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Abstract 

System R’s bottom-up query optimizer architecture 
forms the basis of most current commercial database 
managers.  This paper compares the performance of top-
down and bottom-up optimizers, using the measure of the 
number of plans generated during optimization. Top 
down optimizers are superior according to this measure 
because they can use upper and lower bounds to avoid 
generating groups of plans. Early during the optimization 
of a query, a top-down optimizer can derive upper bounds 
for the costs of the plans it generates.  These bounds are 
not available to typical bottom-up optimizers since such 
optimizers generate and cost all subplans before 
considering larger containing plans. These upper bounds 
can be combined with lower bounds, based solely on 
logical properties of groups of logically equivalent 
subqueries, to eliminate entire groups of plans from 
consideration.  We have implemented such a search 
strategy, in a top-down optimizer called Columbia. Our 
performance results show that the use of these bounds is 
quite effective, while preserving the optimality of the 
resulting plans.  In many circumstances this new search 
strategy is even more effective than heuristics such as 
considering only left deep plans. 

1. Introduction  

The first generation of commercial query optimizers 
consisted of variations on System R’s dynamic 
programming, bottom-up approach [SAC+79]. This 
generation had limited extensibility.  For example, adding 
a new operator, such as aggregation, required myriad 
changes to the optimizer.   Approximately ten years ago, 
researchers proposed two ways to build extensible 
optimizers.  Lohman [Loh88] proposed using rules to 
generate plans in a bottom-up optimizer; Graefe and 
DeWitt [GrD87] proposed using transforms (the top-
down version of rules) to generate new plans using a top-
down approach.  Lohman’s generative rules were 
implemented in Starburst[HCL90].  Several Starburst 
projects have demonstrated Starburst’s extensibility, from 
incremental joins [CSL90] to distributed heterogeneous 
databases [HKW97].   Since there is a huge commercial 
investment in engineering bottom-up optimizers like 
Starburst, there seems to be little motivation for 
investigating top-down optimizers further.  It is the 
purpose of this paper to demonstrate a significant benefit 
of top-down optimizers, namely their performance, as 
measured by the number of plans generated during 
optimization.   



 

Early during the optimization of a query, a top-down 
optimizer can derive upper bounds for the costs of the 
plans it generates.  For example, if the optimizer 
determines that a single plan for executing  A ⋈ B ⋈ C 
has cost 7, then any subplan that can participate in an 
optimal plan for the execution of A ⋈ B ⋈ C will cost at 
most 7.  If the optimizer can infer a lower bound greater 
than 7 for a group of plans, which are about to be 
generated, then the plans need not be generated – the 
optimizer knows that they cannot participate in an optimal 
solution.  For example, suppose the optimizer determines 
that A ⋈ C, a Cartesian product, is extremely large, and 
the cost of just passing this huge output to the next 
operator is 8.  Then it is unnecessary to generate any of 
the plans for executing A ⋈ C – such plans could never 
participate in an optimal solution.   Such upper bounds are 
not available to typical bottom-up optimizers since such 
bottom-up optimizers generate and cost all subplans 
before considering larger containing plans. 

As we have illustrated, top-down optimizers can use 
upper and lower bounds to avoid generating entire groups 
of plans, which the bottom-up strategy would have 
produced.  We have implemented, in an optimizer we call 
Columbia, a search strategy that uses this technique to 
decrease significantly the number of plans generated, 
especially for acyclic connected queries.  

In Section 2 we survey related work.  Section 3 
describes the optimization models we will use.  Section 4 
describes the core search strategy of Cascades, the 
predecessor of Columbia.  Section 5 describes 
Columbia’s search strategy and our analysis of cases in 
which this strategy will most likely lead to a significant 
decrease in the number of plans generated. Section 6 
describes our experimental results, and Section 7 is our 
conclusion. 

2.  Previous work  

Figure 1 outlines the System R, bottom-up, search 

strategy for finding an optimal plan for the join of N 
tables. 

This dynamic programming search strategy generates 
O (3N) distinct plans [OnL90].  Because of this 

exponential growth rate, bottom-up commercial 
optimizers use heuristics such as postponing Cartesian 
products or allowing only left-deep trees, or both, when 
optimizing large queries [GLS93].  

Vance and Maier [VaM96] show that bottom-up 
optimization can be effective for up to 20 relations 
without heuristics.  Their approach is quite different from 
ours.  Instead of minimizing the number of plans 
generated, as we do, Vance and Maier develop specialized 
data structures and search strategies that allow the 
optimizer to process plans much more quickly.  In their 
model, plan cost computation is the primary factor in 
optimization time.  In our model, plan creation is the 
primary factor.   Their approach is also somewhat 
different from Starburst's in that their outer loop (line (1) 
of Figure 1) is driven by carefully chosen subsets of 
relations, not by the size of the subsets.  Vance and 
Maier's technique of plan-cost thresholds is similar to 
ours in that they use a fixed upper bound on plan costs, to 
prune plans.  They choose this threshold using some 
heuristics and if it is not effective, they reoptimize.  Our 
upper bounds are based on previously constructed plans 
rather than externally determined thresholds.  
Furthermore, our upper bounds can differ for each 
subplan being optimized.  

Top-down optimization began with the Exodus 
optimizer generator [GrD87], whose primary purpose was 
to demonstrate extensibility.  Graefe and collaborators 
subsequently developed Volcano [GrM93] with the 
primary goal of improving efficiency with memoization.  
Volcano’s efficiency was hampered by its search strategy, 
which generated all logical expressions before generating 
any physical expressions.  This ordering meant that 
Volcano generated O (3N) expressions, like Starburst.   

Recently, a new generation of query optimizers has 
emerged that uses object-oriented programming 
techniques to greatly simplify the task of constructing or 
extending an optimizer, while maintaining efficiency and 
making search strategies even more flexible.  Examples of 

this third generation of optimizers are the OPT++ system 
from Wisconsin [KaD96] and Graefe’s Cascades system 
[Gra95]. 

(1)    For i = 1, …, N 
(2)        For each set S containing exactly i of the N tables 
(3a)            Generate all appropriate plans for joining the tables in S,  
(3b)            considering only plans with optimal inputs, and 
(3c)            retaining the optimal generated plan for each set of interesting physical properties. 

Figure 1: System R's Bottom-up Search Strategy for a Join of N Tables 



 

OPT++ compared the performance of top-down and 
bottom-up optimizers.  But it used Volcano’s O(3N) 
generation strategy for the top-down case, which yielded 
poor performance in OPT++ benchmarks. Cascades was 
developed to demonstrate both the extensibility of the 
object-oriented approach and the performance of top-
down optimizers.  It proposed numerous performance 
improvements, mostly based on more flexible control 
over the search process, but few of these were 
implemented.  We have implemented a top-down 
optimizer, Columbia, which includes a particular 
optimizer implementation of the Cascades framework.  
This optimizer supports the optimization of relational 
queries, such those of TPC-D, and includes such 
transforms as aggregate pushdowns and bit joins [Bil97].  
Columbia also includes the performance-oriented 
techniques described here. 

Three groups have produced hybrid optimizers with 
the goal of achieving the efficiency of bottom-up 
optimizers and the extensibility of top-down optimizers.  
The EROC system developed at Bell Labs and NCR 
[MBH96] combines top-down and bottom-up approaches. 
Region based optimizers developed at METU [ONK95] 
and at Brown University [MDZ93] use different 
optimization techniques for different phases of 

optimization in order to achieve increased efficiency.  
Commercial systems from Microsoft [Gra96] and 

Tandem [Cel96] are based on Cascades.  They include 
techniques similar to those we present here, but to our 
knowledge these are the first analyses and testing of those 
techniques. 

3. Optimization fundamentals 

3.1 Operators 
In this study we will consider only join operators and 

file retrieval operators, for two reasons.  First, it is 

possible to describe the Columbia search strategy with 
just these operators.  Second, the classic performance 
study by Ono and Lohman [OnL90] uses only these 
operators, and we will use the methodology of that study 
to compare the performance of top-down and bottom-up 
optimizers. 

A logical operator is a function from the operator’s 
inputs to its outputs.  A physical operator is an algorithm 
mapping inputs to outputs. 

The logical equijoin operator is denoted            ⋈       ..  .     It maps its 
two input streams into their join.  In this study we 
consider two physical join operators, namely sort-merge 
join, denoted ⋈      M , and nested-loops join, denoted  ⋈ N.  For 
simplicity we will not display join conditions [Ram00] . 

We denote the logical file retrieval operator by 
GET(A), where A is the scanned table.  The file A is 
actually a parameter of the operator, which has no input.  
Its output is the tuples of A.  GET(A) has two 
implementations, or physical operators, namely 
FILE_SCAN(A) and INDEX_SCAN(A).  For simplicity 
we will not specify the index used in the index scan.   

Physical properties, such as being sorted or being 
compressed, play an important part in optimization.  For 
example, a sort-merge join requires that its inputs be 
sorted on the joining attributes.   

An operator expression is a tree of operators in which 
the children of an operator produce the operator’s inputs; 
Figure 2 displays two operator expressions.  An 
expression is logical or physical if its top operator is 
logical or physical, respectively. A plan is an expression 
made up entirely of physical operators.  An example plan 
is Figure 2 (ii).  We say that two operator expressions are 
logically equivalent if they produce identical results over 
any legal database state.  

3.2 Optimization, multiexpressions, and groups 
A query optimizer’s input is an expression consisting 

entirely of logical operators, e.g., Figure 2(i) and, 

                                ⋈          ⋈N 
 
                      ⋈              GET(C)         ⋈M            FILE_SCAN(B) 
 
            
    GET(A)           GET(B)                          INDEX_SCAN(C)      FILE_SCAN(A) 
 
                         (i)                                                                     (ii) 
 

Figure 2: Two logically equivalent operator expressions 



 

optionally, a set of requested physical properties on its 
output.  The optimizer's goal is to produce an optimal 
plan, which might be Figure 2 (ii).  An optimal plan is 
one that has the requested physical property, is logically 
equivalent to the original query, and is least costly among 
all such plans.  (Cost is calculated by a cost model which 
we shall assume to be given.)  Optimality is relative to 
that cost model. 

The search space of possible plans is huge, and naïve 
enumeration is not likely to be successful for any but the 
simplest queries.  Bottom-up optimizers use dynamic 
programming [Bel75], and top-down optimizers since 
Volcano use a variant of dynamic programming called 
memoization [Mic68, RuN95], to find an optimal plan.  
Both dynamic programming and memoization achieve 
efficiency by using the principle of optimality: every 

subplan of an optimal plan is itself optimal (for the 
requested physical properties).  The power of this 
principle is that it allows an optimizer to restrict the 
search space to a much smaller set of expressions: we 
need never consider a plan containing a subplan p1 with 
greater cost than an equivalent plan p2 having the same 
physical properties. Figure 1, line (3c) is where a bottom-
up optimizer exploits the principle of optimality. 

The principle of optimality allows bottom-up 
optimizers to succeed while testing fewer alternative 
plans.  Top-down optimization uses an equivalent 
technique, namely a compact representation of the search 
space.  Beginning with Volcano, the search space in top-
down optimizers has been referred to as a 
MEMO[McK93].  A MEMO consists primarily of two 
mutually recursive data structures, which we call groups 
and multiexpressions. A  group is an equivalence class of 
expressions producing the same output.  Figure 3 shows 
the group representing all expressions producing the 
output A⋈B. 1  In order to keep the search space small, a 
group does not explicitly contain all the expressions it 
represents.  Rather, it represents all those expressions 
implicitly through multiexpressions: A multiexpression is 
an operator having groups as inputs.  Thus all expressions 
                                                           
1 The costs in Figures 3 and 6 are from an arbitrary example, chosen just 
to illustrate the search strategies. 

with the same top operator, and the same inputs to that 
operator, are represented by a single multiexpression.  In 
Figure 3, the multiexpression [B]⋈N[A] represents all 
expressions whose top operator is a nested loops join ⋈N 
and whose left input produces the tuples of B and whose 
right input produces the tuples of A.    

In general, if S is a subset of the tables being joined in 
the original query, we denote by [S] the group of 
multiexpressions that produces the join of the tables in S.   

A logical (physical, respectively) multiexpression is 
one whose top operator is logical (physical). During query 
optimization, the query optimizer generates groups and 
for each group it finds the cheapest plans in the group 
satisfying the requested physical properties.  It stores 
these cheapest plans, which we call winners, along with 
their costs and the requested properties, in the group, in a 

structure we call the winner’s circle.  The process of 
generating winners for requested physical properties is 
called optimizing the group.  Figure 5 contains several 
groups (at an early stage in their optimization, before any 
winners have been found).  The multiexpression [AB] ⋈ 
[C] in Figure 5 represents (among others) the expression in 
Figure 2(i).   

3.3 Bottom-up Optimizers: group contents and 
enumeration order 

Bottom-up optimizers generate structures analogous to 
multiexpressions [Loh88].  There, the inputs are pointers 
to optimal plans for the properties sought.  We will also 
use the term multiexpression, and notation like [A]⋈[B], 
to denote the structures used in bottom-up optimization in 
which [A] and [B] are pointers to optimal plans for 
producing the tuples of A and B.   The crucial difference 
between top-down and bottom-up optimizers is the order 
in which multiexpressions are enumerated: A bottom-up 
optimizer enumerates such multiexpressions from one 
group at a time, in the order of the number of tables in the 
group, as in Figure 1, lines (3a-c). If a bottom-up 
optimizer is optimizing the join of tables A, B and C, it 
will optimize groups in this order:  

[A], [B], [C]; [AB], [AC], [BC]; [ABC] 

Multiexpressions: [A]⋈  [B],   [A]⋈N        [B],  [A]⋈M [B],  [B]⋈ [A],  [B]⋈N [A],  [B]⋈M [A]  
Winner’s Circle: 

The optimal plan, when no property is required, is [A]⋈N [B], and its estimated cost is 127. 
There are no other winners at this time. 

 

Figure 3: An example group [AB] 



 

where the semicolons denote iterations of Figure 1, line 
(1).  Between the semicolons, the order is controlled by 
line (2) and depends on the generation rules used in line 
(2).  Note that before a single multiexpression in [ABC] is 
generated, all the subqueries (such as [AC]) are 
completely optimized, i.e. all optimal plans for all 
physical properties that are anticipated to be useful are 
found.  Thus there is no chance to avoid generating any 
multiexpressions in groups such as [AC] on the basis of 
information gleaned from [ABC].  We will see that top-
down optimizers optimize groups in a different order and 
may be able to use information from the optimization of 
[ABC] to avoid optimizing some groups such as [AC]. 

4. Cascades’ search strategy 

Figure 4 displays a simplified version of the function 
OptimizeGroup( ) that is at the core of Cascades’ search 
strategy.   The goal of OptimizeGroup( ) is to optimize 
the group in question, by searching for an optimal 
physical multiexpression in Grp with the requested 
properties Prop and having cost less than UB. 

It is nontrivial to define the cost of a multiexpression.  
A multiexpression’s root operator has a cost, but its inputs 
are groups, not expressions, and it is not clear how to 
calculate the cost of a group.  We will see that the 
Cascades search strategy searches for winners – optimal 
solutions – by recursively searching input groups for 
winners.  The cost of a multiexpression is thus calculated 
recursively, by summing the costs of the root operators of 
each of the winners from each of the recursive calls at line 
(5) of the search strategy.  Let us examine the search 
strategy in more detail. 

Line (1) checks the winner’s circle, where winners 
from previous OptimizeGroup( ) calls have been stored.   

If there is no acceptable winner in the winner’s circle, 
then the eventual solution WinnerSoFar is initialized and 
line (2) uses transforms to generate all candidate logically 
equivalent physical multiexpressions, corresponding to all 
plans generated at line (3a) of Figure 1. Line (3) calculates 
a lower bound LB for the cost of the multiexpression.  So 
far LB includes only the cost of the root operator.  At line 
(8) it will be incremented by the cost of each optimal 
input.   

// OptimizeGroup( ) returns the cheapest physical multiexpression in Grp,  
//    with property Prop, and with cost less than the upper bound UB.   
// It returns NULL if there is no such multiexpression. 
// It also stores the returned multiexpression in Grp’s winner’s circle. 
 
Multiexpression* OptimizeGroup(Group Grp, Properties Prop, Real UB) 
{ 
     // Does the winner’s circle contain an acceptable solution? 
(1)  If there is a winner in the winner’s circle of Grp, for Properties Prop { 
         If the cost of the winner is less than UB, return the winner 
         else return NULL 
     } 
 
     // The winner’s circle does not hold an acceptable solution, so enumerate      
     //   multiexpressions in Grp, using transforms, and compute their costs. 
     WinnerSoFar = NULL 
(2)  For each enumerated physical multiexpression, denoted MExpr { 
(3)      LB = cost of root operator of MExpr 
(4)      If UB <= LB then go to (2) 
(5)      For each input of MExpr { 
             input-group = group of current input 
             input-prop = properties necessary to produce Prop from current input 
(6)          InputWinner = OptimizeGroup(input-group, input-prop, UB - LB) 
(7)          If InputWinner is NULL then go to (2)  
(8)          LB += cost of InputWinner 
         } 
(9)      Use the cost of MExpr to update WinnerSoFar and UB 
     } 
(10) Place WinnerSoFar in the winner’s circle of Grp, for Property Prop 
     Return WinnerSoFar 
} 

Figure 4: The core of Cascades’ search strategy, OptimizeGroup( ) 



 

Line (6) recursively seeks a winner for each input of 
the candidate multiexpression.  This recursive call uses as 
its upper bound, UB - LB, because some of the allowed 
cost has been used up by the cost of  the root operator of 
the parent multiexpression, at line (3), and some by the 
cost of previous input winners, at line (8).  For example, 
if OptimizeGroup( ) is seeking a multiexpression with a 
cost at most UB=53, and the optimizer is considering a 
candidate multiexpression whose root operator costs 13, 
then the first input must cost at most 40 to be acceptable.  
If the winner for the first input costs 15, then the next 
input can cost at most 53-28 = 25, etc.   

The loop at line (5) is trying to construct acceptable 
inputs for the multiexpression chosen at line (2).  Because 
the typical database operator has from 0 to 2 inputs, it 
typically executes at most twice. The loop can exit in two 
ways.  First, it can exit from (4) with failure because the 

root operator alone costs more than the upper bound, or it 
can exit from (7) with failure because no acceptable 
winner could be found for that input (because of the 
bound or because of the property).  Note that in this case, 
line (6) will not be invoked for subsequent inputs, so the 
groups for subsequent inputs will not be optimized.  It is 
possible that these groups are never optimized, so none of 
the multiexpressions in the group will be generated.  We 
call this group pruning and discuss it in Section 5 below. 

Second, the loop at line (5) can exit with success, with 
control passing to line (9) where the resulting 
multiexpression is compared with WinnerSoFar.  If the 
multiexpression has a lower cost it replaces WinnerSoFar, 
and the upper bound UB is set equal to the lower cost of 
the newly found multiexpression. This continual adjusting 
of upper bounds is essential to the success of our 
approach. 

How does Cascades use OptimizeGroup( )?  Cascades 
begins the optimization of a query by calling a function 
CopyIn( ) to create a separate group for each 
subexpression of the original input query, including 
leaves (see Figure 5).  Then it calls OptimizeGroup(  ), 
using as parameters the top group, whatever output 
properties are requested by the original query, and an 
infinite limit.  When OptimizeGroup( ) returns, it will 
return the output of the query optimization, or NULL if 

there is no plan that is logically equivalent to the input 
query and that satisfies the requested properties.  Since 
OptimizeGroup( ) returns only a multiexpression and not 
an actual expression, another search is necessary, using a 
function CopyOut( ) to retrieve winners from the winner’s 
circles of input groups recursively, to construct the actual 
optimal expression from the returned multiexpression.  
(In fact, OptimizeGroup( ) only needs to know about the 
success of the recursive call in line (6), and the cost of  
InputWinner, so in the actual implementation we only 
return the cost. ) 

In contrast to Figure 1, Figure 4 is a top-down search 
strategy.  It begins with the input query and, at Figure 4 
line (6), proceeds top-down, using recursion on the inputs 
of the current multiexpression MExpr.  However, plan 
costing actually proceeds bottom-up, based on the order 
of the returns from the top-down recursive calls. 

4.1 An example of the Cascades search strategy 
We illustrate Cascades' search strategy with an 

example.  Suppose the initial query is   (A⋈B)⋈C, as in 
Figure 2 (i).  We assume that the nontrivial join 
conditions are between A and B, and between B and C. 
(This condition is used only to infer, as described in 
Section 5.1, that  A ⋈ C is a Cartesian product. ) 

Cascades' search strategy will use CopyIn( ) to 
initialize the search space with the groups and 
multiexpressions illustrated in Figure 5.  

After initialization, OptimizeGroup( ) will be called on 
the group [ABC], with no required property and an 
infinite upper bound.  Suppose the first physical 
multiexpression enumerated at Figure 4, line (2), is [AB] 
⋈N [C].  The first recursive call from the [ABC] level, at 
Figure 4 line (6), will seek an optimal multiexpression 
(with no required properties) within the input group [AB].  
This call will lead to one or more visits to the group [A], 
seeking optimal multiexpression(s) in A, and similarly for 
[B].  After these calls return to the [ABC] level, [AB] 
might look like Figure 3. The second recursive call from 
[ABC] for  [AB] ⋈N [C] ,at line (6), will seek an optimal 
multiexpression for the second input [C], again with no 
required properties.   

 
 
 
  Group [ABC]           Group [AB]               Group [A]               Group [B]             Group [C] 

 [AB] ⋈ [C]   [A]⋈ [B] GET(A)   GET(B) GET(C) 

Figure 5: Cascades search space (MEMO), after initialization 



 

After the second call returns, we can calculate a cost 
for the multiexpression  [AB] ⋈N [C].  At this point the 
resulting groups might look like Figure 6. Further along 
[AB] ⋈M [C] will be considered, which will result in 
[AB] being revisited seeking different physical properties 
(namely a sort order). Logical transforms will produce 
[A] ⋈ [BC] at some point, which entails the creation and 

intialization of the new group [BC]. (If we were working 
with more complex queries, such as ones with 
aggregation, there would be more groups than just one for 
each subset of relations.)  Eventually group [ABC] will 
contain multiexpressions for all equivalent plans that can 
be generated by the optimizer’s transformatons. 

4.2 Memoization vs. dynamic programming 
A bottom-up optimizer visits each group exactly once, 

and during that visit it determines all the optimal plans in 
the group, for all physical properties anticipated to be 
useful. As our previous example illustrates, a top-down 
optimizer such as Cascades visits any group, call it G,  
zero or more times, once for each call to OptimizeGroup( 
G, … ).   During each call to OptimizeGroup( ), the 
optimizer considers several multiexpressions and chooses 
one (perhaps the NULL multiexpression, indicating that 
no acceptable plan is available) as optimal for the desired 
property.  Any new optimal multiexpression is stored at 
Figure 4 line (10). This storing of optimal 
multiexpressions is the original definition of memoization 
[Mic68, RuN95]: a function that stores its returned values 
from different inputs, to use in future invocations of the 
function.  Note that for memoization to work in this case, 
we need only retain the multiexpression representing the 
best plan for the given physical properties in a group. 
However, in Columbia we choose to retain other 
multiexpressions, as shown in Figure 3. There are two 

reasons for retaining non-optimal multiexpressions. One 
is that transforms might construct the same 
multiexpression in two different ways, and we want to 
know that a given multiexpression has already been 
considered. This is a minor issue since the unique rule 
sets of Pellenkoft et al [PGK97] minimize this duplication 
of expressions.   The other reason is that a retained 

multiexpression might turn out to be the best 
multiexpression for a different set of physical properties 
in a later call to the group. We could eliminate all non-
optimal multiexpressions in a group once we know the 
group will never be revisited, but that termination 
condition is hard to determine in practice. 

5. Group pruning in Columbia 

We say that a group G is pruned if, during 
optimization, the group is never optimized, i.e., if no 
multiexpressions in it are generated during the 
optimization process2.  A pruned group will thus contain 
only one multiexpression, namely the multiexpression 
that was used to initialize it.  Group pruning can be very 
effective: A group representing the join of i tables 
contains O (2i) logical multiexpressions3, each of which 
gives rise to one or more physical multiexpressions, all of 
which are avoided by group pruning. 

In this section we will describe how Columbia 
increases the likelihood of achieving group pruning over 
Cascades, through the use of an improved search strategy 
                                                           
2 Note that pruning is a passive activity – we don’t actually remove the 
group at any point; rather, at the end of optimization, we find that the 
group has never been optimized. 
3 There are 2i -2  such expressions because each nontrivial subset of the 
set of i tables corresponds to a different join, between the subset and its 
complement, excluding the entire set and the empty set. 
 

 
 
 
             
               
                              Group [ABC]                                        Group [AB]      Group [A] 
 
 
  
 
 

                     Group [B]                                                                                     Group [C] 

[AB]  ⋈  [C] ,   [AB]  ⋈N  [C] 
Cheapest Plan so far:   [AB]  ⋈N  [C].  Cost 442 
 

See  
Figure 3 

GET(C), FILE_SCAN(C) 
 
Optimal: FILE_SCAN(C). Cost 23 

GET(A), FILE_SCAN(A) 
 
Optimal: FILE_SCAN(A). Cost 79 

GET(B), FILE_SCAN(B) 
 
Optimal: FILE_SCAN(B). Cost 43 

Figure 6: Cascades search space, after calculating the cost of  [AB] ⋈⋈⋈⋈N  [C] 



 

for optimization.  Note that some group pruning could 
happen in Cascades, as OptimizeGroup( ) is not called on 
the second input group of MExpr when the search of the 
first group fails to result in a multiexpression under the 
limit. 

We emphasize that an optimizer that does group 
pruning still produces optimal plans, since it will only 
prune plans that cannot participate in an optimal plan. We 
call such a pruning technique safe, in contrast to heuristic 
techniques that can return a non-optimal plan. 

5.1 Computing lower bounds aggressively to 
increase the frequency of group pruning 

In Section 4 we have noted that the Cascades search 
strategy can lead to group pruning, when the loop of 
Figure 4 line (5) exits at line (7) and subsequent inputs are 
not optimized.  In this subsection we will demonstrate a 
more aggressive approach: We will compute a lower 
bound for the multiexpression under consideration by 
looking ahead at inputs that are already optimized, and 
using logical properties for other inputs.  This lower 
bound will force an earlier exit of the loop of Figure 4 line 
(5) and thus force more frequent group pruning.   Figure 7 
is a change to Figure 4 that implements this strategy.  

We will first motivate and explain Figure 7, then 
continue with the example of Figure 6.  The goal of the 
improvement described in Figure 7 is to avoid optimizing 
input groups, that is, avoid calling OptimizeGroup( ) at 
line (6), by adding together, in lines (3a-c), all input costs 
that can be deduced without optimizing any input groups.  
If the sum of these input costs exceeds UB, then 
OptimizeGroup( ) need not be called.  The lower bound 
has three components.  The first, line (3a) is identical to 
line (3).  Next, line (3b) can be deduced by looking at the 
winner’s circles of all input groups, without optimizing 
any of those groups.  For input groups which have not 
been covered in line (3b), i.e. those which do not have 
winners,  we can estimate a lower bound on the cost of 
any winner by first estimating the size of the output of the 
group (the output size is a logical property so it is the 

same for any multiexpression in the group).  Once the 
output size estimate is known,  the cost model yields an 
estimated cost for copying the output (whether it is 
pointers or records) to the next operator.  This value is the 
copying-out cost in line (3c).   

If  the loop exits at line (4), we have avoided calling 
OptimizeGroup( ) on any input groups and they may 
never be optimized, i.e., they might be pruned.  If the loop 
continues, control passes to line (5a), which then loops 
over all input groups whose winners were not found in 
line (3b).  Line (8a) includes the new term “minus 
copying-out cost” because that cost was included at line 
(3c) previously and has now been replaced by the entire 
cost of the winner for this input, which includes the 
copying-out cost.  

Next we will continue with the example of Section 4.1, 
which we left at Figure 6, where the cheapest plan so far 
has a cost of 442.  Thus 442 is an upper bound on the cost 
of the optimal plan in group [ABC].  At this point, the 
multiexpression [AB] ⋈ [C]  will be transformed, at line 
(2) of Figure 4, to yield the merge-join [AB] ⋈M [C].  
Then OptimizeGroup( ) will be called on the input groups 
[AB] and [C], but this time with sort properties.  We will 
skip these steps, assuming that the sort-merge join costs 

more than 442.  Next, the logical transform rule of 
associativity will be applied to [AB] ⋈ [C], resulting in 
the addition of both multiexpressions [A] ⋈ [BC]  and 
[B] ⋈ [AC] to the group [ABC].  (Two multiexpressions 
are produced because the group [AB] contains both  [A] 
⋈ [B]  and [B] ⋈ [A].)  Eventually, [B] ⋈ [AC] will be 
transformed to [B] ⋈N [AC]  at line (2).  Assume the root 
operator, nested-loops join, costs 200 at line (3a);  the 
winner for [B] costs 43 at line (3b).  We have 442-
243=199 remaining cost to work with.  Since the group 
[AC] has not yet been optimized, there is no winner for 
the input [AC].  The join AC is a Cartesian product so its 
cardinality is huge.  Therefore the cost of copying-out any 
plan in the group [AC] will be large, say 1000, greater 
than the remaining cost of 199.  Thus the loop of line (2) 
will exit with failure at line (4) and the group [AC] will 

(3a) LB =  Cost of root operator of Mexpr + 
(3b)  Cost of inputs that have winners for the required properties + 
(3c)  Cost of copying-out other inputs 
 
(5a) For each input of MExpr without a winner for the required properties  
 
(8a)  LB = LB + cost of InputWinner – copying-out cost for input 

Figure 7: Improvement to the Cascades search strategy. 
Replacements for lines (3),(5) and (8) of Figure 4 



 

not have been optimized.  If similar upper and lower 
bounds are available whenever [AC] appears in the 
optimization, then [AC] will never be optimized and none 
of the multiexpressions in [AC], except the one needed to 
populate it initially, will be constructed.  

5.2 Comparison with AI search strategies 
The search strategy of Figures 4 and 7 is similar to AI 

search strategies, especially A* [RuN95].  Both search 
strategies use estimated costs together with precise costs.  
However, there are several differences.  A* works with 
partial solutions and partial costs, plus an estimate of the 
remaining cost; group pruning compares the cost of one 
complete solution (UB) to a lower bound of the cost of a 
set of solutions.  The purpose of A* is to choose which 
subplans to expand next, whereas the purpose of group 
pruning is to avoid expanding a set of subplans.   

5.3 Left-deep inputs simplify optimization 
In this subsection we prove a lemma which is 

important in its own right and which we will use in the 
next subsection. 

Pellenkoft et al. [PGK97] show that, for the join 
queries we are studying, four transforms, along with 
conditions for their application, can generate uniquely all 
logical multiexpressions in any group.  The following 
lemma shows that when the input operator tree is a left-
deep tree, just two of these four transforms will suffice.  
This lemma is useful because any operator tree containing 
only join and file retrieval operators is logically 
equivalent to a left-deep tree.  Thus one can simplify such 
a query’s optimization by beginning with a left-deep tree. 

 
Lemma 1: Let Q be a left-deep operator tree, as in Figure 
2(i).  Apply the search strategy described in Section 4 
with Q as input query.  Use only the two logical 
transforms: 

Left-to-Right Associativity and Commutativity. 

 
and the conditions described by Pellenkoft et al. in 
[PGK97] for them, namely:  During optimization of each 
group, order transforms as follows: apply associativity 
once to the first multiexpression in a group, then apply 
commutativity once to all the resulting logical 
multiexpressions in the group.  Then  
 
(1) Each group which has been optimized will contain 

all possible equivalent logical multiexpressions; 
(2) If a group in MEMO contains more than one table, 

then the second input of its first multiexpression 
will be a single-table group; 

(3) Only the associative transform will produce new 
groups. 

 
Proof: Condition (3) is trivially satisfied since 
commutativity cannot produce new groups.  Thus we 
prove only conditions (1) and (2). 

Let the top group of the MEMO space, representing Q, 
be [ A1, …, Ak ].  Since Q is a left-deep tree, the first 
multiexpression in [A1, …, Ak] is (perhaps with 

renumbering) [A1, …, Ak-1]  ⋈  [Ak ]. 
The proof proceeds by induction on k.  The induction 

hypothesis is that  conditions (1) and (2) hold for groups 
containing tables from the set {A1, …, Aj}.  The basis 
step, j=1, is trivially satisfied by single table groups.  We 
assume the inductive hypothesis for j = k-1 and prove it 
for j = k. 

We first prove condition (1) for the top group [A1, …, 
Ak].  There are 2k – 2 logically equivalent 
multiexpressions in any group with k tables (see footnote 
3 ) .   Now count the multiexpressions generated by the 
two transforms when they are applied to the first 
multiexpression in the group, namely [A1, …, Ak-1] ⋈ 
[Ak]:  2k-1 – 2 multiexpressions are generated by 
associativity, one for each nontrivial subset of {A1, …, 
Ak-1}.  Commutativity adds a mirror image to each of 
these and to the original multiexpression [A1, …, Ak-1] ⋈ 

                        ⋈      ⋈ 
 
 

       ⋈                   [Ak]       [S]  ⋈ 
 

   
    [S]             [T]                 [T]              [Ak] 
 

Figure 8: Associativity applied to a left-deep multiexpression 



 

[Ak], for a total of 2(2k-1 – 2 ) + 2 =  2k – 2 distinct 
multiexpressions, proving condition (1).  Since condition 
(2) is clear for the top group, we have proved the 
inductive step for the top group. 

It remains to prove conditions (1) and (2) for any 
group generated from the further optimization of the top 
group, i.e., any group containing Ak. Since the 
commutative transform does not generate new groups, 
each new group is generated as a result of the 
associativity transform applied to the first multiexpression 
[A1, …, Ak-1] ⋈ [Ak ] in the top group.  Any application 
of associativity will be of the form pictured in Figure 8, 
where S and T form a nontrivial partition of {A1, …, Ak-

1}. The right multiexpression in Figure 8 has two input 
groups, namely [S] and [TAk]. [S] is already in the search 
space by induction, but [TAk] is new.  Its first 
multiexpression is given by the right input of the new 
multiexpression above, namely [T] ⋈ [Ak], which 
satisfies condition (2).  Since a counting argument similar 
to the one used above can verify condition (1) for this 
case, Lemma 1 is proved. 

Lemma 1 says that we can arrange optimization so that 
the first multiexpression of each group has one table as 
the right input, but the left input may be a Cartesian 
product and therefore very expensive, giving us a high 
upper bound when we compute the cost of a physical 
multiexpression based on this logical multiexpression.  
The next subsection deals with this problem. 

5.4 Obtaining cheap plans quickly 
Group pruning will be most effective when cheap 

plans are obtained early in the optimization process, since 
the UB at line (4) of Figure 4 represents the cost of the 
cheapest plan seen so far.  For example, if the original 
operator tree in the example of Section 4.1 had been 
(AC)B, i.e., included a Cartesian product, then the group 
[AC] would have been optimized and not pruned. We 
want to avoid such situations. 

In many, but not all, situations, Cartesian product joins 
are the most expensive joins considered during 
optimization. There are exceptions to this 
heuristic[ONL90] – today we would call those exceptions 
star schemas [MMS98].   

As usual, a connected query is one whose join graph is 
connected.  We define a group to be connected if its 
corresponding query is connected.  If a group is not 
connected, then any plan derived from the group will 
include at least one Cartesian product.  Thus, for a non-
connected group, there is typically little hope of obtaining 
a cheap plan quickly – none of the plans in the group will 
typically be cheap. 

Therefore the best one can hope for during query 
optimization is that when optimizing a connected group, 

the first multiexpression in that group will contain a plan 
that includes no Cartesian product.  The next Theorem 
shows that for a connected acyclic query this hope can 
always be achieved.    
 
Lemma 2: Let Q be a connected acyclic query.  Then Q 
is logically equivalent to a left-deep operator tree R such 
that the left input of any subtree of R is connected. 
 
Proof: Construct R by removing from the join graph of Q 
one non-cut node at a time and adding the removed table 
to R, along with whatever join conditions are inherited 
from Q. 

 
Theorem: Let Q be a connected acyclic query.  Apply the 
search strategy of Section 4, as described in Lemma 1, to 
the left-deep tree given by Lemma 2.  Then every 
connected group in the resulting MEMO will begin with a 
multiexpression containing a plan with no Cartesian 
product. 

 
Proof: By induction, we can assume the theorem true for 
any connected acyclic query with k-1 tables or fewer.  
Assume Q has k tables.  By Lemma 1, only associativity 
produces new groups, so we must show only that in 
Figure 8, if the new group [TAk] has a connected join 
graph then its first multiexpression [T] ⋈ [Ak] will have a 
connected plan.  First we will prove that [T] is connected.   

 
 We observe that there is only one edge between Ak 

and any table in S or T.  If there were two  such edges, the 
connectedness of [ST] would yield a cycle in [STAk].  We 
let B denote the other table in that edge.  Since [TAk] is 
connected, B must be in T.  Since there is only one edge 
between Ak and T, and [TAk] is connected, T must be 
connected.   

Since [T] is connected, it contains a connected plan.  
Since [TAk] is connected and Ak is a single table, the join 
of that plan with Ak is also connected.  Thus we have 
produced the desired plan. 

 
We note that this theorem is not true for connected 

cyclic queries.   For example, let  Q be the query with  
tables A, B, C, D and edges between the pairs AB, BC, 
CD, and DA.  Suppose the first multiexpression in the top 
group is [ABC] ⋈ [D].  Using the subset {A, C} to do 
associativity yields the multiexpression [AC] ⋈[D], 
which generates the connected group [ACD].  However, 
[AC] ⋈[D] cannot have a connected plan since the input 
[AC] is a Cartesian product. 

The theorem gives us a prescription for optimizing any 
connected acyclic query and guarantees that all connected 
groups will begin with a multiexpression that is in some 



 

sense cheap.  Hopefully the other, nonconnected, groups 
will be pruned by the optimization.  We will test this 
hypothesis in the next section. 

This theorem gives us a second benefit, namely that 
fewer transforms are needed to optimize the query, so 
optimization should be more efficient. 

6. Performance analyses  

It is difficult to compare the performance of different 
optimizers.  Measures such as elapsed time or memory 
usage are not comparable unless both optimizers are 
implemented in the same environment.  OPT++ [KaD96] 
makes a significant contribution in this direction, 
implementing several approaches within a single 
framework, but OPT++ reports only the Volcano, and not 
the Cascades or Columbia, search strategies. As we have 
noted in Section 2, the Volcano search strategy does not 
lend itself to pruning. Furthermore, it is not clear that the 
structure of OPT++ is appropriate for the 
multiexpressions used in top-down optimizers. 

We use the measure of number of multiexpressions 
generated in order to compare bottom-up optimizers, such 
as Starburst, with Columbia.  For example, in Figure 3, 
six multiexpressions have been generated in the group 
[AB].  This measure is clearly independent of platform.  
While top-down optimizers need to check each newly 
generated multiexpression to ensure that it is not already 
in the MEMO, our experiments show that this is not a 
major expense.   Memory usage is another expense which 
is more significant for top-down than bottom-up 
optimizers, but we leave that analysis to future work. 

Our goal in this section is to determine the 
effectiveness of group pruning in minimizing the number 
of multiexpressions generated during optimization.  First 
we will compare Columbia with group pruning to 
Starburst, which considers all logically equivalent 
multiexpressions for each group. As mentioned in Section 
5, Columbia with group pruning produces optimal plans, 
so its output will be the same as Starburst’s.  Then we 
compare Starburst using heuristics to Columbia.  

The most significant factors affecting the number of 
multiexpressions generated during a query’s optimization 
are the query’s shape and the number of tables involved 
[OnL90].   The extremes are given by chain (also called 
linear) and star queries.   Chain query optimization gives 
rise to the greatest number of Cartesian products and star 
queries the least, for a given number n of quantifiers 
(tables represented by variables) and n-1 predicates.  
Cartesian products affect complexity because they give 
rise to pruning possibilities as we have seen previously, 
and they are the core of Starburst’s most important 
heuristic.   

Our experiments use the nested-loops and sort-merge 
operators described above.  They also use the 
methodology described by the theorem, namely 
transforming each input query into a left-connected deep 
tree before optimization begins.  All Columbia data in our 
graphs were derived from executions of the Columbia 
optimizer.  Starburst values were derived from the 
formulas of Ono and Lohman [OnL90].  

 
Our choice of queries and catalogs is influenced by  

the work of Vance and Maier[VaM96].  Each of the 
queries used in our experiments uses tables denoted T1, 
…, Tn .  The geometric mean of table cardinalities |Ti| will 
be fixed at 4096.  We have used other values with similar 
results.  In a given catalog, the ratios |Ti|/|Ti+1| are equal 
for all i and the log2 of the ratio |T1|/|Tn| is called the 
LOGRATIO.  Thus if a catalog has 7 tables and a 
LOGRATIO of 6 then the tables’ cardinalities are 215, 214, 
…, 210, 29.  The following results are sensitive to join 
selectivities.  Increasing join selectivity has the same 
effect as decreasing the LOGRATIO.   

The graphs involving Starburst are independent of 
table cardinalities because whether a  plan includes a 
Cartesian product or is a bushy tree does not depend on 
cardinalities.  However, the graphs representing Columbia 
do depend on table cardinalities since those cardinalities 
contribute to the bounds used in pruning.   

For chain queries, we assume each join of Ti with Ti+1 
is a foreign key join, for which the join selectivity is 
derived from |Ti ⋈ Ti+1| = |Ti|.   For star queries, the 
foreign key joins are of Ti with T1 for i = 2, …, n.   

 

6.1 Effectiveness of group pruning  
Figure 9 shows that Columbia’s group pruning can be 

quite powerful.  It also demonstrates the effect of query 
shape and of table cardinalities.  In this Figure, “Default” 
is the number of multiexpressions generated by Columbia 
with no group pruning or by Starburst using no heuristics.  
The other quantities in Figure 9 represent group pruning 
in Columbia of Star and Chain queries using tables whose 
cardinalities vary by factors ranging from 1 to 224.  The 
savings in multiexpressions ranges from approximately 
60% for star queries to 98% for chain queries.  We note 
that all these savings are accomplished while yielding 
optimal solutions.  The effect of table cardinalities is 
minimal – the savings varies by only a few percent in 
each case.  In future examples we will use LOGRATIO = 
12. 

 



 

6.2 Group pruning compared with heuristics 
Figure 10 compares the effectiveness of Columbia’s 

group pruning with Starburst’s primary heuristics, using 
the same 13 table example queries.  The Default column 
is as in Figure 9.  The leftmost columns represent 

Columbia’s group pruning strategy, yielding optimal 
results.  Starburst’s “postpone Cartesian products” 
heuristic, which for connected queries amounts to no 
Cartesian products, shown by the middle column for star 

and chain queries,  is very competitive.  However, the 
heuristic of considering only left deep plans is, for chain 
queries, inferior to group pruning.  Of course either of the 
heuristics mentioned can be applied in top-down 
optimizers such as Columbia. 

 

6.3 Significance of number of tables 
Figure 11 shows the variance in multiexpression 

complexity as the number of tables varies.  The relative 
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impact of the default case versus group pruning for star 
and chain queries, and the effect of excluding Cartesian 
products or of considering only left deep trees, is the same 
regardless of how many tables are involved.  Note that the 
“left deep” column is identical for chain and star queries 
since a query’s predicates do not affect whether or not a 
plan for it is left deep. 

 

7. Summary and future work 

We have explained that top-down and bottom-up 
optimizers use the principle of optimality to populate two 
data structures (groups and multiexpressions) and pointed 
out that a key difference is in the order of enumerating the 
groups.  We have described the search strategy of the 
Cascades query optimizer and the improvements on that 
search strategy that we have implemented in a query 
optimizer called Columbia.  Those improvements use 
upper and lower bounds to implement group pruning, a 
method for avoiding the generation and testing of 
candidate multiexpressions that cannot participate in an 
optimal solution.  Such bounds are not available to 
bottom-up optimizers such as Starburst.  We have proven 
that any connected acyclic query can be optimized in such 
a way that cheap upper bounds are likely to be obtained 
early in the optimization process. 

We have described the performance characteristics of 
Columbia compared to bottom-up optimizers such as 
Starburst.  We considered chain and star queries with 
varying numbers of tables and varying cardinalities.  For 

our benchmarks, when both Columbia and Starburst are 
required to produce optimal results, Columbia generates 
between 60 and 98% fewer multiexpressions than 
Starburst.  Given that Starburst uses heuristics and risks 
generating nonoptimal plans, we show that there are cases 
in which Columbia can produce optimal results with 
fewer multiexpressions than Starburst. 

Our major conclusion is that, judging by the number of 

multiexpressions generated, top-down optimizers have the 
potential to outperform bottom-up optimizers. 

 Our future work will focus on two areas. The first is 
memory usage. Bottom-up optimizers have the advantage 
of being able to discard non-winner multiexpressions at 
each level when that level is completed.  Top-down 
optimizers normally retain all multiexpressions, both 
because OptimizeGroup( ) may be called more than once 
on the same group and because transforms such as 
associativity may use a group multiple times.  This 
retention of multiexpressions leads to poor memory 
usage.  We plan to compare alternative solutions to this 
problem, including the use of heuristics. 

The second area we plan to pursue is more 
foundational.  Because of the complexity of top-down 
optimization, several interesting questions remain to be 
answered about it.  For example, can one prove rigorously 
that it yields the same plans as bottom-up optimization?  
Optimization does not always terminate (e.g., if the 
machine being modeled has an infinite number of 
processors and plans with infinitesimally small costs), but 
are there conditions on rule sets that guarantee 
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termination?   Is every rule set equivalent to a set of rules 
of some simple form? 
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