

Exploiting Upper and Lower Bounds in Top-Down Query Optimization

Leonard Shapiro*
Portland State University

len@cs.pdx.edu

David Maier**, Paul Benninghoff
Oregon Graduate Institute

{maier, benning}@cse.ogi.edu

Keith Billings
Informix Corporation

kgb@informix.com

Yubo Fan
ABC Technologies, Inc

yubof@abctech.com

Kavita Hatwal
Portland State University

kavitah@cs.pdx.edu

Quan Wang
Oracle Corporation

Quan.wang@oracle.com

Yu Zhang
IBM

jennyz@us.ibm.com

Hsiao-min Wu
Systematic Designs, Inc.

hswu@cs.pdx.edu

Bennet Vance

* Supported by NSF IRI-9119446, IRI-9610013, DARPA (BAAB07-91-C-Q513) subcontract from Oregon Graduate Institute to Portland State
University.

** Supported by NSF IRI-9509955, IRI-9619977, DARPA (BAAB07-91-C-Q513)

Abstract

System R’s bottom-up query optimizer architecture
forms the basis of most current commercial database
managers. This paper compares the performance of top-
down and bottom-up optimizers, using the measure of the
number of plans generated during optimization. Top
down optimizers are superior according to this measure
because they can use upper and lower bounds to avoid
generating groups of plans. Early during the optimization
of a query, a top-down optimizer can derive upper bounds
for the costs of the plans it generates. These bounds are
not available to typical bottom-up optimizers since such
optimizers generate and cost all subplans before
considering larger containing plans. These upper bounds
can be combined with lower bounds, based solely on
logical properties of groups of logically equivalent
subqueries, to eliminate entire groups of plans from
consideration. We have implemented such a search
strategy, in a top-down optimizer called Columbia. Our
performance results show that the use of these bounds is
quite effective, while preserving the optimality of the
resulting plans. In many circumstances this new search
strategy is even more effective than heuristics such as
considering only left deep plans.

1. Introduction

The first generation of commercial query optimizers
consisted of variations on System R’s dynamic
programming, bottom-up approach [SAC+79]. This
generation had limited extensibility. For example, adding
a new operator, such as aggregation, required myriad
changes to the optimizer. Approximately ten years ago,
researchers proposed two ways to build extensible
optimizers. Lohman [Loh88] proposed using rules to
generate plans in a bottom-up optimizer; Graefe and
DeWitt [GrD87] proposed using transforms (the top-
down version of rules) to generate new plans using a top-
down approach. Lohman’s generative rules were
implemented in Starburst[HCL90]. Several Starburst
projects have demonstrated Starburst’s extensibility, from
incremental joins [CSL90] to distributed heterogeneous
databases [HKW97]. Since there is a huge commercial
investment in engineering bottom-up optimizers like
Starburst, there seems to be little motivation for
investigating top-down optimizers further. It is the
purpose of this paper to demonstrate a significant benefit
of top-down optimizers, namely their performance, as
measured by the number of plans generated during
optimization.

Early during the optimization of a query, a top-down
optimizer can derive upper bounds for the costs of the
plans it generates. For example, if the optimizer
determines that a single plan for executing A ⋈ B ⋈ C
has cost 7, then any subplan that can participate in an
optimal plan for the execution of A ⋈ B ⋈ C will cost at
most 7. If the optimizer can infer a lower bound greater
than 7 for a group of plans, which are about to be
generated, then the plans need not be generated – the
optimizer knows that they cannot participate in an optimal
solution. For example, suppose the optimizer determines
that A ⋈ C, a Cartesian product, is extremely large, and
the cost of just passing this huge output to the next
operator is 8. Then it is unnecessary to generate any of
the plans for executing A ⋈ C – such plans could never
participate in an optimal solution. Such upper bounds are
not available to typical bottom-up optimizers since such
bottom-up optimizers generate and cost all subplans
before considering larger containing plans.

As we have illustrated, top-down optimizers can use
upper and lower bounds to avoid generating entire groups
of plans, which the bottom-up strategy would have
produced. We have implemented, in an optimizer we call
Columbia, a search strategy that uses this technique to
decrease significantly the number of plans generated,
especially for acyclic connected queries.

In Section 2 we survey related work. Section 3
describes the optimization models we will use. Section 4
describes the core search strategy of Cascades, the
predecessor of Columbia. Section 5 describes
Columbia’s search strategy and our analysis of cases in
which this strategy will most likely lead to a significant
decrease in the number of plans generated. Section 6
describes our experimental results, and Section 7 is our
conclusion.

2. Previous work

Figure 1 outlines the System R, bottom-up, search

strategy for finding an optimal plan for the join of N
tables.

This dynamic programming search strategy generates
O (3N) distinct plans [OnL90]. Because of this

exponential growth rate, bottom-up commercial
optimizers use heuristics such as postponing Cartesian
products or allowing only left-deep trees, or both, when
optimizing large queries [GLS93].

Vance and Maier [VaM96] show that bottom-up
optimization can be effective for up to 20 relations
without heuristics. Their approach is quite different from
ours. Instead of minimizing the number of plans
generated, as we do, Vance and Maier develop specialized
data structures and search strategies that allow the
optimizer to process plans much more quickly. In their
model, plan cost computation is the primary factor in
optimization time. In our model, plan creation is the
primary factor. Their approach is also somewhat
different from Starburst's in that their outer loop (line (1)
of Figure 1) is driven by carefully chosen subsets of
relations, not by the size of the subsets. Vance and
Maier's technique of plan-cost thresholds is similar to
ours in that they use a fixed upper bound on plan costs, to
prune plans. They choose this threshold using some
heuristics and if it is not effective, they reoptimize. Our
upper bounds are based on previously constructed plans
rather than externally determined thresholds.
Furthermore, our upper bounds can differ for each
subplan being optimized.

Top-down optimization began with the Exodus
optimizer generator [GrD87], whose primary purpose was
to demonstrate extensibility. Graefe and collaborators
subsequently developed Volcano [GrM93] with the
primary goal of improving efficiency with memoization.
Volcano’s efficiency was hampered by its search strategy,
which generated all logical expressions before generating
any physical expressions. This ordering meant that
Volcano generated O (3N) expressions, like Starburst.

Recently, a new generation of query optimizers has
emerged that uses object-oriented programming
techniques to greatly simplify the task of constructing or
extending an optimizer, while maintaining efficiency and
making search strategies even more flexible. Examples of

this third generation of optimizers are the OPT++ system
from Wisconsin [KaD96] and Graefe’s Cascades system
[Gra95].

(1) For i = 1, …, N
(2) For each set S containing exactly i of the N tables
(3a) Generate all appropriate plans for joining the tables in S,
(3b) considering only plans with optimal inputs, and
(3c) retaining the optimal generated plan for each set of interesting physical properties.

Figure 1: System R's Bottom-up Search Strategy for a Join of N Tables

OPT++ compared the performance of top-down and
bottom-up optimizers. But it used Volcano’s O(3N)
generation strategy for the top-down case, which yielded
poor performance in OPT++ benchmarks. Cascades was
developed to demonstrate both the extensibility of the
object-oriented approach and the performance of top-
down optimizers. It proposed numerous performance
improvements, mostly based on more flexible control
over the search process, but few of these were
implemented. We have implemented a top-down
optimizer, Columbia, which includes a particular
optimizer implementation of the Cascades framework.
This optimizer supports the optimization of relational
queries, such those of TPC-D, and includes such
transforms as aggregate pushdowns and bit joins [Bil97].
Columbia also includes the performance-oriented
techniques described here.

Three groups have produced hybrid optimizers with
the goal of achieving the efficiency of bottom-up
optimizers and the extensibility of top-down optimizers.
The EROC system developed at Bell Labs and NCR
[MBH96] combines top-down and bottom-up approaches.
Region based optimizers developed at METU [ONK95]
and at Brown University [MDZ93] use different
optimization techniques for different phases of

optimization in order to achieve increased efficiency.
Commercial systems from Microsoft [Gra96] and

Tandem [Cel96] are based on Cascades. They include
techniques similar to those we present here, but to our
knowledge these are the first analyses and testing of those
techniques.

3. Optimization fundamentals

3.1 Operators
In this study we will consider only join operators and

file retrieval operators, for two reasons. First, it is

possible to describe the Columbia search strategy with
just these operators. Second, the classic performance
study by Ono and Lohman [OnL90] uses only these
operators, and we will use the methodology of that study
to compare the performance of top-down and bottom-up
optimizers.

A logical operator is a function from the operator’s
inputs to its outputs. A physical operator is an algorithm
mapping inputs to outputs.

The logical equijoin operator is denoted ⋈ .. . It maps its
two input streams into their join. In this study we
consider two physical join operators, namely sort-merge
join, denoted ⋈ M , and nested-loops join, denoted ⋈ N. For
simplicity we will not display join conditions [Ram00] .

We denote the logical file retrieval operator by
GET(A), where A is the scanned table. The file A is
actually a parameter of the operator, which has no input.
Its output is the tuples of A. GET(A) has two
implementations, or physical operators, namely
FILE_SCAN(A) and INDEX_SCAN(A). For simplicity
we will not specify the index used in the index scan.

Physical properties, such as being sorted or being
compressed, play an important part in optimization. For
example, a sort-merge join requires that its inputs be
sorted on the joining attributes.

An operator expression is a tree of operators in which
the children of an operator produce the operator’s inputs;
Figure 2 displays two operator expressions. An
expression is logical or physical if its top operator is
logical or physical, respectively. A plan is an expression
made up entirely of physical operators. An example plan
is Figure 2 (ii). We say that two operator expressions are
logically equivalent if they produce identical results over
any legal database state.

3.2 Optimization, multiexpressions, and groups
A query optimizer’s input is an expression consisting

entirely of logical operators, e.g., Figure 2(i) and,

 ⋈ ⋈N

 ⋈ GET(C) ⋈M FILE_SCAN(B)

 GET(A) GET(B) INDEX_SCAN(C) FILE_SCAN(A)

 (i) (ii)

Figure 2: Two logically equivalent operator expressions

optionally, a set of requested physical properties on its
output. The optimizer's goal is to produce an optimal
plan, which might be Figure 2 (ii). An optimal plan is
one that has the requested physical property, is logically
equivalent to the original query, and is least costly among
all such plans. (Cost is calculated by a cost model which
we shall assume to be given.) Optimality is relative to
that cost model.

The search space of possible plans is huge, and naïve
enumeration is not likely to be successful for any but the
simplest queries. Bottom-up optimizers use dynamic
programming [Bel75], and top-down optimizers since
Volcano use a variant of dynamic programming called
memoization [Mic68, RuN95], to find an optimal plan.
Both dynamic programming and memoization achieve
efficiency by using the principle of optimality: every

subplan of an optimal plan is itself optimal (for the
requested physical properties). The power of this
principle is that it allows an optimizer to restrict the
search space to a much smaller set of expressions: we
need never consider a plan containing a subplan p1 with
greater cost than an equivalent plan p2 having the same
physical properties. Figure 1, line (3c) is where a bottom-
up optimizer exploits the principle of optimality.

The principle of optimality allows bottom-up
optimizers to succeed while testing fewer alternative
plans. Top-down optimization uses an equivalent
technique, namely a compact representation of the search
space. Beginning with Volcano, the search space in top-
down optimizers has been referred to as a
MEMO[McK93]. A MEMO consists primarily of two
mutually recursive data structures, which we call groups
and multiexpressions. A group is an equivalence class of
expressions producing the same output. Figure 3 shows
the group representing all expressions producing the
output A⋈B. 1 In order to keep the search space small, a
group does not explicitly contain all the expressions it
represents. Rather, it represents all those expressions
implicitly through multiexpressions: A multiexpression is
an operator having groups as inputs. Thus all expressions

1 The costs in Figures 3 and 6 are from an arbitrary example, chosen just
to illustrate the search strategies.

with the same top operator, and the same inputs to that
operator, are represented by a single multiexpression. In
Figure 3, the multiexpression [B]⋈N[A] represents all
expressions whose top operator is a nested loops join ⋈N
and whose left input produces the tuples of B and whose
right input produces the tuples of A.

In general, if S is a subset of the tables being joined in
the original query, we denote by [S] the group of
multiexpressions that produces the join of the tables in S.

A logical (physical, respectively) multiexpression is
one whose top operator is logical (physical). During query
optimization, the query optimizer generates groups and
for each group it finds the cheapest plans in the group
satisfying the requested physical properties. It stores
these cheapest plans, which we call winners, along with
their costs and the requested properties, in the group, in a

structure we call the winner’s circle. The process of
generating winners for requested physical properties is
called optimizing the group. Figure 5 contains several
groups (at an early stage in their optimization, before any
winners have been found). The multiexpression [AB] ⋈
[C] in Figure 5 represents (among others) the expression in
Figure 2(i).

3.3 Bottom-up Optimizers: group contents and
enumeration order

Bottom-up optimizers generate structures analogous to
multiexpressions [Loh88]. There, the inputs are pointers
to optimal plans for the properties sought. We will also
use the term multiexpression, and notation like [A]⋈[B],
to denote the structures used in bottom-up optimization in
which [A] and [B] are pointers to optimal plans for
producing the tuples of A and B. The crucial difference
between top-down and bottom-up optimizers is the order
in which multiexpressions are enumerated: A bottom-up
optimizer enumerates such multiexpressions from one
group at a time, in the order of the number of tables in the
group, as in Figure 1, lines (3a-c). If a bottom-up
optimizer is optimizing the join of tables A, B and C, it
will optimize groups in this order:

[A], [B], [C]; [AB], [AC], [BC]; [ABC]

Multiexpressions: [A]⋈ [B], [A]⋈N [B], [A]⋈M [B], [B]⋈ [A], [B]⋈N [A], [B]⋈M [A]
Winner’s Circle:

The optimal plan, when no property is required, is [A]⋈N [B], and its estimated cost is 127.
There are no other winners at this time.

Figure 3: An example group [AB]

where the semicolons denote iterations of Figure 1, line
(1). Between the semicolons, the order is controlled by
line (2) and depends on the generation rules used in line
(2). Note that before a single multiexpression in [ABC] is
generated, all the subqueries (such as [AC]) are
completely optimized, i.e. all optimal plans for all
physical properties that are anticipated to be useful are
found. Thus there is no chance to avoid generating any
multiexpressions in groups such as [AC] on the basis of
information gleaned from [ABC]. We will see that top-
down optimizers optimize groups in a different order and
may be able to use information from the optimization of
[ABC] to avoid optimizing some groups such as [AC].

4. Cascades’ search strategy

Figure 4 displays a simplified version of the function
OptimizeGroup() that is at the core of Cascades’ search
strategy. The goal of OptimizeGroup() is to optimize
the group in question, by searching for an optimal
physical multiexpression in Grp with the requested
properties Prop and having cost less than UB.

It is nontrivial to define the cost of a multiexpression.
A multiexpression’s root operator has a cost, but its inputs
are groups, not expressions, and it is not clear how to
calculate the cost of a group. We will see that the
Cascades search strategy searches for winners – optimal
solutions – by recursively searching input groups for
winners. The cost of a multiexpression is thus calculated
recursively, by summing the costs of the root operators of
each of the winners from each of the recursive calls at line
(5) of the search strategy. Let us examine the search
strategy in more detail.

Line (1) checks the winner’s circle, where winners
from previous OptimizeGroup() calls have been stored.

If there is no acceptable winner in the winner’s circle,
then the eventual solution WinnerSoFar is initialized and
line (2) uses transforms to generate all candidate logically
equivalent physical multiexpressions, corresponding to all
plans generated at line (3a) of Figure 1. Line (3) calculates
a lower bound LB for the cost of the multiexpression. So
far LB includes only the cost of the root operator. At line
(8) it will be incremented by the cost of each optimal
input.

// OptimizeGroup() returns the cheapest physical multiexpression in Grp,
// with property Prop, and with cost less than the upper bound UB.
// It returns NULL if there is no such multiexpression.
// It also stores the returned multiexpression in Grp’s winner’s circle.

Multiexpression* OptimizeGroup(Group Grp, Properties Prop, Real UB)
{
 // Does the winner’s circle contain an acceptable solution?
(1) If there is a winner in the winner’s circle of Grp, for Properties Prop {
 If the cost of the winner is less than UB, return the winner
 else return NULL
 }

 // The winner’s circle does not hold an acceptable solution, so enumerate
 // multiexpressions in Grp, using transforms, and compute their costs.
 WinnerSoFar = NULL
(2) For each enumerated physical multiexpression, denoted MExpr {
(3) LB = cost of root operator of MExpr
(4) If UB <= LB then go to (2)
(5) For each input of MExpr {
 input-group = group of current input
 input-prop = properties necessary to produce Prop from current input
(6) InputWinner = OptimizeGroup(input-group, input-prop, UB - LB)
(7) If InputWinner is NULL then go to (2)
(8) LB += cost of InputWinner
 }
(9) Use the cost of MExpr to update WinnerSoFar and UB
 }
(10) Place WinnerSoFar in the winner’s circle of Grp, for Property Prop
 Return WinnerSoFar
}

Figure 4: The core of Cascades’ search strategy, OptimizeGroup()

Line (6) recursively seeks a winner for each input of
the candidate multiexpression. This recursive call uses as
its upper bound, UB - LB, because some of the allowed
cost has been used up by the cost of the root operator of
the parent multiexpression, at line (3), and some by the
cost of previous input winners, at line (8). For example,
if OptimizeGroup() is seeking a multiexpression with a
cost at most UB=53, and the optimizer is considering a
candidate multiexpression whose root operator costs 13,
then the first input must cost at most 40 to be acceptable.
If the winner for the first input costs 15, then the next
input can cost at most 53-28 = 25, etc.

The loop at line (5) is trying to construct acceptable
inputs for the multiexpression chosen at line (2). Because
the typical database operator has from 0 to 2 inputs, it
typically executes at most twice. The loop can exit in two
ways. First, it can exit from (4) with failure because the

root operator alone costs more than the upper bound, or it
can exit from (7) with failure because no acceptable
winner could be found for that input (because of the
bound or because of the property). Note that in this case,
line (6) will not be invoked for subsequent inputs, so the
groups for subsequent inputs will not be optimized. It is
possible that these groups are never optimized, so none of
the multiexpressions in the group will be generated. We
call this group pruning and discuss it in Section 5 below.

Second, the loop at line (5) can exit with success, with
control passing to line (9) where the resulting
multiexpression is compared with WinnerSoFar. If the
multiexpression has a lower cost it replaces WinnerSoFar,
and the upper bound UB is set equal to the lower cost of
the newly found multiexpression. This continual adjusting
of upper bounds is essential to the success of our
approach.

How does Cascades use OptimizeGroup()? Cascades
begins the optimization of a query by calling a function
CopyIn() to create a separate group for each
subexpression of the original input query, including
leaves (see Figure 5). Then it calls OptimizeGroup(),
using as parameters the top group, whatever output
properties are requested by the original query, and an
infinite limit. When OptimizeGroup() returns, it will
return the output of the query optimization, or NULL if

there is no plan that is logically equivalent to the input
query and that satisfies the requested properties. Since
OptimizeGroup() returns only a multiexpression and not
an actual expression, another search is necessary, using a
function CopyOut() to retrieve winners from the winner’s
circles of input groups recursively, to construct the actual
optimal expression from the returned multiexpression.
(In fact, OptimizeGroup() only needs to know about the
success of the recursive call in line (6), and the cost of
InputWinner, so in the actual implementation we only
return the cost.)

In contrast to Figure 1, Figure 4 is a top-down search
strategy. It begins with the input query and, at Figure 4
line (6), proceeds top-down, using recursion on the inputs
of the current multiexpression MExpr. However, plan
costing actually proceeds bottom-up, based on the order
of the returns from the top-down recursive calls.

4.1 An example of the Cascades search strategy
We illustrate Cascades' search strategy with an

example. Suppose the initial query is (A⋈B)⋈C, as in
Figure 2 (i). We assume that the nontrivial join
conditions are between A and B, and between B and C.
(This condition is used only to infer, as described in
Section 5.1, that A ⋈ C is a Cartesian product.)

Cascades' search strategy will use CopyIn() to
initialize the search space with the groups and
multiexpressions illustrated in Figure 5.

After initialization, OptimizeGroup() will be called on
the group [ABC], with no required property and an
infinite upper bound. Suppose the first physical
multiexpression enumerated at Figure 4, line (2), is [AB]
⋈N [C]. The first recursive call from the [ABC] level, at
Figure 4 line (6), will seek an optimal multiexpression
(with no required properties) within the input group [AB].
This call will lead to one or more visits to the group [A],
seeking optimal multiexpression(s) in A, and similarly for
[B]. After these calls return to the [ABC] level, [AB]
might look like Figure 3. The second recursive call from
[ABC] for [AB] ⋈N [C] ,at line (6), will seek an optimal
multiexpression for the second input [C], again with no
required properties.

 Group [ABC] Group [AB] Group [A] Group [B] Group [C]

 [AB] ⋈ [C] [A]⋈ [B] GET(A) GET(B) GET(C)

Figure 5: Cascades search space (MEMO), after initialization

After the second call returns, we can calculate a cost
for the multiexpression [AB] ⋈N [C]. At this point the
resulting groups might look like Figure 6. Further along
[AB] ⋈M [C] will be considered, which will result in
[AB] being revisited seeking different physical properties
(namely a sort order). Logical transforms will produce
[A] ⋈ [BC] at some point, which entails the creation and

intialization of the new group [BC]. (If we were working
with more complex queries, such as ones with
aggregation, there would be more groups than just one for
each subset of relations.) Eventually group [ABC] will
contain multiexpressions for all equivalent plans that can
be generated by the optimizer’s transformatons.

4.2 Memoization vs. dynamic programming
A bottom-up optimizer visits each group exactly once,

and during that visit it determines all the optimal plans in
the group, for all physical properties anticipated to be
useful. As our previous example illustrates, a top-down
optimizer such as Cascades visits any group, call it G,
zero or more times, once for each call to OptimizeGroup(
G, …). During each call to OptimizeGroup(), the
optimizer considers several multiexpressions and chooses
one (perhaps the NULL multiexpression, indicating that
no acceptable plan is available) as optimal for the desired
property. Any new optimal multiexpression is stored at
Figure 4 line (10). This storing of optimal
multiexpressions is the original definition of memoization
[Mic68, RuN95]: a function that stores its returned values
from different inputs, to use in future invocations of the
function. Note that for memoization to work in this case,
we need only retain the multiexpression representing the
best plan for the given physical properties in a group.
However, in Columbia we choose to retain other
multiexpressions, as shown in Figure 3. There are two

reasons for retaining non-optimal multiexpressions. One
is that transforms might construct the same
multiexpression in two different ways, and we want to
know that a given multiexpression has already been
considered. This is a minor issue since the unique rule
sets of Pellenkoft et al [PGK97] minimize this duplication
of expressions. The other reason is that a retained

multiexpression might turn out to be the best
multiexpression for a different set of physical properties
in a later call to the group. We could eliminate all non-
optimal multiexpressions in a group once we know the
group will never be revisited, but that termination
condition is hard to determine in practice.

5. Group pruning in Columbia

We say that a group G is pruned if, during
optimization, the group is never optimized, i.e., if no
multiexpressions in it are generated during the
optimization process2. A pruned group will thus contain
only one multiexpression, namely the multiexpression
that was used to initialize it. Group pruning can be very
effective: A group representing the join of i tables
contains O (2i) logical multiexpressions3, each of which
gives rise to one or more physical multiexpressions, all of
which are avoided by group pruning.

In this section we will describe how Columbia
increases the likelihood of achieving group pruning over
Cascades, through the use of an improved search strategy

2 Note that pruning is a passive activity – we don’t actually remove the
group at any point; rather, at the end of optimization, we find that the
group has never been optimized.
3 There are 2i -2 such expressions because each nontrivial subset of the
set of i tables corresponds to a different join, between the subset and its
complement, excluding the entire set and the empty set.

 Group [ABC] Group [AB] Group [A]

 Group [B] Group [C]

[AB] ⋈ [C] , [AB] ⋈N [C]
Cheapest Plan so far: [AB] ⋈N [C]. Cost 442

See
Figure 3

GET(C), FILE_SCAN(C)

Optimal: FILE_SCAN(C). Cost 23

GET(A), FILE_SCAN(A)

Optimal: FILE_SCAN(A). Cost 79

GET(B), FILE_SCAN(B)

Optimal: FILE_SCAN(B). Cost 43

Figure 6: Cascades search space, after calculating the cost of [AB] ⋈⋈⋈⋈N [C]

for optimization. Note that some group pruning could
happen in Cascades, as OptimizeGroup() is not called on
the second input group of MExpr when the search of the
first group fails to result in a multiexpression under the
limit.

We emphasize that an optimizer that does group
pruning still produces optimal plans, since it will only
prune plans that cannot participate in an optimal plan. We
call such a pruning technique safe, in contrast to heuristic
techniques that can return a non-optimal plan.

5.1 Computing lower bounds aggressively to
increase the frequency of group pruning

In Section 4 we have noted that the Cascades search
strategy can lead to group pruning, when the loop of
Figure 4 line (5) exits at line (7) and subsequent inputs are
not optimized. In this subsection we will demonstrate a
more aggressive approach: We will compute a lower
bound for the multiexpression under consideration by
looking ahead at inputs that are already optimized, and
using logical properties for other inputs. This lower
bound will force an earlier exit of the loop of Figure 4 line
(5) and thus force more frequent group pruning. Figure 7
is a change to Figure 4 that implements this strategy.

We will first motivate and explain Figure 7, then
continue with the example of Figure 6. The goal of the
improvement described in Figure 7 is to avoid optimizing
input groups, that is, avoid calling OptimizeGroup() at
line (6), by adding together, in lines (3a-c), all input costs
that can be deduced without optimizing any input groups.
If the sum of these input costs exceeds UB, then
OptimizeGroup() need not be called. The lower bound
has three components. The first, line (3a) is identical to
line (3). Next, line (3b) can be deduced by looking at the
winner’s circles of all input groups, without optimizing
any of those groups. For input groups which have not
been covered in line (3b), i.e. those which do not have
winners, we can estimate a lower bound on the cost of
any winner by first estimating the size of the output of the
group (the output size is a logical property so it is the

same for any multiexpression in the group). Once the
output size estimate is known, the cost model yields an
estimated cost for copying the output (whether it is
pointers or records) to the next operator. This value is the
copying-out cost in line (3c).

If the loop exits at line (4), we have avoided calling
OptimizeGroup() on any input groups and they may
never be optimized, i.e., they might be pruned. If the loop
continues, control passes to line (5a), which then loops
over all input groups whose winners were not found in
line (3b). Line (8a) includes the new term “minus
copying-out cost” because that cost was included at line
(3c) previously and has now been replaced by the entire
cost of the winner for this input, which includes the
copying-out cost.

Next we will continue with the example of Section 4.1,
which we left at Figure 6, where the cheapest plan so far
has a cost of 442. Thus 442 is an upper bound on the cost
of the optimal plan in group [ABC]. At this point, the
multiexpression [AB] ⋈ [C] will be transformed, at line
(2) of Figure 4, to yield the merge-join [AB] ⋈M [C].
Then OptimizeGroup() will be called on the input groups
[AB] and [C], but this time with sort properties. We will
skip these steps, assuming that the sort-merge join costs

more than 442. Next, the logical transform rule of
associativity will be applied to [AB] ⋈ [C], resulting in
the addition of both multiexpressions [A] ⋈ [BC] and
[B] ⋈ [AC] to the group [ABC]. (Two multiexpressions
are produced because the group [AB] contains both [A]
⋈ [B] and [B] ⋈ [A].) Eventually, [B] ⋈ [AC] will be
transformed to [B] ⋈N [AC] at line (2). Assume the root
operator, nested-loops join, costs 200 at line (3a); the
winner for [B] costs 43 at line (3b). We have 442-
243=199 remaining cost to work with. Since the group
[AC] has not yet been optimized, there is no winner for
the input [AC]. The join AC is a Cartesian product so its
cardinality is huge. Therefore the cost of copying-out any
plan in the group [AC] will be large, say 1000, greater
than the remaining cost of 199. Thus the loop of line (2)
will exit with failure at line (4) and the group [AC] will

(3a) LB = Cost of root operator of Mexpr +
(3b) Cost of inputs that have winners for the required properties +
(3c) Cost of copying-out other inputs

(5a) For each input of MExpr without a winner for the required properties

(8a) LB = LB + cost of InputWinner – copying-out cost for input

Figure 7: Improvement to the Cascades search strategy.
Replacements for lines (3),(5) and (8) of Figure 4

not have been optimized. If similar upper and lower
bounds are available whenever [AC] appears in the
optimization, then [AC] will never be optimized and none
of the multiexpressions in [AC], except the one needed to
populate it initially, will be constructed.

5.2 Comparison with AI search strategies
The search strategy of Figures 4 and 7 is similar to AI

search strategies, especially A* [RuN95]. Both search
strategies use estimated costs together with precise costs.
However, there are several differences. A* works with
partial solutions and partial costs, plus an estimate of the
remaining cost; group pruning compares the cost of one
complete solution (UB) to a lower bound of the cost of a
set of solutions. The purpose of A* is to choose which
subplans to expand next, whereas the purpose of group
pruning is to avoid expanding a set of subplans.

5.3 Left-deep inputs simplify optimization
In this subsection we prove a lemma which is

important in its own right and which we will use in the
next subsection.

Pellenkoft et al. [PGK97] show that, for the join
queries we are studying, four transforms, along with
conditions for their application, can generate uniquely all
logical multiexpressions in any group. The following
lemma shows that when the input operator tree is a left-
deep tree, just two of these four transforms will suffice.
This lemma is useful because any operator tree containing
only join and file retrieval operators is logically
equivalent to a left-deep tree. Thus one can simplify such
a query’s optimization by beginning with a left-deep tree.

Lemma 1: Let Q be a left-deep operator tree, as in Figure
2(i). Apply the search strategy described in Section 4
with Q as input query. Use only the two logical
transforms:

Left-to-Right Associativity and Commutativity.

and the conditions described by Pellenkoft et al. in
[PGK97] for them, namely: During optimization of each
group, order transforms as follows: apply associativity
once to the first multiexpression in a group, then apply
commutativity once to all the resulting logical
multiexpressions in the group. Then

(1) Each group which has been optimized will contain

all possible equivalent logical multiexpressions;
(2) If a group in MEMO contains more than one table,

then the second input of its first multiexpression
will be a single-table group;

(3) Only the associative transform will produce new
groups.

Proof: Condition (3) is trivially satisfied since
commutativity cannot produce new groups. Thus we
prove only conditions (1) and (2).

Let the top group of the MEMO space, representing Q,
be [A1, …, Ak]. Since Q is a left-deep tree, the first
multiexpression in [A1, …, Ak] is (perhaps with

renumbering) [A1, …, Ak-1] ⋈ [Ak].
The proof proceeds by induction on k. The induction

hypothesis is that conditions (1) and (2) hold for groups
containing tables from the set {A1, …, Aj}. The basis
step, j=1, is trivially satisfied by single table groups. We
assume the inductive hypothesis for j = k-1 and prove it
for j = k.

We first prove condition (1) for the top group [A1, …,
Ak]. There are 2k – 2 logically equivalent
multiexpressions in any group with k tables (see footnote
3) . Now count the multiexpressions generated by the
two transforms when they are applied to the first
multiexpression in the group, namely [A1, …, Ak-1] ⋈
[Ak]: 2k-1 – 2 multiexpressions are generated by
associativity, one for each nontrivial subset of {A1, …,
Ak-1}. Commutativity adds a mirror image to each of
these and to the original multiexpression [A1, …, Ak-1] ⋈

 ⋈ ⋈

 ⋈ [Ak] [S] ⋈

 [S] [T] [T] [Ak]

Figure 8: Associativity applied to a left-deep multiexpression

[Ak], for a total of 2(2k-1 – 2) + 2 = 2k – 2 distinct
multiexpressions, proving condition (1). Since condition
(2) is clear for the top group, we have proved the
inductive step for the top group.

It remains to prove conditions (1) and (2) for any
group generated from the further optimization of the top
group, i.e., any group containing Ak. Since the
commutative transform does not generate new groups,
each new group is generated as a result of the
associativity transform applied to the first multiexpression
[A1, …, Ak-1] ⋈ [Ak] in the top group. Any application
of associativity will be of the form pictured in Figure 8,
where S and T form a nontrivial partition of {A1, …, Ak-

1}. The right multiexpression in Figure 8 has two input
groups, namely [S] and [TAk]. [S] is already in the search
space by induction, but [TAk] is new. Its first
multiexpression is given by the right input of the new
multiexpression above, namely [T] ⋈ [Ak], which
satisfies condition (2). Since a counting argument similar
to the one used above can verify condition (1) for this
case, Lemma 1 is proved.

Lemma 1 says that we can arrange optimization so that
the first multiexpression of each group has one table as
the right input, but the left input may be a Cartesian
product and therefore very expensive, giving us a high
upper bound when we compute the cost of a physical
multiexpression based on this logical multiexpression.
The next subsection deals with this problem.

5.4 Obtaining cheap plans quickly
Group pruning will be most effective when cheap

plans are obtained early in the optimization process, since
the UB at line (4) of Figure 4 represents the cost of the
cheapest plan seen so far. For example, if the original
operator tree in the example of Section 4.1 had been
(AC)B, i.e., included a Cartesian product, then the group
[AC] would have been optimized and not pruned. We
want to avoid such situations.

In many, but not all, situations, Cartesian product joins
are the most expensive joins considered during
optimization. There are exceptions to this
heuristic[ONL90] – today we would call those exceptions
star schemas [MMS98].

As usual, a connected query is one whose join graph is
connected. We define a group to be connected if its
corresponding query is connected. If a group is not
connected, then any plan derived from the group will
include at least one Cartesian product. Thus, for a non-
connected group, there is typically little hope of obtaining
a cheap plan quickly – none of the plans in the group will
typically be cheap.

Therefore the best one can hope for during query
optimization is that when optimizing a connected group,

the first multiexpression in that group will contain a plan
that includes no Cartesian product. The next Theorem
shows that for a connected acyclic query this hope can
always be achieved.

Lemma 2: Let Q be a connected acyclic query. Then Q
is logically equivalent to a left-deep operator tree R such
that the left input of any subtree of R is connected.

Proof: Construct R by removing from the join graph of Q
one non-cut node at a time and adding the removed table
to R, along with whatever join conditions are inherited
from Q.

Theorem: Let Q be a connected acyclic query. Apply the
search strategy of Section 4, as described in Lemma 1, to
the left-deep tree given by Lemma 2. Then every
connected group in the resulting MEMO will begin with a
multiexpression containing a plan with no Cartesian
product.

Proof: By induction, we can assume the theorem true for
any connected acyclic query with k-1 tables or fewer.
Assume Q has k tables. By Lemma 1, only associativity
produces new groups, so we must show only that in
Figure 8, if the new group [TAk] has a connected join
graph then its first multiexpression [T] ⋈ [Ak] will have a
connected plan. First we will prove that [T] is connected.

 We observe that there is only one edge between Ak

and any table in S or T. If there were two such edges, the
connectedness of [ST] would yield a cycle in [STAk]. We
let B denote the other table in that edge. Since [TAk] is
connected, B must be in T. Since there is only one edge
between Ak and T, and [TAk] is connected, T must be
connected.

Since [T] is connected, it contains a connected plan.
Since [TAk] is connected and Ak is a single table, the join
of that plan with Ak is also connected. Thus we have
produced the desired plan.

We note that this theorem is not true for connected

cyclic queries. For example, let Q be the query with
tables A, B, C, D and edges between the pairs AB, BC,
CD, and DA. Suppose the first multiexpression in the top
group is [ABC] ⋈ [D]. Using the subset {A, C} to do
associativity yields the multiexpression [AC] ⋈[D],
which generates the connected group [ACD]. However,
[AC] ⋈[D] cannot have a connected plan since the input
[AC] is a Cartesian product.

The theorem gives us a prescription for optimizing any
connected acyclic query and guarantees that all connected
groups will begin with a multiexpression that is in some

sense cheap. Hopefully the other, nonconnected, groups
will be pruned by the optimization. We will test this
hypothesis in the next section.

This theorem gives us a second benefit, namely that
fewer transforms are needed to optimize the query, so
optimization should be more efficient.

6. Performance analyses

It is difficult to compare the performance of different
optimizers. Measures such as elapsed time or memory
usage are not comparable unless both optimizers are
implemented in the same environment. OPT++ [KaD96]
makes a significant contribution in this direction,
implementing several approaches within a single
framework, but OPT++ reports only the Volcano, and not
the Cascades or Columbia, search strategies. As we have
noted in Section 2, the Volcano search strategy does not
lend itself to pruning. Furthermore, it is not clear that the
structure of OPT++ is appropriate for the
multiexpressions used in top-down optimizers.

We use the measure of number of multiexpressions
generated in order to compare bottom-up optimizers, such
as Starburst, with Columbia. For example, in Figure 3,
six multiexpressions have been generated in the group
[AB]. This measure is clearly independent of platform.
While top-down optimizers need to check each newly
generated multiexpression to ensure that it is not already
in the MEMO, our experiments show that this is not a
major expense. Memory usage is another expense which
is more significant for top-down than bottom-up
optimizers, but we leave that analysis to future work.

Our goal in this section is to determine the
effectiveness of group pruning in minimizing the number
of multiexpressions generated during optimization. First
we will compare Columbia with group pruning to
Starburst, which considers all logically equivalent
multiexpressions for each group. As mentioned in Section
5, Columbia with group pruning produces optimal plans,
so its output will be the same as Starburst’s. Then we
compare Starburst using heuristics to Columbia.

The most significant factors affecting the number of
multiexpressions generated during a query’s optimization
are the query’s shape and the number of tables involved
[OnL90]. The extremes are given by chain (also called
linear) and star queries. Chain query optimization gives
rise to the greatest number of Cartesian products and star
queries the least, for a given number n of quantifiers
(tables represented by variables) and n-1 predicates.
Cartesian products affect complexity because they give
rise to pruning possibilities as we have seen previously,
and they are the core of Starburst’s most important
heuristic.

Our experiments use the nested-loops and sort-merge
operators described above. They also use the
methodology described by the theorem, namely
transforming each input query into a left-connected deep
tree before optimization begins. All Columbia data in our
graphs were derived from executions of the Columbia
optimizer. Starburst values were derived from the
formulas of Ono and Lohman [OnL90].

Our choice of queries and catalogs is influenced by

the work of Vance and Maier[VaM96]. Each of the
queries used in our experiments uses tables denoted T1,
…, Tn . The geometric mean of table cardinalities |Ti| will
be fixed at 4096. We have used other values with similar
results. In a given catalog, the ratios |Ti|/|Ti+1| are equal
for all i and the log2 of the ratio |T1|/|Tn| is called the
LOGRATIO. Thus if a catalog has 7 tables and a
LOGRATIO of 6 then the tables’ cardinalities are 215, 214,
…, 210, 29. The following results are sensitive to join
selectivities. Increasing join selectivity has the same
effect as decreasing the LOGRATIO.

The graphs involving Starburst are independent of
table cardinalities because whether a plan includes a
Cartesian product or is a bushy tree does not depend on
cardinalities. However, the graphs representing Columbia
do depend on table cardinalities since those cardinalities
contribute to the bounds used in pruning.

For chain queries, we assume each join of Ti with Ti+1
is a foreign key join, for which the join selectivity is
derived from |Ti ⋈ Ti+1| = |Ti|. For star queries, the
foreign key joins are of Ti with T1 for i = 2, …, n.

6.1 Effectiveness of group pruning
Figure 9 shows that Columbia’s group pruning can be

quite powerful. It also demonstrates the effect of query
shape and of table cardinalities. In this Figure, “Default”
is the number of multiexpressions generated by Columbia
with no group pruning or by Starburst using no heuristics.
The other quantities in Figure 9 represent group pruning
in Columbia of Star and Chain queries using tables whose
cardinalities vary by factors ranging from 1 to 224. The
savings in multiexpressions ranges from approximately
60% for star queries to 98% for chain queries. We note
that all these savings are accomplished while yielding
optimal solutions. The effect of table cardinalities is
minimal – the savings varies by only a few percent in
each case. In future examples we will use LOGRATIO =
12.

6.2 Group pruning compared with heuristics
Figure 10 compares the effectiveness of Columbia’s

group pruning with Starburst’s primary heuristics, using
the same 13 table example queries. The Default column
is as in Figure 9. The leftmost columns represent

Columbia’s group pruning strategy, yielding optimal
results. Starburst’s “postpone Cartesian products”
heuristic, which for connected queries amounts to no
Cartesian products, shown by the middle column for star

and chain queries, is very competitive. However, the
heuristic of considering only left deep plans is, for chain
queries, inferior to group pruning. Of course either of the
heuristics mentioned can be applied in top-down
optimizers such as Columbia.

6.3 Significance of number of tables
Figure 11 shows the variance in multiexpression

complexity as the number of tables varies. The relative

100

1000

10000

100000

1000000

10000000

Default Star Chain

M
ul

tie
xp

re
ss

io
ns

Group Pruning
No CP
Left Deep

Figure 10: Comparison of group pruning and heuristics

100

1000

10000

100000

1000000

10000000

Default Star Chain

M
ul

tie
xp

re
ss

io
ns

LOGRATIO=0
LOGRATIO=12
LOGRATIO=24

Figure 9: Effectiveness of group pruning. Example with 13 tables.

impact of the default case versus group pruning for star
and chain queries, and the effect of excluding Cartesian
products or of considering only left deep trees, is the same
regardless of how many tables are involved. Note that the
“left deep” column is identical for chain and star queries
since a query’s predicates do not affect whether or not a
plan for it is left deep.

7. Summary and future work

We have explained that top-down and bottom-up
optimizers use the principle of optimality to populate two
data structures (groups and multiexpressions) and pointed
out that a key difference is in the order of enumerating the
groups. We have described the search strategy of the
Cascades query optimizer and the improvements on that
search strategy that we have implemented in a query
optimizer called Columbia. Those improvements use
upper and lower bounds to implement group pruning, a
method for avoiding the generation and testing of
candidate multiexpressions that cannot participate in an
optimal solution. Such bounds are not available to
bottom-up optimizers such as Starburst. We have proven
that any connected acyclic query can be optimized in such
a way that cheap upper bounds are likely to be obtained
early in the optimization process.

We have described the performance characteristics of
Columbia compared to bottom-up optimizers such as
Starburst. We considered chain and star queries with
varying numbers of tables and varying cardinalities. For

our benchmarks, when both Columbia and Starburst are
required to produce optimal results, Columbia generates
between 60 and 98% fewer multiexpressions than
Starburst. Given that Starburst uses heuristics and risks
generating nonoptimal plans, we show that there are cases
in which Columbia can produce optimal results with
fewer multiexpressions than Starburst.

Our major conclusion is that, judging by the number of

multiexpressions generated, top-down optimizers have the
potential to outperform bottom-up optimizers.

 Our future work will focus on two areas. The first is
memory usage. Bottom-up optimizers have the advantage
of being able to discard non-winner multiexpressions at
each level when that level is completed. Top-down
optimizers normally retain all multiexpressions, both
because OptimizeGroup() may be called more than once
on the same group and because transforms such as
associativity may use a group multiple times. This
retention of multiexpressions leads to poor memory
usage. We plan to compare alternative solutions to this
problem, including the use of heuristics.

The second area we plan to pursue is more
foundational. Because of the complexity of top-down
optimization, several interesting questions remain to be
answered about it. For example, can one prove rigorously
that it yields the same plans as bottom-up optimization?
Optimization does not always terminate (e.g., if the
machine being modeled has an infinite number of
processors and plans with infinitesimally small costs), but
are there conditions on rule sets that guarantee

100

1000

10000

100000

1000000

10000000

4 5 6 7 8 9 10 11 12 13

M
ul

tie
xp

re
ss

io
ns

Default
Star
No CPs/Star
Left deep
Chain
No CPs/Chain

Figure 11: Effect of varying number of tables

termination? Is every rule set equivalent to a set of rules
of some simple form?

Acknowledgements
Goetz Graefe provided us with a copy of Cascades and

helped us to understand it. Bill McKenna, Cesar Galindo-
Legaria and Pedro Celis kindly shared with us many
facets of their work on commercial implementations of
top-down optimizers. Leonidas Fegaras helped with
several stimulating discussions during the early part of
this work.

References

[Bel75] R. E. Bellman, Dynamic Programming, Princeton
University Press, Princeton, New Jersey, 1975.

[Bil97] Keith Billings, A TPC-D Model for Database Query
Optimization in Cascades, M.S. Thesis, Portland State
University, Spring 1997.

[Cel96] P. Celis, The Query Optimizer in Tandem’s ServerWare
SQL Product, Proceedings of VLDB 1996, Pg. 592.

[CSL90] M. Carey, E. Shekita, G. Lapis, B. Lindsay and J.
McPherson, An Incremental Join Attachment for
Starburst, Proceedings of VLDB 1990, Pg. 662-673.

[GLS93] P. Gassner, G. M. Lohman and K. B. Schiefer, Query
Optimization in IBM's DB2 Family of DBMSs, IEEE
Data Engineering Bulletin, 16(4), December 1993, Pg. 4-
18.

[Gra95] G. Graefe, The Cascades Framework for Query
Optimization, Bulletin of the IEEE Technical Committee
on Data Engineering, 18(3), September 1995, Pg. 19-29.

[Gra96] G. Graefe, The Microsoft Relational Engine, Proc.
Data Engineering Conf. 1996, Pg. 160-161.

[GrD87] G. Graefe and D. J. DeWitt, The EXODUS Optimizer
Generator, Proc. SIGMOD 1987, Pg. 160-172.

[GrM93] G. Graefe and W. J. McKenna, The Volcano
Optimizer Generator: Extensibility and Efficient Search,
Proc. Data Engineering Conf. 1993, Pg. 209-218.

[HKW97] L. Haas, D. Kossman, E. Wimmers, J. Yang,
Optimizing Queries Across Diverse Data Sources, Proc.
VLDB 1997, Pg. 276-285.

[HCL90] L. Haas, W. Chang, G. Lohman et al., Starburst Mid-
Flight: as the Dust Clears, TKDE, 2(1), Pg. 143-160,
March 1990.

[KaD96] N. Kabra, D. DeWitt, OPT++ : an object-oriented
implementation for extensible database query
optimization, VLDB Journal: Very Large Data Bases,
8(1), pp. 55-78, May 1999

 [Loh88] G. Lohman, Grammar-like Functional Rules for
Representing Query Optimization Alternatives, Proc.
SIGMOD 1988, Pg. 18-27.

[MBH96] W. McKenna, L. Burger, C. Hoang and M. Truong,
EROC: A Toolkit for Building NEATO Query
Optimizers, Proc. VLDB 1996, Pg. 111-121.

[McK93] W. McKenna, Efficient Search in Extensible Database
Query Optimization: The Volcano Optimizer Generator.
PhD thesis, University of Colorado, Boulder, 1993.

[MDZ93] G. Mitchell, U. Dayal and S. B. Zdonik, Control of an
Extensible Query Optimizer: A Planning-Based Approach,
Proc. VLDB 1993, Pg. 517-528.

[Mic68] D. Michie, ’Memo’ Functions and Machine Learning,
Nature, No. 218, Pg. 19-22, April 1968.

[MMS98] D. Maier, M. Meredith and L. Shapiro, Selected
Research Issues in Decision Support Databases, Journal of
Intelligent Information Systems, 11, 169-191 (1998).

[ONK95] F. Ozcan, S. Nural, P. Koksal, M. Altinel, A. Dogac,
A Region Based Query Optimizer through Cascades
Optimizer Framework, Bulletin of the Technical
Committee on Data Engineering, Vol 18 No. 3, September
1995, Pg 30-40.

[OnL90] K. Ono and G. M. Lohman, Measuring the
Complexity of Join Enumeration in Query Optimization,
Proc. VLDB 1990, Pg. 314-325.

[PGK97] A. Pellenkoft, C. Galindo-Legaria, M. Kersten, The
Complexity of Transformation-Based Join Enumeration,
Proc. VLDB 1997, Pg. 306-315.

[Ram00] R. Ramakrishnan, J. Gehrke, Database Management
Systems, Second Edition, McGraw Hill, 2000

[RuN95] S. Russel, P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall Series in Artificial Intelligence,
1995.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie
and T. Price, Access Path Selection in a Relational
Database Management System, Proc. SIGMOD 1979, Pg.
22-34.

 [VaM96] B. Vance and D. Maier, Rapid Bushy Join-order
Optimization with Cartesian Products, Proc. SIGMOD
1996, Pg. 35-46.

