared disk architectures [17].
If the modern multi-core architectures resemble any of these
architectural templates, then we can simply adopt the meth-
ods that have already been designed.

In fact, to a large extent this is the approach that DBMSs
have haven taken towards dealing with multi-core machines.
Many commercial DBMSs simply treat a multi-core proces-
sor as a symmetric multi-processor (SMP) machine, lever-
aging previous work that was done by the DBMS vendors
in reaction to the increasing popularity of SMP machines
decades ago. These methods break up the task of a single
operation, such as an equijoin, into disjoint parts and allow
each processor (in an SMP box) to work on each part in-
dependently. At a high-level, these methods resemble vari-
ations of query processing techniques that were developed
for parallel shared-nothing architectures [6], but adapted
for SMP machines. In most commercial DBMSs, this ap-
proach is reflected across the entire design process, ranging
from system internals (join processing, for example) to their
pricing model, which is frequently done by scaling the SMP
pricing model. On the other hand, open-source DBMSs have

37

largely ignored multi-core processing and generally dedicate
a single thread/process to each query.

The design space for modern high performance main mem-
ory join algorithms has two extremes. One extreme of this
design space focuses on minimizing the number of proces-
sor cache misses. The radix-based hash join algorithm [2] is
an example of a method in this design class. The other ex-
treme is to focus on minimizing processor synchronization
costs. In this paper we propose a “no partitioning” hash
join algorithm that does not partition the input relations to
embody an example of a method in this later design space.

A crucial question that we ask and answer in this paper
is what is the impact of these two extreme design points in

modern multi-core processors for main memory hash join al-

gorithms. A perhaps surprising answer is that for modern
multi-core architectures, in many cases the right approach is
to focus on reducing the computation and synchronization
costs, as modern processors are very effective in hiding cache
miss latencies via simultaneous multi-threading. For exam-
ple, in our experiments, the“no partitioning” hash join algo-
rithm far outperforms the radix join algorithm when there
is skew in the data (which is often the case in practice), even
while it incurs many more processor cache and TLB misses.
Even with uniform data, the radix join algorithm only out-
performs the “no partitioning” algorithm on a modern Intel
Xeon when the parameters for the radix join algorithm are
set at or near their optimal setting. In contrast, the non-
partitioned algorithm is “parameter-free”, which is another
important practical advantage.

Reflecting on the previous work in this area, one can ob-
serve that the database community has focused on optimiz-
ing query processing methods to reduce the number of pro-
cessor cache and TLB misses. We hope that this paper opens
up a new discussion on the entire design space for multi-core
query processing techniques, and incites a similar examina-
tion of other aspects of query processing beyond the single
hash join operation that we discuss in this paper.

This paper makes three main contributions. First, we sys-
tematically examine the design choices available for each in-
ternal phase of a canonical main memory hash join algorithm
– namely, the partition, build, and probe phases – and enu-
merate a number of possible multi-core hash join algorithms
based on different choices made in each of these phases. We
then evaluate these join algorithms on two radically differ-
ent architectures and show how the architectural differences
can affect performance. Unlike previous work that has often
focused on just one architecture, our use of two radically dif-
ferent architectures lets us gain deeper insights about hash
join processing on multi-core processors. To the best of our
knowledge, this is the first systematic exploration of multiple
hash join techniques that spans multi-core architectures.

Second, we show that an algorithm that does not do any
partitioning, but simply constructs a single shared hash ta-
ble on the build relation often outperforms more complex al-
gorithms. This simple “no-partitioning” hash join algorithm
is robust to sub-optimal parameter choices by the optimizer,
and does not require any knowledge of the characteristics of
the input to work well. To the best of our knowledge, this
simple hash join technique differs from what is currently
implemented in existing DBMSs for multi-core hash join
processing, and offers a tantalizingly simple, efficient, and
robust technique for implementing the hash join operation.

Finally, we show that the simple “no-partitioning” hash
join algorithm takes advantage of intrinsic hardware opti-
mizations to handle skew. As a result, this simple hash join
technique often benefits from skew and its relative perfor-
mance increases as the skew increases! This property is a
big advancement over the state-of-the-art methods, as it is
important to have methods that can gracefully handle skew
in practice [8].

The remainder of this paper is organized as follows: The
next section covers background information. The hash join
variants are presented in Section 3. Experimental results are
described in Section 4, and related work is discussed in Sec-
tion 5. Finally, Section 6 contains our concluding remarks.

2. THE MULTI-CORE LANDSCAPE
In the last few years alone, more than a dozen different

multi-core CPU families have been introduced by CPU ven-
dors. These new CPUs have ranged from powerful dual-CPU
systems on the same die to prototype systems of hundreds
of simple RISC cores.

This new level of integration has lead to architectural
changes with deep impact on algorithm design. Although
the first multi-core CPUs had dedicated caches for each core,
we now see a shift towards more sharing at the lower levels
of the cache hierarchy and consequently the need for access
arbitration to shared caches within the chip. A shared cache
means better single-threaded performance, as one core can
utilize the whole cache, and more opportunities for sharing
among cores. However, shared caches also increase conflict
cache misses due to false sharing, and may increase capacity
cache misses, if the cache sizes don’t increase proportionally
to the number of cores.

One idea that is employed to combat the diminishing re-
turns of instruction-level parallelism is simultaneous multi-
threading (SMT). Multi-threading attempts to find inde-
pendent instructions across different threads of execution,
instead of detecting independent instructions in the same
thread. This way, the CPU will schedule instructions from
each thread and achieve better overall utilization, increasing
throughput at the expense of per-thread latency.

We briefly consider two modern architectures that we sub-
sequently use for evaluation. At one end of the spectrum,
the Intel Nehalem family is an instance of Intel’s latest mi-
croarchitecture that offers high single-threaded performance
because of its out-of-order execution and on-demand fre-
quency scaling (TurboBoost). Multi-threaded performance
is increased by using simultaneous multi-threading (Hyper-
Threading). At the other end of the spectrum, the Sun
UltraSPARC T2 has 8 simple cores that all share a sin-
gle cache. This CPU can execute instructions from up to
8 threads per core, or a total of 64 threads for the entire
chip, and extensively relies on simultaneous multi-threading
to achieve maximum throughput.

3. HASH JOIN IMPLEMENTATION
In this section, we consider the anatomy of a canoni-

cal hash join algorithm, and carefully consider the design
choices that are available in each internal phase of a hash
join algorithm. Then using these design choices, we cat-
egorize various previous proposals for multi-core hash join
processing. In the following discussion we also present infor-
mation about some of the implementation details, as they
often have a significant impact on the performance of the
technique that is described.

38

A hash join operator works on two input relations, R and
S. We assume that |R| < |S|. A typical hash join algorithm
has three phases: partition, build, and probe. The partition
phase is optional and divides tuples into distinct sets using
a hash function on the join key attribute. The build phase
scans the relation R and creates an in-memory hash table on
the join key attribute. The probe phase scans the relation
S, looks up the join key of each tuple in the hash table, and
in the case of a match creates the output tuple(s).

Before we discuss the alternative techniques that are avail-
able in each phase of the join algorithm, we briefly digress
to discuss the impact of the latch implementation on the
join techniques. As a general comment, we have found that
the latch implementation has a crucial impact on the over-
all join performance. In particular, when using the pthreads
mutex implementation, several instructions are required to
acquire and release an uncontended latch. If there are mil-
lions of buckets in a hash table, then the hash collision rate
is small, and one can optimize for the expected case: latches
being free. Furthermore, pthread mutexes have significant
memory footprint as each requires approximately 40 bytes.
If each bucket stores a few <key, record-id> pairs, then the
size of the latch array may be greater than the size of the
hash table itself. These characteristics make mutexes a pro-
hibitively expensive synchronization primitive for buckets
in a hash table. Hence, we implemented our own 1-byte
latch for both the Intel and the Sun architectures, using the
atomic primitives xchgb and ldstub, respectively. Protect-
ing multiple hash buckets with a single latch to avoid cache
thrashing did not result in significant performance improve-
ments even when the number of partitions was high.

3.1 Partition phase
The partition phase is an optional step of a hash join al-

gorithm, if the hash table for the relation R fits in main
memory. If one partitions both the R and S relations such
that each partition fits in the CPU cache, then the cache
misses that are otherwise incurred during the subsequent
build and probe phases are almost eliminated. The cost
for partitioning both input relations is incurring additional
memory writes for each tuple. Work by Shatdal et al. [16]
has shown that the runtime cost of the additional memory
writes during partitioning phase is less than the cost of miss-
ing in the cache – as a consequence partitioning improves
overall performance. Recent work by Cieslewicz and Ross
[4] has explored partitioning performance in detail. They
introduce two algorithms that process the input once in a
serial fashion and do not require any kind of global knowl-
edge about the characteristics of the input. Another recent
paper [11] describes a parallel implementation of radix par-
titioning [2] which gives impressive performance improve-
ments on a modern multi-core system. This implementation
requires that the entire input is available upfront and will
not produce any output until the last input tuple has been
seen. We experiment with all of these three partitioning al-
gorithms, and we briefly summarize each implementation in
Sections 3.1.1 and 3.1.2.

In our implementation, a partition is a linked list of output
buffers. An output buffer is fully described by four elements:
an integer specifying the size of the data block, a pointer to
the start of the data block, a pointer to the free space inside
the data block and a pointer to the next output buffer that
is initially set to zero. If a buffer overflows, then we add an

empty output buffer at the start of the list, and we make its
next pointer point to the buffer that overflowed. Locating
free space is a matter of checking the first buffer in the list.

Let p denote the desired number of partitions and n de-
note the number of threads that are processing the hash join
operation. During the partitioning phase, all threads start
reading tuples from the relation R, via a cursor. Each thread
works on a large batch of tuples at a time, so as to minimize
synchronization overheads on the input scan cursor. Each
thread examines a tuple, then extracts the key k, and fi-
nally computes the partitioning hash function hp(k). Next,
it then writes the tuple to partition Rhp(k) using one of the
algorithms we describe below. When the R cursor runs out
of tuples, the partitioning operation proceeds to process the
tuples from the S relation. Again, each tuple is examined,
the join key k is extracted and the tuple is written to the
partition Shp(k). The partitioning phase ends when all the
S tuples have been partitioned.

Note that we classify the partitioning algorithms as “non-
blocking” if they produce results on-the-fly and scan the in-
put once, in contrast to a“blocking”algorithm that produces
results after buffering the entire input and scanning it more
than once. We acknowledge that the join operator overall
is never truly non-blocking, as it will block during the build
phase. The distinction is that the non-blocking algorithms
only block for the time that is needed to scan and process
the smaller input, and, as we will see in Section 4.3, this a
very small fraction of the overall join time.

3.1.1 Non-blocking algorithms

The first partitioning algorithm creates p shared partitions
among all the threads. The threads need to synchronize via
a latch to make sure that the writes to a shared partition
are isolated from each other.

The second partitioning algorithm creates p ∗n partitions
in total and each thread is assigned a private set of p parti-
tions. Each thread then writes to its local partitions without
any synchronization overhead. When the input relation is
depleted, all threads synchronize at a barrier to consolidate
the p ∗ n partitions into p partitions.

The benefit of creating private partitions is that there is
no synchronization overhead on each access. The drawbacks,
however, are (a) many partitions are created, possibly so
many that the working set of the algorithm no longer fits in
the data cache and the TLB; (b) at the end of the partition
phase some thread has to chain n private partitions together
to form a single partition, but this operation is quick and
can be parallelized.

3.1.2 Blocking algorithm

Another partitioning technique is the parallel multi-pass
radix partitioning algorithm described by Kim et al. [11].
The algorithm begins by having the entire input available in
a contiguous block of memory. Each thread is responsible
for a specific memory region in that contiguous block. A
histogram with p ∗ n bins is allocated and the input is then
scanned twice. During the first scan, each thread scans all
the tuples in the memory region assigned to it, extracts the
key k and then computes the exact histogram of the hash
values hp(k) for this region. Thread i ∈ [0, n− 1] stores the
number of tuples it encountered that will hash to partition
j ∈ [0, p−1] in histogram bin j∗n+i. At the end of the scan,
all the n threads compute the prefix sum on the histogram

39

in parallel. The prefix sum can now be used to point to the
beginning of each output partition for each thread in the
single shared output buffer. Finally, each thread performs
a second scan of its input region, and uses hp to determine
the output partition. This algorithm is recursively applied
to each output partition for as many passes as requested.

The benefit of radix partitioning is that it makes few cache
and TLB misses, as it bounds the number of output destina-
tions in each pass. This particular implementation has the
benefit that, by scanning the input twice for each pass, it
computes exactly howmuch output space will be required for
each partition, and hence avoids the synchronization over-
head that is associated with sharing an output buffer. Apart
from the drawbacks that are associated with any blocking
algorithm when compared to a non-blocking counterpart,
this implementation also places a burden on the previous
operator in a query tree to produce the compact and con-
tiguous output format that the radix partitioning requires
as input. Efficiently producing a single shared output buffer
is a problem that has been studied before [5].

3.2 Build phase
The build phase proceeds as follows: If the partition phase

was omitted, then all the threads are assigned to work on
the relation R. If partitioning was done, then each thread
i is assigned to work on partitions Ri+0∗n, Ri+1∗n, Ri+2∗n,
etc. For example, a machine with four cores has n = 4, and
thread 0 would work on partitions R0, R4, R8, ..., thread 1
on R1, R5, R9, ..., etc.

Next, an empty hash table is constructed for each parti-
tion of the input relation R. To reduce the number of cache
misses that are incurred during the next (probe) phase, each
bucket of this hash table is sized so that it fits on a few cache
lines. Each thread scans every tuple t in its partition, ex-
tracts the join key k, and then hashes this key using a hash
function h(·). Then, the tuple t is appended to the end of
the hash bucket h(k), creating a new hash bucket if neces-
sary. If the partition phase was omitted, then all the threads
share the hash table, and writes to each hash bucket have
to be protected by a latch. The build phase is over when all
the n threads have processed all the assigned partitions.

3.3 Probe phase
The probe phase schedules work to the n threads in a

manner similar to the scheduling during the build phase,
described above. Namely, if no partitioning has been done,
then all the threads are assigned to S, and they synchronize
before accessing the read cursor for S. Otherwise, the thread
i is assigned to partitions Si+0∗n, Si+1∗n, Si+2∗n, etc.

During the probe phase, each thread reads every tuple s

from its assigned partition and extracts the key k. It then
checks if the key of each tuple r stored in hash bucket h(k)
matches k. This check is necessary to filter out possible
hash collisions. If the keys match, then the tuples r and s

are joined to form the output tuple. If the output is mate-
rialized, it is written to an output buffer that is private to
the thread.

Notice that there is parallelism even inside the probe phase:
looking up the key for each tuple r in a hash bucket and com-
paring it to k can be parallelized with the construction of
the output tuple, which primarily involves shuffling bytes
from tuples r and s. (See Section 4.10 for an experiment
that explores this further.)

3.4 Hash Join Variants
The algorithms presented above outline an interesting de-

sign space for hash join algorithms. In this paper, we focus
on the following four hash join variations:

1. No partitioning join: An implementation where par-
titioning is omitted. This implementation creates a
shared hash table in the build phase.

2. Shared partitioning join: The first non-blocking
partitioning algorithm of Section 3.1.1, where all the
threads partition both input sources into shared par-
titions. Synchronization through a latch is necessary
before writing to the shared partitions.

3. Independent partitioning join: The second non-
blocking partitioning algorithm of Section 3.1.1, where
all the threads partition both sources and create pri-
vate partitions.

4. Radix partitioning join: An implementation where
each input relation is stored in a single, contiguous
memory region. Then, each thread participates in the
radix partitioning, as described in Section 3.1.2.

4. EXPERIMENTAL EVALUATION
We have implemented the hash join algorithms described

in Section 3.4 in a stand-alone C++ program. The program
first loads data from the disk into main memory. Data is or-
ganized in memory using traditional slotted pages. The join
algorithms are run after the data is loaded in memory. Since
the focus of this work in on memory-resident datasets, we
do not consider the time to load the data into main memory
and only report join completion times.

For our workload, we wanted to simulate common and
expensive join operations in decision support environments.
The execution of a decision support query in a data ware-
house typically involves multiple phases. First, one or more
dimension relations are reduced based on the selection con-
straints. Then, these dimension relations are combined into
an intermediate one, which is then joined with a much larger
fact relation. Finally, aggregate statistics on the join output
are computed and returned to the user. For example, in the
TPC-H decision support benchmark, this execution pattern
is encountered in at least 15 of the 22 queries.

We try to capture the essence of this operation by focusing
on the most expensive component, namely the join operation
between the intermediate relation R (the outcome of various
operations on the dimension relations) with a much larger
fact relation S. To allow us to focus on the core join perfor-
mance, we initially do not consider the cost of materializing

Intel Nehalem

CPU Xeon X5650 @ 2.67GHz
Cores 6

Contexts per core 2
Cache size, sharing 12MB L3, shared

Memory 3x 4GB DDR3

Sun UltraSPARC T2

CPU UltraSPARC T2 @ 1.2GHz
Cores 8

Contexts per core 8
Cache size, sharing 4MB L2, shared

Memory 8x 2GB DDR2

Table 1: Platform characteristics.

40

0

100

200

300

400

500

600

1

1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(a) Intel Nehalem

0

20

40

60

80

100

120

140

160

180

1

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 6
4

2
5
6

5
1
2

1
K

2
K 6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(b) Sun UltraSPARC T2

Figure 1: Cycles per output tuple for the uniform dataset.

the output in memory, adopting a similar method as pre-
vious work [7, 11]. In later experiments (see Section 4.8),
we consider the effect of materializing the join result – in
these cases, the join result is created in main memory and
not flushed to disk.

We describe the synthetic datasets that we used in the
next section (Section 4.1). In Section 4.2 we give details
about the hardware that we used for our experiments. We
continue with a presentation of the results in Sections 4.3
and 4.4. We analyze the results further in Sections 4.5
through 4.7. We present results investigating the effect of
output materialization, and the sensitivity to input sizes and
selectivities in Sections 4.8 through 4.10.

4.1 Dataset
We experimented with three different datasets, which we

denote as uniform, low skew and high skew, respectively. We
assume that the relation R contains the primary key and the
relation S contains a foreign key referencing tuples in R. In
all the datasets we fix the cardinalities of R to 16M tuples
and S to 256M tuples1. We picked the ratio of R to S to
be 1:16 to mimic the common decision support settings. We
experiment with different ratios in Section 4.9.

In our experiments both keys and payloads are eight bytes
each. Each tuple is simply a <key, payload> pair, so tuples
are 16 bytes long. Keys can either be the values themselves,
if the key is numeric, or an 8-byte hash of the value in the
case of strings. We chose to represent payloads as 8 bytes for
two reasons: (a) Given that columnar storage is commonly
used in data warehouses, we want to simulate storing <key,
value> or <key, record-id> pairs in the hash table, and (b)
make comparisons with existing work (i.e. [11, 4]) easier.
Exploring alternative ways of constructing hash table entries
is not a focus of this work, but has been explored before [15].

For the uniform dataset, we create tuples in the relation
S such that each tuple matches every key in the relation R

with equal probability. For the skewed datasets, we added
skew to the distribution of the foreign keys in the relation S.
(Adding skew to the relation R would violate the primary
key constraint.) We created two skewed datasets, for two
different s values of the Zipf distribution: low skew with
s = 1.05 and high skew with s = 1.25. Intuitively, the most

1Throughout the paper, M=220 and K=210.

popular key appears in the low skew dataset 8% of the time,
and the ten most popular keys account for 24% of the keys.
In comparison, in the high skew dataset, the most popular
key appears 22% of the time, and the ten most popular keys
appear 52% of the time.

In all the experiments, the hash buckets that are created
during the build phase have a fixed size: they always have
32 bytes of space for the payload, and 8 bytes are reserved
for the pointer that points to the next hash bucket in case of
overflow. These numbers were picked so that each bucket fits
in a single, last-level cache line for both the architectures.
We size the hash table appropriately so that no overflow
occurs.

4.2 Platforms
We evaluated our methods on two different architectures:

the Intel Nehalem and the Sun UltraSPARC T2. We de-
scribe the characteristics of each architecture in detail below,
and we summarize key parameters in Table 1.

The Intel Nehalem microarchitecture is the successor of
the Intel Core microarchitecture. All Nehalem-based CPUs
are superscalar processors and exploit instruction-level par-
allelism by using out-of-order execution. The Nehalem fam-
ily supports multi-threading, and allows two contexts to ex-
ecute per core.

For our experiments, we use the six-core Intel Xeon X5650
that was released in Q1 of 2010. This CPU has a unified
12MB, 16-way associative L3 cache with a line size of 64
bytes. This L3 cache is shared by all twelve contexts ex-
ecuting on the six cores. Each core has a private 256KB,
8-way associative L2 cache, with a line size of 64 bytes. Fi-
nally, private 32KB instruction and data L1 caches connect
to each core’s load/store units.

The Sun UltraSPARC T2 was introduced in 2007 and re-
lies heavily on multi-threading to achieve maximum through-
put. An UltraSPARC T2 chip has eight cores and each core
has hardware support for eight contexts. UltraSPARC T2
does not feature out-of-order execution. Each core has a
single instruction fetch unit, a single floating point unit, a
single memory unit and two arithmetic units. At every cy-
cle, each core executes at most two instructions, each taken
from two different contexts. Each context is scheduled in a
round-robin fashion every cycle, unless the context has ini-

41

0

100

200

300

400

500

600

1

1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(a) Intel Nehalem

0

50

100

150

200

250

300

350

400

450

500

1

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 6
4

2
5
6

5
1
2

1
K

2
K 6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(b) Sun UltraSPARC T2

Figure 2: Cycles per output tuple for the low skew dataset.

tiated a long-latency operation, such as a memory load that
caused a cache miss, and has to wait for the outcome.

At the bottom of the cache hierarchy of the UltraSPARC
T2 chip lies a shared 4MB, 16-way associative write-back L2
cache, with a line size of 64 bytes. To maximize through-
put, the shared cache is physically split into eight banks.
Therefore, up to eight cache requests can be handled concur-
rently, provided that each request hits a different bank. Each
core connects to this shared cache through a non-blocking,
pipelined crossbar. Finally, each core has a 8KB, 4-way
associative write-through L1 data cache with 16 bytes per
cache line that is shared by all the eight hardware contexts.
Overall, in the absence of arbitration delays, the L2 cache
hit latency is 20 cycles.

4.3 Results
We start with the uniform dataset. In Figure 1, we plot

the average number of CPU cycles that it takes to produce
one output tuple, without actually writing the output, for
a varying number of partitions. (Note that to convert the
CPU cycles to wall clock time, we simply divide the CPU
cycles by the corresponding clock rate shown in Table 1).
The horizontal axis shows the different join algorithms (bars
“No”, “Shared”, “Independent”), corresponding to the first
three hash join variants described in Section 3.4. For the
radix join algorithm, we show the best result across any
number of passes (bars marked “Radix-best”). Notice that
we assume that the optimizer will always be correct and pick
the optimal number of passes.

Overall, the build phase takes a very small fraction of
the overall time, regardless of the partitioning strategy that
is being used, across all architectures (see Figure 1). The
reason for this behavior is two-fold. First and foremost, the
smaller cardinality of the R relation translates into less work
during the build phase. (We experiment with different car-
dinality ratios in Section 4.9.) Second, building a hash table
is a really simple operation: it merely involves copying the
input data into the appropriate hash bucket, which incurs a
lot less computation than the other steps, such as the out-
put tuple reconstruction that must take place in the probe
phase. The performance of the join operation is therefore
mostly determined by the time spent partitioning the input
relations and probing the hash table.

As can be observed in Figure 1(a) for the Intel Nehalem
architecture, the performance of the non-partitioned join al-
gorithm is comparable to the optimal performance achieved
by the partition-based algorithms. The shared partitioning
algorithm performs best when sizing partitions so that they
fit in the last level cache. This figure reveals a problem with
the independent partitioning algorithm. For a high number
of partitions, say 128K, each thread will create its own pri-
vate buffer, for a total of 128K ∗ 12 ≈ 1.5 million output
buffers. This high number of temporary buffers introduces
two problems. First, it results in poor space utilization, as
most of these buffers are filled with very few tuples. Sec-
ond, the working set of the algorithm grows tremendously,
and keeping track of 1.5 million cache lines requires a cache
whose capacity is orders of magnitude larger than the 12MB
L3 cache. The radix partitioning algorithm is not affected
by this problem, because it operates in multiple passes and
limits the number of partition output buffers in each pass.

Next, we experimented with the Sun UltraSPARC T2 ar-
chitecture. In Figure 1(b) we see that doing no partitioning
is at least 1.5X faster compared to all the other algorithms.
The limited memory on this machine prevented us from run-
ning experiments with a high number of partitions for the
independent partitioning algorithm because of the signifi-
cant memory overhead discussed in the previous paragraph.
As this machine supports nearly five times more hardware
contexts than the Intel machine, the memory that is required
for bookkeeping is five times higher as well.

To summarize our results with the uniform dataset, we
see that on the Intel architecture the performance of the no
partitioning join algorithm is comparable to the performance
of all the other algorithms. For the Sun UltraSPARC T2,
we see that the no partitioning join algorithm outperforms
the other algorithms by at least 1.5X. Additionally, the no
partitioning algorithm is more robust, as the performance
of the other algorithms degrades if the query optimizer does
not pick the optimal value for the number of partitions.

4.4 Effect of skew
We now consider the case when the distribution of foreign

keys in the relation S is skewed. We again plot the average
time to produce each tuple of the join (in machine cycles)
in Figure 2 for the low skew dataset, and in Figure 3 for the
high skew dataset.

42

0

100

200

300

400

500

600

1

1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(a) Intel Nehalem

0

100

200

300

400

500

600

700

1

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 6
4

2
5
6

5
1
2

1
K

2
K 6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(b) Sun UltraSPARC T2

Figure 3: Cycles per output tuple for the high skew dataset.

Intel Sun
Nehalem UltraSPARC T2

NO No / 1 No / 1
SN Indep. / 16 Indep. / 64
L2-S Shared / 2048 Shared / 2048
L2-R Radix / 2048 Radix / 2048

Table 2: Shorthand notation and corresponding par-
titioning strategy / number of partitions.

By comparing Figure 1 with Figure 2, we notice that,
when using the shared hash table (bar “No” in all graphs),
performance actually improves in the presence of skew! On
the other hand, the performance of the shared partitioning
algorithm degrades rapidly with increasing skew, while the
performance of the independent partitioning and the radix
partitioning algorithms shows little change on the Intel Ne-
halem and degrades on the Sun UltraSPARC T2. Mov-
ing to Figure 3, we see that the relative performance of
the non-partitioned join algorithm increases rapidly under
higher skew, compared to the other algorithms. The non-
partitioned algorithm is generally 2X faster than the other
algorithms on the Intel Nehalem, and more than 4X faster
than the other algorithms on the Sun UltraSPARC T2.

To summarize these results, skew in the underlying join
key values (data skew) manifests itself as partition size skew
when using partitioning. For the shared partitioning algo-
rithm, during the partition phase, skew causes latch con-
tention on the partition with the most popular key(s). For
all partitioning-based algorithms, during the probe phase,
skew translates into a skewed work distribution per thread.
Therefore, the overall join completion time is determined by
the completion time of the partition with the most popular
key. (We explore this behavior further in Section 4.7.1.) On
the other hand, skew improves performance when sharing
the hash table and not doing partitioning for two reasons.
First, the no partitioning approach ensures an even work
distribution per thread as all the threads are working con-
currently on the single partition. This greedy scheduling
strategy proves to be effective in hiding data skew. Second,
performance increases because the hardware handles skew a
lot more efficiently, as skewed memory access patterns cause
significantly fewer cache misses.

TLB TLB
Cycles L3 Instruc- load store

miss -tions miss miss
partition 0 0 0 0 0

NO build 322 2 2,215 1 0
probe 15,829 862 54,762 557 0

partition 3,578 18 29,096 6 2
SN build 328 8 2,064 0 0

probe 21,717 866 54,761 505 0
partition 11,778 103 31,117 167 257

L2-S build 211 1 2,064 0 0
probe 6,144 35 54,762 1 0

partition 6,343 221 34,241 7 237
L2-R build 210 1 2,064 0 0

probe 6,152 36 54,761 1 0

Table 3: Performance counter averages for the uni-
form dataset (millions).

4.5 Performance counters
Due to space constraints, we focus on specific partitioning

configurations from this section onward. We use “NO” to
denote the no partitioning strategy where the hash table is
shared by all threads, and we use “SN” to denote the case
when we create as many partitions as hardware contexts
(join threads), except we round the number of partitions up
to the next power of two as is required for the radix par-
titioning algorithm. We use “L2” to denote the case when
we create partitions to fit in the last level cache, appending
“-S”when partitioning with shared output buffers, and “-R”
for radix partitioning. We summarize this notation in Table
2. Notice that the L2 numbers correspond to the best per-
forming configuration settings in the experiment with the
uniform dataset (see Figure 1).

We now use the hardware performance counters to un-
derstand the characteristics of these join algorithms. In the
interest of space, we only present our findings from a single
architecture: the Intel Nehalem. We first show the results
from the uniform dataset in Table 3. Each row indicates one
particular partitioning algorithm and join phase, and each
column shows a different architectural event. First, notice
the code path length. It takes, on average, about 55 billion
instructions to complete the probe phase and an additional
50% to 65% of that for partitioning, depending on the al-
gorithm of choice. The NO algorithm pays a high cost in

43

TLB TLB
Cycles L3 Instruc- load store

miss -tions miss miss
partition 0 0 0 0 0

NO build 323 3 2,215 1 0
probe 6,433 98 54,762 201 0

partition 3,577 17 29,096 6 1
SN build 329 8 2,064 0 0

probe 13,241 61 54,761 80 0
partition 36,631 79 34,941 67 106

L2-S build 210 5 2,064 0 0
probe 8,024 13 54,762 1 0

partition 5,344 178 34,241 5 72
L2-R build 209 4 2,064 0 0

probe 8,052 13 54,761 1 0

Table 4: Performance counter averages for the high
skew dataset (millions).

terms of the L3 cache misses during the probe phase. The
partitioning phase of the SN algorithm is fast but fails to
contain the memory reference patterns that arise during the
probe phase in the cache. The L2-S algorithm manages to
minimize these memory references, but incurs a high L3 and
TLB miss ratio during the partition phase compared to the
NO and SN algorithms. The L2-R algorithm uses multiple
passes to partition the input and carefully controls the L3
and TLB misses during these phases. Once the cache-sized
partitions have been created, we see that both the L2-S and
L2-R algorithms avoid incurring many L3 and TLB misses
during the probe phase. In general, we see fewer cache and
TLB misses across all algorithms when adding skew (in Ta-
ble 4).

Unfortunately, interpreting performance counters is much
more challenging with modern multi-core processors and will
likely get worse. Processors have become a lot more com-
plex over the last ten years, yet the events that counters
capture have hardly changed. This trend causes a grow-
ing gap between the high-level algorithmic insights the user
expects and the specific causes that trigger some proces-
sor state that the performance counters can capture. In a
uniprocessor, for example, a cache miss is an indication that
the working set exceeds the cache’s capacity. The penalty
is bringing the data from memory, an operation the costs
hundreds of cycles. However, in a multi-core processor, a
memory load might miss in the cache because the operation
touches memory that some other core has just modified. The
penalty in this case is looking in some other cache for the
data. Although a neighboring cache lookup can be ten or a
hundred times faster than bringing the data from memory,
both scenarios will simply increment the cache miss counter
and not record the cause of this event.

To illustrate this point, let’s turn our attention to a case in
Table 3 where the performance counter results can be mis-
leading: The probe phase of the SN algorithm has slightly
fewer L3 and TLB misses than the probe phase of the NO
algorithm and equal path length, so the probe phase of the
SN algorithm should be comparable or faster than probe
phase of the NO algorithm. However, the probe phase of
the NO algorithm is almost 25% faster! Another issue is
latch contention, which causes neither L3 cache misses nor
TLB misses, and therefore is not reported in the perfor-
mance counters. For example, when comparing the uniform
and high skew numbers for the L2-S algorithm, the number
of the L3 cache misses during the high skew experiment is

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of threads

NO

SN

L2-S

L2-R

Figure 4: Speedup over single threaded execution,
uniform dataset.

30% lower than the number of the cache misses observed
during the uniform experiment. However, partitioning per-
formance worsens by more than 3X when creating shared
partitions under high skew!

The performance counters don’t provide clean insights
into why the non-partitioned algorithm exhibits similar or
better performance than the other cache-efficient algorithms
across all datasets. Although a cycle breakdown is still fea-
sible at a macroscopic level where the assumption of no con-
tention holds (for example as in Ailamaki et al. [1]), this ex-
periment reveals that blindly assigning fixed cycle penalties
to architectural events can lead to misleading conclusions.

4.6 Speedup from SMT
Modern processors improve the overall efficiency with hard-

ware multithreading. Simultaneous multi-threading (SMT)
permits multiple independent threads of execution to better
utilize the resources provided by modern processor architec-
tures. We now evaluate the impact of SMT on the hash join
algorithms.

We first show a speedup experiment for the Intel Nehalem
on the uniform dataset in Figure 4. We start by dedicating
each thread to a core, and once we exceed the number of
available physical cores (six for our Intel Nehalem), we then
start assigning threads in a round-robin fashion to the avail-
able hardware contexts. We observe that the algorithms be-
have very differently when some cores are idle (fewer than six
threads) versus in the SMT region (more than six threads).
With fewer than six threads all the algorithms scale linearly,
and the NO algorithm has optimal speedup. With more
than six threads, the NO algorithm continues to scale, be-
coming almost 11X faster than the single-threaded version
when using all available contexts. The partitioning-based
algorithms SN, L2-S and L2-R, however, do not exhibit this
behavior. The speedup curve for these three algorithms in
the SMT region either flattens completely (SN algorithm), or
increases at a reduced rate (L2-R algorithm) than the non-
SMT region. In fact, performance drops for all partitioning
algorithms for seven threads because of load imbalance: a
single core has to do the work for two threads. (This imbal-
ance can be ameliorated through load balancing, a technique
that we explore in Section 4.7.1.)

44

Uniform
6 threads 12 threads Improvement

NO 28.23 16.15 1.75X
SN 34.04 25.62 1.33X
L2-S 19.27 18.13 1.06X
L2-R 14.46 12.71 1.14X

High skew
6 threads 12 threads Improvement

NO 9.34 6.76 1.38X
SN 19.50 17.15 1.14X
L2-S 38.37 44.87 0.86X
L2-R 15.04 13.61 1.11X

Table 5: Simultaneous multi-threading experiment
on the Intel Nehalem, showing billions of cycles to
join completion and relative improvement.

Uniform
8 threads 64 threads Improvement

NO 37.30 12.64 2.95X
SN 55.70 22.25 2.50X
L2-S 51.62 23.86 2.16X
L2-R 46.62 18.88 2.47X

High skew
8 threads 64 threads Improvement

NO 23.92 11.67 2.05X
SN 70.52 49.54 1.42X
L2-S 73.91 221.01 0.33X
L2-R 66.01 43.16 1.53X

Table 6: Simultaneous multi-threading experiment
on the Sun UltraSPARC T2, showing billions of cy-
cles to join completion and relative improvement.

We summarize the benefit of SMT in Table 5 for the In-
tel architecture, and in Table 6 for the Sun architecture.
For the Intel Nehalem and the uniform dataset, the NO al-
gorithm benefits significantly from SMT, becoming 1.75X
faster. This algorithm is not optimized for cache perfor-
mance, and as seen in Section 4.5, causes many cache misses.
As a result, it provides more opportunities for SMT to ef-
ficiently overlap the memory accesses. On the other hand,
the other three algorithms are optimized for cache perfor-
mance to different degrees. Their computation is a large
fraction of the total execution time, therefore they do not
benefit significantly from using SMT. In addition, we notice
that the NO algorithm is around 2X slower than the L2-R
algorithm without SMT, but its performance increases to
almost match the L2-R algorithm performance with SMT.

For the Sun UltraSPARC T2, the NO algorithm also ben-
efits the most from SMT. In this architecture the code path
length (i.e. instructions executed) has a direct impact on the
join completion time, and therefore the NO algorithm per-
forms best both with and without SMT. As the Sun machine
cannot exploit instruction parallelism at all, we see increased
benefits from SMT compared to the Intel architecture.

When comparing the high skew dataset with the uniform
dataset across both architectures, we see that the improve-
ment of SMT is reduced. The skewed key distribution in-
curs fewer cache misses, therefore SMT loses opportunities
to hide processor pipeline stalls.

4.7 Synchronization
Synchronization is used in multithreaded programs to guar-

antee the consistency of shared data structures. In our join
implementations, we use barrier synchronization when all
the threads wait for tasks to be completed before they can
proceed to the next task. (For example, at the end of each
pass of the radix partition phase, each thread has to wait
until all other threads complete before proceeding.) In this
section, we study the effect of barrier synchronization on
the performance of the hash join algorithm. In the interest
of space, we only present results for the Intel Nehalem ma-
chine. Since the radix partitioning algorithm wins over the
other partitioning algorithms across all datasets, our discus-
sion only focuses on results for the non-partitioned algorithm
(NO) and the radix partitioning algorithm (L2-R).

Synchronization has little impact on the non-partitioned
(NO) algorithm for both the uniform and the high skew
datasets, regardless of the number of threads that are run-
ning. The reason for this behavior is the simplicity of the
NO algorithm. First, there is no partition phase at all, and
each thread can proceed independently in the probe phase.
Therefore synchronization is only necessary during the build
phase, a phase that takes less than 2% of the total time (see
Figure 1). Second, by dispensing with partitioning, this
algorithm ensures an even distribution of work across the
threads, as all the threads are working concurrently on the
single shared hash table.

We now turn our attention to the radix partitioning al-
gorithm, and break down the time spent by each thread.
Unlike the non-partitioned algorithm, the radix partitioning
algorithm is significantly impacted by synchronization on
both the uniform and the high skew datasets. Figure 5(a)
shows the time breakdown for the L2-R algorithm when run-
ning 12 threads on the Intel Nehalem machine with the high
skew dataset. Each histogram in this figure represents the
execution flow of a thread. The vertical axis can be viewed
as a time axis (in machine cycles). White rectangles in these
histograms represent tasks, the position of each rectangle in-
dicates the beginning time of the task, and the height repre-
sents the completion time of this task for each thread. The
gray rectangles represent the waiting time that is incurred
by a thread that completes its task but needs to synchro-
nize with the other threads before continuing. In the radix
join algorithm, we can see five expensive operations that are
synchronized through barriers: (1) computing the thread-
private histogram, (2) computing the global histogram, (3)
doing radix partitioning, (4) building a hash table for each
partition of the relation R, and (5) probing each hash table
with a partition from the relation S. The synchronization
cost of the radix partitioning algorithm accounts for nearly
half of the total join completion time for some threads.

The synchronization cost is so high under skew primar-
ily because it is hard to statically divide work items into
equally-sized subtasks. As a result, faster threads have to
wait for slower threads. For example, if threads are stat-
ically assigned to work on partitions in the probe phase,
the distribution of the work assigned to the threads will in-
variably also be skewed. Thus, the thread processing the
partition with the most popular key becomes a bottleneck
and the overall completion time is determined by the com-
pletion time of the partition with the most popular keys. In
Figure 5(a), this is thread 3.

45

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

C
y
c
le

s
 (

b
ill

io
n

s
)

Thread ID

work wait

(a) High skew dataset

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

C
y
c
le

s
 (

b
ill

io
n

s
)

Thread ID

work wait

(b) High skew dataset with work stealing

Figure 5: Time breakdown of the radix join.

4.7.1 Load balancing

If static work allocation is the problem, then how would
the radix join algorithm perform under a dynamic work al-
location policy and highly skewed input? To answer this
question, we tweaked the join algorithm to allow the faster
threads that have completed their probe phase to steal work
from other slower threads. In our implementation, the unit
of work is a single partition. In doing so, we slightly increase
the synchronization cost because work queues need to now
be protected with latches, but we balance the load better.

In Figure 5(b) we plot the breakdown of the radix par-
titioning algorithm (L2-R) using this work stealing policy
when running on the Intel Nehalem machine with the high
skew dataset. Although the work is now balanced almost
perfectly for the smaller partitions, the partitions with the
most popular keys are still a bottleneck. In the high skew
dataset, the most popular key appears 22% of the time, and
thread 3 in this case has been assigned only a single par-
tition which happened to correspond to the most popular
key. In comparison, for this particular experiment, the NO
algorithm can complete the join in under 7 billion cycles
(Table 4), and hence is 1.9X faster. An interesting area for
future work is load balancing techniques that permit work
stealing at a finer granularity than an entire partition with
a reasonable synchronization cost.

To summarize, under skew, a load balancing technique
improves the performance of the probe phase but does not
address the inherent inefficiency of all the partitioning-based
algorithms. In essence, there is a coordination cost to be
paid for load balancing, as thread synchronization is neces-
sary. Skew in this case causes contention, stressing the cache
coherence protocol and increasing memory traffic. On the
other hand, the no partitioning algorithm does skewed mem-
ory loads of read-only data, which is handled very efficiently
by modern CPUs through caching.

4.8 Effect of output materialization
Early work in main memory join processing [7] did not

take into account the cost of materialization. This decision
was justified by pointing out that materialization comes at a
fixed price for all algorithms and, therefore, a join algorithm
will be faster regardless of the output being materialized or

Machine NO SN L2-S L2-R
Intel Nehalem 23% 4% 7% 10%

Sun UltraSPARC T2 29% 21% 20% 23%

Table 7: Additional overhead of materialization with
respect to total cycles without materialization on
the uniform dataset.

Scale 0.5 Scale 1 Scale 2
NO 7.65 (0.47X) 16.15 (1.00X) 62.27 (3.86X)
SN 11.76 (0.46X) 25.62 (1.00X) 98.82 (3.86X)
L2-S 8.47 (0.47X) 18.13 (1.00X) 68.48 (3.78X)
L2-R 5.82 (0.46X) 12.71 (1.00X) DNF

Table 8: Join sensitivity with varying input cardi-
nalities for the uniform dataset on Intel Nehalem.
The table shows the cycles for computing the join
(in billions) and the relative difference to scale 1.

discarded. Recent work by Cieslewicz et al. [3] highlighted
the trade-offs involved when materializing the output.

In Table 7 we report the increase in the total join comple-
tion time when we materialize the output in memory for the
uniform dataset and the partitioning strategies described in
Table 2. If the join operator is part of a complex query
plan, it is unlikely that the entire join output will ever need
to be written in one big memory block, but, even in this
extreme case, we see that no algorithm is being significantly
impacted by materialization.

4.9 Cardinality experiments
We now explore how sensitive our findings are to varia-

tions in the cardinalities of the two input relations. Table 8
shows the results when running the join algorithms on the
Intel Nehalem machine. The numbers obtained from the uni-
form dataset (described in detail in Section 4.1) are shown
in the middle column. We first created one uniform dataset
where both relations are half the size (scale 0.5). This means
the relation R has 8M tuples and the relation S has 128M tu-
ples. We also created a uniform dataset where both relations
are twice the size (scale 2), i.e. the relation R has 32M tu-
ples and the relation S has 512M tuples. The scale 2 dataset
occupies 9GB out of the 12GB of memory our system has
(Table 1) and leaves little working memory, but the serial

46

0

100

200

300

400

500

600

700

800

1

1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K 1
6

6
4

2
5
6

5
1
2

1
K

2
K

4
K

8
K

3
2
K

1
2

8
K

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

Figure 6: Experiment on Intel Nehalem with uni-
form dataset and |R|=|S|.

access pattern allows performance to degrade gracefully for
all algorithms but the L2-R algorithm. The main memory
optimizations of the L2-R algorithm cause many random ac-
cesses which hurt performance. We therefore mark the L2-R
algorithm as not finished (DNF).

We now examine the impact of the relative size of the rela-
tions R and S. We fixed the cardinality of the relation S to
be 16M tuples, making |R| = |S|, and we plot the cycles per
output tuple for the uniform dataset when running on the
Intel Nehalem in Figure 6. First, the partitioning time in-
creases proportionally to |R|+ |S|. Second, the build phase
becomes significant, taking at least 25% of the total join
completion time. The probe phase, however, is at most 30%
slower, and less affected by the cardinality of the relation R.
Overall, all the algorithms are slower when |R| = |S| because
they have to process more data, but the no partitioning algo-
rithm is slightly favored because it avoids partitioning both
input relations.

The results show that no join algorithm is particularly sen-
sitive to our selection of input relation cardinalities, there-
fore our findings are expected to hold across a broader spec-
trum of cardinalities. The outcome of the experiments for
the Sun UltraSPARC T2 is similar, and is omitted.

4.10 Selectivity experiment
We now turn our attention to how join selectivity affects

performance. As all our original datasets are examples of
joins between primary and foreign keys, all the experiments
that have been presented so far have a selectivity of 100%.
For this experiment we created two different S relations that
have the same cardinality but only 50% and 12.5% of the tu-
ples join with a tuple in the relation R. The key distribution
is uniform.

Results for the Intel Nehalem are shown Figure 7(a). De-
creasing join selectivity has a marginal benefit on the probe
phase, but the other two phases are unaffected. The out-
come of the same experiment on Sun UltraSPARC T2 is
shown in Figure 7(b). In this architecture, the benefit of a
small join selectivity on the probe phase is significant.

Inspecting the performance counters in this experiment
revealed additional insights. Across all the architectures,
the code path length (i.e. instructions executed) increases as
join selectivity increases. The Intel Nehalem is practically

insensitive to different join selectivities, because its out-of-
order execution manages to overlap the data transfer with
the byte shuffling that is required to assemble the output
tuple. On the other hand, for the Sun UltraSPARC T2 ma-
chine, there is a strong linear correlation between the code
path length and the cycles that are required for the probe
phase to complete. The in-order Sun UltraSPARC T2 can-
not automatically extract the instruction-level parallelism of
the probe phase, unless the programmer explicitly expresses
it by using multiple threads.

4.11 Implications
These results imply that DBMSs must reconsider their

join algorithms for current and future multi-core processors.
First, modern processors are very effective in hiding cache
miss latencies through multi-threading (SMT), as it is shown
in Tables 5 and 6. Second, optimizing for cache performance
requires partitioning, and this has additional computation
and synchronization overheads, and necessitates elaborate
load balancing techniques to deal with skew. These costs of
partitioning on a modern multi-core machine can be higher
than the benefit of an increased cache hit rate, especially on
skewed datasets (as shown in Figures 2 and 3.) To fully
leverage the current and future CPUs, high performance
main memory designs have to achieve good cache and TLB
performance, while fully exploiting SMT, and minimizing
synchronization costs.

5. RELATED WORK
There is a rich history of studying hash join performance

for main memory database systems, starting with the early
work of DeWitt et al. [7]. A decade later Shatdal et al. [16]
studied cache-conscious algorithms for query execution and
discovered that the probe phase dominates the overall hash
join processing time. They also showed that hash join com-
putation can be sped up if both the build and probe relations
are partitioned so as to fit in the cache.

Ailamaki et al. [1] studied where DBMSs spend their time
on modern processors, whereas Manegold et al. [12] inspected
the time breakdown for a hash join operation. Both papers
break down the query execution time by examining perfor-
mance counters, and single out cache and TLB misses as the
two primary culprits for suboptimal performance in main
memory processing. A follow-up paper [13] presented a cost
model on how to optimize the performance of the radix join
algorithm on a uniprocessor [2].

Ross [15] presented a more efficient way to improve the
performance of hash joins by using cuckoo hashing [14] and
SIMD instructions. Garcia and Korth [9] have studied the
benefits of using simultaneous multi-threading for hash join
processing. Graefe et al. [10] described how hash-based algo-
rithms can improve the performance of a commercial DBMS.

Finally, there has been prior work in handling skew during
hash join processing. The experiments with a high number
of partitions that we presented in Section 4.4 are an exten-
sion of an idea by DeWitt et al. [8] for a main memory,
multi-core environment.

6. CONCLUSIONS AND FUTURE WORK
The rapidly evolving multi-core landscape requires that

DBMSs carefully consider the interactions between query
processing algorithms and the underlying hardware. In this

47

0

10

20

30

40

50

60

70

80

90

100

N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Join selectivity

100%50%12%

partition build probe

(a) Intel Nehalem

0

10

20

30

40

50

60

70

80

90

100

N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R

C
y
c
le

s
 p

e
r

o
u
tp

u
t
tu

p
le

Join selectivity

100%50%12%

partition build probe

(b) Sun UltraSPARC T2

Figure 7: Sensitivity to join selectivity. Increasing join selectivity impacts the critical path for the Sun
UltraSPARC T2, while the out-of-order execution on Intel Nehalem overlaps computation with data transfer.

paper we examine these interactions when executing a hash
join operation in a main memory DBMS. We implement
a family of main memory hash join algorithms that vary in
the way that they implement the partition, build, and probe
phases of a canonical hash join algorithm.

We also evaluate our algorithms on two different multi-
core processor architectures. Our results show that a simple
hash join technique that does not do any partitioning of the
input relations often outperforms the other more complex
partitioning-based join alternatives. In addition, the relative
performance of this simple hash join technique rapidly im-
proves with increasing skew, and it outperforms every other
algorithm in the presence of even small amounts of skew.

Minimizing cache misses requires additional computation,
synchronization and load balancing to cope with skew. As
our experiments show, these costs on a modern multi-core
machine can be higher than the benefit of an increased cache
hit rate. To fully leverage the current and future CPUs, high
performance main memory designs have to consider how to
minimize computation and synchronization costs, and fully
exploit simultaneous multi-threading, in addition to main-
taining good cache and TLB behavior. While a large part of
the previous work in this area has mostly focused on mini-
mizing cache and TLB misses for database query processing
tasks, our work here suggests that paying attention to the
computation and synchronization costs is also very impor-
tant in modern processors. This work points to a rich direc-
tion for future work in exploring the design of more complex
query processing techniques (beyond single joins) that con-
sider the joint impact of computation, synchronization costs,
load balancing, and cache behavior.

Acknowledgments

We thank David DeWitt for his deeply insightful comments
on this paper. We also thank the reviewers of this paper
and Willis Lang for their feedback on an earlier draft of this
paper. David Wood and the Wisconsin Multifacet project
were invaluable supporters of this project and gave us ex-
clusive access to their hardware, and we thank them. This
work was supported in part by a grant from the Microsoft
Jim Gray Systems Lab, and in part by the National Science
Foundation under grants IIS-0963993 and CNS-0551401.

7. REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go? In
VLDB, pages 266–277, 1999.

[2] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory
access. In VLDB, pages 54–65, 1999.

[3] J. Cieslewicz, W. Mee, and K. A. Ross. Cache-conscious
buffering for database operators with state. In DaMoN,
pages 43–51, 2009.

[4] J. Cieslewicz and K. A. Ross. Data partitioning on chip
multiprocessors. In DaMoN, pages 25–34, 2008.

[5] J. Cieslewicz, K. A. Ross, and I. Giannakakis. Parallel
buffers for chip multiprocessors. In DaMoN, 2007.

[6] D. J. DeWitt and J. Gray. Parallel database systems: The
future of database processing or a passing fad? SIGMOD
Record, 19(4):104–112, 1990.

[7] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. Stonebraker, and D. A. Wood. Implementation
techniques for main memory database systems. In
SIGMOD Conference, pages 1–8, 1984.

[8] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins. In
VLDB, pages 27–40, 1992.

[9] P. Garcia and H. F. Korth. Database hash-join algorithms
on multithreaded computer architectures. In Conf.
Computing Frontiers, pages 241–252, 2006.

[10] G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash
teams in Microsoft SQL Server. In VLDB, pages 86–97,
1998.

[11] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D.
Nguyen, A. D. Blas, V. W. Lee, N. Satish, and P. Dubey.
Sort vs. hash revisited: Fast join implementation on
modern multi-core CPUs. PVLDB, 2(2):1378–1389, 2009.

[12] S. Manegold, P. A. Boncz, and M. L. Kersten. What
happens during a join? Dissecting CPU and memory
optimization effects. In VLDB, pages 339–350, 2000.

[13] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing
main-memory join on modern hardware. IEEE Trans.
Knowl. Data Eng., 14(4):709–730, 2002.

[14] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms,
51(2):122–144, 2004.

[15] K. A. Ross. Efficient hash probes on modern processors. In
ICDE, pages 1297–1301, 2007.

[16] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious
algorithms for relational query processing. In VLDB, pages
510–521, 1994.

[17] M. Stonebraker. The case for shared nothing. In HPTS,
1985.

48

