
SkinnerDB: Regret-BoundedQuery Evaluation
via Reinforcement Learning

Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan Jo,

Joseph Antonakakis

{itrummer,jw2544,sm2686,sjm352,sj683,jma353}@cornell.edu

Cornell University, Ithaca (NY)

ABSTRACT
SkinnerDB is designed from the ground up for reliable join

ordering. It maintains no data statistics and uses no cost or

cardinality models. Instead, it uses reinforcement learning to

learn optimal join orders on the fly, during the execution of

the current query. To that purpose, we divide the execution of

a query into many small time slices. Different join orders are

tried in different time slices. We merge result tuples gener-

ated according to different join orders until a complete result

is obtained. By measuring execution progress per time slice,

we identify promising join orders as execution proceeds.

Along with SkinnerDB, we introduce a new quality crite-

rion for query execution strategies. We compare expected

execution cost against execution cost for an optimal join

order. SkinnerDB features multiple execution strategies that

are optimized for that criterion. Some of them can be ex-

ecuted on top of existing database systems. For maximal

performance, we introduce a customized execution engine,

facilitating fast join order switching via specialized multi-

way join algorithms and tuple representations.

We experimentally compare SkinnerDB’s performance

against various baselines, including MonetDB, Postgres, and

adaptive processing methods. We consider various bench-

marks, including the join order benchmark and TPC-H vari-

ants with user-defined functions. Overall, the overheads of

reliable join ordering are negligible compared to the per-

formance impact of the occasional, catastrophic join order

choice.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3300088

ACM Reference Format:
Immanuel Trummer, JunxiongWang, DeepakMaram, Samuel Mose-

ley, Saehan Jo, JosephAntonakakis. 2019. SkinnerDB: Regret-Bounded

Query Evaluation via Reinforcement Learning. In 2019 International
Conference on Management of Data (SIGMOD ’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3299869.3300088

1 INTRODUCTION
“The consequences of an act affect the probability of its

occurring again.” — B.F. Skinner.

Estimating execution cost of plan candidates is perhaps

the primary challenge in query optimization [34]. Query

optimizers predict cost based on coarse-grained data statis-

tics and under simplifying assumptions (e.g., independent

predicates). If estimates are wrong, query optimizers may

pick plans whose execution cost is sub-optimal by orders of

magnitude. We present SkinnerDB, a novel database system

designed from the ground up for reliable query optimization.

SkinnerDB maintains no data statistics and uses no simpli-

fying cost and cardinality models. Instead, SkinnerDB learns

(near-)optimal left-deep query plans from scratch and on the

fly, i.e. during the execution of a given query. This distin-

guishes SkinnerDB from several other recent projects that

apply learning in the context of query optimization [31, 37]:

instead of learning from past query executions to optimize

the next query, we learn from the current query execution

to optimize the remaining execution of the current query.

Hence, SkinnerDB does not suffer from any kind of general-

ization error across queries (even seemingly small changes

to a query can change the optimal join order significantly).

SkinnerDB partitions the execution of a query into many,

very small time slices (e.g., tens of thousands of slices per sec-

ond). Execution proceeds according to different join orders

in different time slices. Result tuples produced in different

time slices are merged until a complete result is obtained.

After each time slice, execution progress is measured which

informs us on the quality of the current join order. At the

beginning of each time slice, we choose the join order that

currently seems most interesting. In that choice, we balance

the need for exploitation (i.e., trying join orders that worked

well in the past) and exploration (i.e., trying join orders about

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1153

https://doi.org/10.1145/3299869.3300088
https://doi.org/10.1145/3299869.3300088

Optimal

Near-Optimal

Expected

Near-Optimal

Complete Partial None

Traditional

Optimization

Robust

Optimization

Regret-Bounded

Evaluation

Plan Quality

A-priori Information

Figure 1: Tradeoffs between a-priori information and
guarantees on plan quality in query evaluation.

which little is known). We use the UCT algorithm [29] in

order to optimally balance between those two goals.

Along with SkinnerDB, we introduce a new quality crite-

rion for query evaluation methods. We measure the distance

(additive difference or ratio) between expected execution

time and execution time for an optimal join order. This crite-

rion is motivated by formal regret bounds provided by many

reinforcement learning methods. In the face of uncertainty,

based on minimal assumptions, they still bound the differ-

ence between expected and optimal average decision quality.

Traditional query optimization guarantee optimal plans, pro-

vided that complete information (e.g., on predicate selectivity

and predicate correlations) is a-priori available. We assume

that no a-priori information is available at the beginning of

query execution (see Figure 1, comparing different models in

terms of assumptions and guarantees). Our scenario matches

therefore the one considered in reinforcement learning. This

motivates us to apply a similar quality criterion. The adap-

tive processing strategies used in SkinnerDB are optimized

for that criterion.

SkinnerDB comes in multiple variants. Skinner-G sits on

top of a generic SQL processing engine. Using optimizer

hints (or equivalent mechanisms), we force the underlying

engine to execute specific join orders on data batches. We

use timeouts to limit the impact of bad join orders (which

can be significant, as intermediate results can be large even

for small base table batches). Of course, the optimal time-

out per batch is initially unknown. Hence, we iterate over

different timeouts, carefully balancing execution time dedi-

cated to different timeouts while learning optimal join orders.

Skinner-H is similar to Skinner-G in that it uses an existing

database management system as execution engine. However,

instead of learning new plans from scratch, it partitions ex-

ecution time between learned plans and plans proposed by

the original optimizer.

Both, Skinner-G and Skinner-H, rely on a generic execu-

tion engine. However, existing systems are not optimized

for switching between different join orders during execution

with a very high frequency. Skinner-C exploits a customized

execution engine that is tailored to the requirements of

regret-bounded query evaluation. It features amulti-way join

strategy that keeps intermediate results minimal, thereby

allowing quick suspend and resume for a given join order.

Further, it allows to share execution progress between dif-

ferent join orders and to measure progress per time slice at

a very fine granularity (which is important to quickly obtain

quality estimates for join orders).

In our formal analysis, we compare expected execution

time against execution time of an optimal join order for

all Skinner variants. For sufficiently large amounts of input

data to process and under moderately simplifying assump-

tions, we are able to derive upper bounds on the difference

between the two metrics. In particular for Skinner-C, the

ratio of expected to optimal execution time is for all queries

upper-bounded by a low-order polynomial in the query size.

Given misleading statistics or assumptions, traditional query

optimizers may select plans whose execution time is higher

than optimal by a factor that is exponential in the number

of tables joined. The same applies to adaptive processing

strategies [47] which, even if they converge to optimal join

orders over time, do not bound the overhead caused by single

tuples processed along bad join paths.

SkinnerDB pays for reliable join ordering with overheads

for learning and join order switching. In our experiments

with various baselines and benchmarks, we study under

which circumstances the benefits outweigh the drawbacks.

When considering accumulated execution time on difficult

benchmarks (e.g., the join order benchmark [25]), it turns out

that SkinnerDB can beat even highly performance-optimized

systems for analytical processing with a traditional optimizer.

While per-tuple processing overheads are significantly lower

for the latter, SkinnerDB minimizes the total number of tu-

ples processed via better join orders.

We summarize our original scientific contributions:

• We introduce a new quality criterion for query evalu-

ation strategies that compares expected and optimal

execution cost.

• Wepropose several adaptive execution strategies based

on reinforcement learning.

• We formally prove correctness and regret bounds for

those execution strategies.

• We experimentally compare those strategies, imple-

mented in SkinnerDB, against various baselines.

The remainder of this paper is organized as follows. We

discuss related work in Section 2. We describe the primary

components of SkinnerDB in Section 3. In Section 4, we

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1154

describe our query evaluation strategies based on reinforce-

ment learning. In Section 5, we analyze those strategies for-

mally, we prove correctness and performance properties.

Finally, in Section 6, we describe the implementation in Skin-

nerDB and compare our approaches experimentally against

a diverse set of baselines. The appendix contains additional

experimental results.

2 RELATEDWORK
Our approach connects to prior work collecting informa-

tion on predicate selectivity by evaluating them on data

samples [9, 10, 26–28, 33, 38, 50]. We compare in our ex-

periments against a recently proposed representative [50].

Most prior approaches rely on a traditional optimizer to

select interesting intermediate results to sample. They suf-

fer if the original optimizer generates bad plans. The same

applies to approaches for interleaved query execution and

optimization [1, 5, 7] that repair initial plans at run time if

cardinality estimates turn out to be wrong. Robust query

optimization [3, 4, 6, 13] assumes that predicate selectivity

is known within narrow intervals which is often not the

case [20]. Prior work [18, 19] on query optimization without

selectivity estimation is based on simplifying assumptions

(e.g., independent predicates) that are often violated.

Machine learning has been used to estimate cost for query

plans whose cardinality values are known [2, 32], to pre-

dict query [23] or workflow [41] execution times, result

cardinality [35, 36], or interference between query execu-

tions [17]. LEO [1, 45], IBM’s learning optimizer, leverages

past query executions to improve cardinality estimates for

similar queries. Ewen et al. [21] use a similar approach for fed-

erated database systems. Several recent approaches [31, 37]

use learning for join ordering. All of the aforementioned

approaches learn from past queries for the optimization of

future queries. To be effective, new queries must be similar

to prior queries and this similarity must be recognizable.

Instead, we learn during the execution of a query.

Adaptive processing strategies have been explored in prior

work [5, 14, 15, 43, 44, 47, 49]. Our work uses reinforcement

learning and is therefore most related to prior work using

reinforcement learning in the context of Eddies [47]. We com-

pare against this approach in our experiments. Eddies do not

provide formal guarantees on the relationship between ex-

pected execution time and the optimum. They never discard

intermediate results, even if joining them with the remain-

ing tables creates disproportional overheads. Eddies support

bushy query plans in contrast to our approach. Bushy plans

can in principle decrease execution cost compared to the best

left-deep plan. However, optimal left-deep plans typically

achieve reasonable performance [25]. Also, as we show in

our experiments, reliably identifying near-optimal left-deep

Query

Result

Pre-

Processor

Post-

Processor

Join Processor

Learning

Optimizer

Join

Executor

Progress

Tracker

Reward

Calculator

Figure 2: Primary components of SkinnerDB.

plans can be better than selecting bushy query plans via

non-robust optimization.

Our work relates to prior work on filter ordering with

regret bounds [11]. Join ordering introduces however new

challenges, compared to filter ordering. In particular, apply-

ing more filters can only decrease the size of intermediate

results. The relative overhead of a bad filter order, compared

to the optimum, grows therefore linearly in the number of

filters. The overhead of bad join orders, compared to the

optimum, can grow exponentially in the query size. This

motivates mechanisms that bound join overheads for single

data batches, as well as mechanisms to save progress for

partially processed data batches.

Worst-case optimal join algorithms [40, 48] bound cost as a

function of worst-case query result size. We bound expected

execution cost as a function of cost for processing an optimal

join order. Further, prior work on worst-case optimal joins

focuses on conjunctive queries while we support a broader

class of queries, including queries with user-defined func-

tion predicates. Our approach applies to SQL with standard

semantics while systems for worst-case optimal evaluation

typically assume set semantics [48].

3 OVERVIEW
Figure 2 shows the primary components of SkinnerDB. This

high-level outline applies to all of the SkinnerDB variants.

The pre-processor is invoked first for each query. Here,

we filter base tables via unary predicates. Also, depending

on the SkinnerDB variant, we partition the remaining tuples

into batches or hash them (to support joins with equality

predicates).

Join execution proceeds in small time slices. The join pro-

cessor consists of several sub-components. The learning op-

timizer selects a join order to try next at the beginning of

each time slice. It uses statistics on the quality of join orders

that were collected during the current query execution. Se-

lected join orders are forwarded to the join executor. This

component executes the join order until a small timeout is

reached. We add result tuples into a result set, checking for

duplicate results generated by different join orders. The join

executor can be either a generic SQL processor or, for maxi-

mal performance, a specialized execution engine. The same

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1155

join order may get selected repeatedly. The progress tracker

keeps track of which input data has been processed already.

For Skinner-C, it even tracks execution state for each join

order tried so far, and merges progress across join orders. At

the start of each time slice, we consult the progress tracker

to restore the latest state stored for the current join order.

At the end of it, we backup progress achieved during the

current time slice. The reward calculator calculates a reward

value, based on progress achieved during the current time

slice. This reward is a measure for how quickly execution

proceeds using the chosen join order. It is used as input by

the optimizer to determine the most interesting join order

to try in the next time slice.

Finally, we invoke the post-processor, using the join result

tuples as input. Post-processing involves grouping, aggre-

gation, and sorting. In the next section, we describe the

algorithms executed within SkinnerDB.

4 ALGORITHMS
We describe several adaptive processing strategies that are

implemented in SkinnerDB. In Section 4.1, we introduce

the UCT algorithm that all processing strategies are based

upon. In Section 4.2, we describe how the UCT algorithm can

generally be used to learn optimal join orders. In Section 4.3,

we introduce a join order learning approach that can be

implemented on top of existing SQL processing engines,

in a completely non-intrusive manner. In Section 4.4, we

show how this strategy can integrate plans proposed by the

original optimizer. In Section 4.5, we propose a new query

evaluation method that facilitates join order learning and

the associated learning strategy.

While we describe the following algorithms only for SPJ

queries, it is straight-forward to add sorting, grouping, or

aggregate calculations in a post-processing step (we do so in

our actual implementation). Nested queries can be treated

via decomposition [39].

4.1 Background on UCT
Our method for learning optimal join orders is based on the

UCT algorithm [29]. This is an algorithm from the area of

reinforcement learning. It assumes the following scenario.

We repeatedly make choices that result in rewards. Each

choice is associated with reward probabilities that we can

learn over time. Our goal is to maximize the sum of obtained

rewards. To achieve that goal, it can be beneficial to make

choices that resulted in large rewards in the past (“exploita-

tion”) or choices about which we have little information

(“exploration”) to inform future choices. The UCT algorithm

balances between exploration and exploitation in a princi-

pled manner that results in probabilistic guarantees. More

precisely, assuming that rewards are drawn from the interval

[0, 1], the UCT algorithm guarantees that the expected regret

(i.e., the difference between the sum of obtained rewards to

the sum of rewards for optimal choices) is inO(log(n))where
n designates the number of choices made [29].

We specifically select the UCT algorithm for several rea-

sons. First, UCT has been applied successfully to problems

with very large search spaces (e.g., planning Go moves [24]).

This is important since the search space for join ordering

grows quickly in the query size. Second, UCT provides for-

mal guarantees on cumulative regret (i.e., accumulated regret

over all choices made). Other algorithms from the area of

reinforcement learning [22] focus for instance on minimiz-

ing simple regret (i.e., quality of the final choice). The latter

would be more appropriate when separating planning from

execution. Our goal is to interleave planning and execution,

making the first metric more appropriate. Third, the formal

guarantees of UCT do not depend on any instance-specific

parameter settings [16], distinguishing it from other rein-

forcement learning algorithms.

We assume that the space of choices can be represented

as a search tree. In each round, the UCT algorithm makes a

series of decisions that can be represented as a path from the

tree root to a leaf. Those decisions result in a reward from

the interval [0, 1], calculated by an arbitrary, randomized

function specific to the leaf node (or as a sum of rewards

associated with each path step). Typically, the UCT algorithm

is applied in scenarios where materializing the entire tree

(in memory) is prohibitively expensive. Instead, the UCT

algorithm expands a partial search tree gradually towards

promising parts of the search space. The UCT variant used in

our system expands the materialized search tree by at most

one node per round (adding the first node on the current

path that is outside the currently materialized tree).

Materializing search tree nodes allows to associate sta-

tistics with each node. The UCT algorithm maintains two

counters per node: the number of times the node was visited

and the average reward that was obtained for paths crossing

through that node. If counters are available for all relevant

nodes, the UCT algorithm selects at each step the child node

c maximizing the formula rc +w ·
√
log(vp)/vc where rc is

the average reward for c , vc and vp are the number of visits

for child and parent node, andw a weight factor. In this for-

mula, the first term represents exploitation while the second

term represents exploration. Their sum represents the upper

bound of a confidence bound on the reward achievable by

passing through the corresponding node (hence the name

of the algorithm: UCT for Upper Confidence bounds applied

to Trees). Setting w =
√
2 is sufficient to obtain bounds on

expected regret. It can however be beneficial to try different

values to optimize performance for specific domains [16].

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1156

4.2 Learning Optimal Join Orders
Our search space is the space of join orders. We consider

all join orders except for join orders that introduce Carte-

sian product joins without need. Avoiding Cartesian product

joins is a very common heuristic that is used by virtually

all optimizers [25]. To apply the UCT algorithm for join or-

dering, we need to represent the search space as a tree. We

assume that each tree node represents one decision with re-

gards to the next table in the join order. Tree edges represent

the choice of one specific table. The tree root represents the

choice of the first table in the join order. All query tables can

be chosen since no table has been selected previously. Hence,

the root node will have n child nodes where n is the number

of tables to join. Nodes in the next layer of the tree (directly

below the root) represent the choice of a second table. We

cannot select the same table twice in the same join order.

Hence, each of the latter node will have at most n − 1 child
nodes associated with remaining choices. The number of

choices depends on the structure of the join graph. If at least

one of the remaining tables is connected to the first table via

join predicates, only such tables will be considered. If none

of the remaining tables is connected, all remaining tables

become eligible (since a Cartesian product join cannot be

avoided given the initial choice). In total, the search tree will

have n levels. Each leaf node is associated with a completely

specified join order.

We generally divide the execution of a query into small

time slices in which different join order are tried. For each

time slice, the UCT algorithm selects a path through the

aforementioned tree, thereby selecting the join order to try

next. As discussed previously, only part of the tree will be

“materialized” (i.e., we keep nodes with node-specific coun-

ters in main memory). When selecting a path (i.e., a join

order), UCT exploits counters in materialized nodes wher-

ever available to select the next path step. Otherwise, the

next step is selected randomly. After a join order has been

selected, this join order is executed during the current time

slice. Results from different time slices are merged (while re-

moving overlapping results). We stop once a complete query

result is obtained.

Our goal is to translate the aforementioned formal guar-

antees of UCT, bounding the distance between expected and

optimal reward (i.e., the regret), into guarantees on query

evaluation speed. To achieve that goal, we must link the re-

ward function to query evaluation progress. The approaches

for combined join order learning and execution, presented in

the following subsections, define the reward function in dif-

ferent ways. They all have however the property that higher

rewards correlate with better join orders. After executing

the selected join order for a bounded amount of time, we

measure evaluation progress and calculate a corresponding

reward value. The UCT algorithm updates counters (average

reward and number of visits) in all materialized tree nodes

on the previously selected path.

The following algorithms use the UCT algorithm as a

sub-function. More precisely, we use two UCT-related com-

mands in the following pseudo-code: UctChoice(T) and
RewardUpdate(T , j, r). The first one returns the join or-

der chosen by the UCT algorithm when applied to search

tree T (some of the following processing strategies maintain

multiple UCT search trees for the same query). The second

function updates treeT by registering reward r for join order

j. Sometimes, we will pass a reward function instead of a

constant for r (with the semantics that the reward resulting

from an evaluation of that function is registered).

4.3 Generic Execution Engines
In this subsection, we show how we can learn optimal join

orders when treating the execution engine as a black box

with an SQL interface. This approach can be used on top of

existing DBMS without changing a single line of their code.

A naive approach to learn optimal join orders in this con-

text would be the following. Following the discussion in

the last subsection, we divide each table joined by the input

query into an equal number of batches (if the input query

contains unary predicates in the where clause, we can ap-

ply them in the same step). We simplify by assuming that

all tables are sufficiently large to contain at least one tuple

per batch (otherwise, less batches can be used for extremely

small tables). We iteratively choose join orders using the

UCT algorithm. In each iteration, we use the given join order

to process a join between one batch for the left most table in
the join order and the remaining, complete tables. We remove

each processed batch and add the result of each iteration to

a result relation. We terminate processing once all batches

are processed for at least one table. As we prove in more

detail in Section 5, the result relation contains a complete

query result at this point. To process the query as quickly as

possible, we feed the UCT algorithm with a reward function

that is based on processing time for the current iteration. The

lower execution time, the higher the corresponding reward.

Note that reducing the size of the left-most table in a join

order (by using only a single batch) tends to reduce the sizes

of all intermediate results. If the dominant execution time

component is proportional to those intermediate result sizes

(e.g., time for generating intermediate result tuples, index

lookups, number of evaluated join predicates), execution

time for one batch is proportional to execution time for the

entire table (with a scaling factor that corresponds to the

number of batches per table).

The reason why we call the latter algorithm naive is the

following. In many settings, the reward function for the

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1157

1 2

3

4 5

6

7

8 9

10

11

Time Units

Ti
m
eo
ut

Le
ve
l

Figure 3: Illustration of time budget allocation
scheme: we do not know the optimal time per batch
and iterate over different timeouts, allocating higher
budgets less frequently.

UCT algorithm is relatively inexpensive to evaluate. In our

case, it requires executing a join between one batch and all

the remaining tables. The problem is that execution cost

can vary strongly as a function of join order. The factor

separating execution time of best and worst join order may

grow exponentially in the number of query tables. Hence,

even a single iteration with a bad join order and a single

tuple in the left-most table may lead to an overall execution

time that is far from the optimum for the entire query. Hence,

we must upper-bound execution time in each iteration.

This leads however to a new problem: what timeout should

we choose per batch in each iteration? Ideally, we would se-

lect as timeout the time required by an optimal join order.

Of course, we neither know an optimal join order nor its op-

timal processing time for a new query. Using a timeout that

is lower than the optimum prevents us from processing an

entire batch before the timeout. This might be less critical if

we can backup the state of the processing engine and restore

it when trying the same join order again. However, we cur-

rently treat the processing engine as a black box and cannot

assume access to partial results and internal state. Further,

most SQL processing engines execute a series of binary joins

and generate potentially large intermediate results. As we

may try out many different join orders, already the space

required for storing intermediate results for each join order

would become prohibitive. So, we must assume that all inter-

mediate results are lost if execution times out before a batch

is finished. Using lower timeouts than necessary prevents

us from making any progress. On the other side, choosing

a timeout that is too high leads to unnecessary overheads

when processing sub-optimal join orders.

The choice of a good timeout is therefore crucial while we

cannot know the best timeout a-priori. The solution lies in

an iterative scheme that tries different timeouts in different

iterations.We carefully balance allocated execution time over

different timeouts, avoiding to use higher timeouts unless

lower ones have been tried sufficiently often. More precisely,

we will present a timeout scheme that ensures that the total

execution time allocated per timeout does not differ by more

1 2 3 4
. . .

Time

Figure 4: The hybrid approach alternates with increas-
ing timeouts between executing plans proposed by the
traditional optimizer (red) and learned plans (blue).

than factor two across different timeouts. Figure 3 gives an

intuition for the corresponding timeout scheme (numbers

indicate the iteration in which the corresponding timeout

is chosen). We use timeouts that are powers of two (we

also call the exponent the Level of the timeout). We always

choose the highest timeout for the next iteration such that

the accumulated execution time for that timeout does not

exceed time allocated to any lower timeout. Having fixed

a timeout for each iteration, we assign a reward of one for

a fixed join order if the input was processed entirely. We

assign a reward of zero otherwise.

Algorithm 1 present pseudo-code matching the verbal de-

scription. First, tuples are filtered using unary predicates

and the remaining tuples are partitioned into b batches per

table (we omit pseudo-code for pre-processing). We use func-

tion DBMS to invoke the underlying DBMS for processing

one batch with a timeout. The function accumulates partial

result in a result relation if processing finishes before the

timeout and returns true in that case. Vector oi stores for
each table an offset, indicating how many of its batches were

completely processed (it is implicitly initialized to one for

each table). Variable nl stores for each timeout level l how
much execution time was dedicated to it so far (it is implicitly

initialized to zero and updated in each invocation of func-

tion NextTimeout). Note that we maintain separate UCT

trees Tt for each timeout t (implicitly initialized as a single

root node representing no joined tables). This prevents for

instance processing failures for lower timeouts to influence

join ordering decisions for larger timeouts. We prove the

postulated properties of the timeout scheme (i.e., balancing

time over different timeouts) in Section 5.

4.4 Hybrid Algorithm
The algorithm presented in the last subsection uses reinforce-

ment learning alone to order joins. It bypasses any join order-

ing capabilities offered by an existing optimizer completely.

This approach is efficient for queries where erroneous statis-

tics or difficult-to-analyze predicates mislead the traditional

optimizer. However, it adds unnecessary learning overheads

for standard queries where a traditional optimizer would

produce reasonable query plans.

We present a hybrid algorithm that combines reinforce-

ment learning with a traditional query optimizer. Instead

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1158

1: // Returns timeout for processing next batch,

2: // based on times n given to each timeout before.

3: function NextTimeout(n)
4: // Choose timeout level

5: L← max{L|∀l < L : nl ≥ nL + 2
L}

6: // Update total time given to level

7: nL ← nL + 2
L

8: // Return timeout for chosen level

9: return 2
L

10: end function

11: // Process SPJ query q using existing DBMS and

12: // by dividing each table into b batches.

13: procedure SkinnerG(q = R1 Z . . . Z Rm ,b)
14: // Apply unary predicates and partitioning

15: {R1
1
, . . . ,Rbm } ←PreprocessingG(q,b)

16: // Until we processed all batches of one table

17: while �i : oi > b do
18: // Select timeout using pyramid scheme

19: t ←NextTimeout(n)

20: // Select join order via UCT algorithm

21: j ←UctChoice(Tt)
22: // Process one batch until timeout

23: suc ←DBMS(R
oj1
j1 Z R

oj2 ..b
j2 . . . Z R

ojm ..b
jm , t)

24: // Was entire batch processed successfully?

25: if suc then
26: // Mark current batch as processed

27: oj1 ← oj1 + 1
28: // Store maximal reward in search tree

29: RewardUpdate(Tt , j, 1)
30: else
31: // Store minimal reward in search tree

32: RewardUpdate(Tt , j, 0)
33: end if
34: end while
35: end procedure

Algorithm 1: Regret-bounded query evaluation using
a generic execution engine.

of using an existing DBMS only as an execution engine, we

additionally try benefiting from its query optimizer when-

ever possible. We do not provide pseudo-code for the hybrid

algorithm as it is quick to explain. We iteratively execute

the query using the plan chosen by the traditional query

optimizer, using a timeout of 2
i
where i is the number of

invocations (for the same input query) and time is measured

according to some atomic units (e.g., several tens of millisec-

onds). In between two traditional optimizer invocations, we

execute the learning based algorithm described in the last

subsection. We execute it for the same amount of time as the

traditional optimizer. We save the state of the UCT search

trees between different invocations of the learning approach.

Optionally, if a table batch was processed by the latter, we

can remove the corresponding tuples before invoking the

1: // Advance tuple index in state s for table at position i
2: // in join order j for query q, considering tuple offsets o.
3: function NextTuple(q = R1 Z . . . Z Rm , j,o, s, i)
4: // Advance tuple index for join order position

5: sji ← sji + 1
6: // While index exceeds relation cardinality

7: while sji > |Rji | and i > 0 do
8: sji ← oji
9: i ← i − 1
10: sji ← sji + 1
11: end while
12: return ⟨s, i⟩
13: end function

14: // Execute join order j for query q starting from

15: // tuple indices s with tuple offsets o. Add results

16: // to R until time budget b is depleted.

17: function ContinueJoin(q = R1 Z . . . Z Rm , j,o,b, s,R)
18: i ← 1 // Initialize join order index

19: while processing time < b and i > 0 do
20: t ← Materialize(Rj1 [sj1] × . . . × Rji [sji])
21: if t satisfies all newly applicable predicates then
22: if i =m then // Is result tuple completed?

23: R ← R ∪ {s} // Add indices to result set

24: ⟨s, i⟩ ← NextTuple(q, j,o, s, i)
25: else// Tuple is incomplete

26: i ← i + 1
27: end if
28: else// Tuple violates predicates
29: ⟨s, i⟩ ← NextTuple(q, j,o, s, i)
30: end if
31: end while
32: // Join order position 0 indicates termination

33: return (i < 1)

34: end function

Algorithm 2: Multi-way join algorithm supporting
fast join order switching.

traditional optimizer. Figure 4 illustrates the hybrid approach.

As shown in Section 5, the hybrid approach bounds expected

regret (compared to the optimal plan) and guarantees a con-

stant factor overhead compared to the original optimizer.

4.5 Customized Execution Engines
The algorithms presented in the previous sections can work

with any execution engine for SPJ queries. In this section,

we present an execution engine that is tailored towards the

needs of a learning based join ordering strategy. In addition,

we present a variant of the join order learning algorithm that

optimally exploits that execution engine.

Most execution engines are designed for a traditional ap-

proach to query evaluation. They assume that a single join

order is executed for a given query (after being generated by

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1159

1: // Regret-bounded evaluation of SPJ query q,
2: // length of time slices is restricted by b.
3: function SkinnerC(q = R1 Z . . . Z Rm ,b)
4: // Apply unary predicates and hashing

5: q ←PreprocessingC(q)
6: R ← ∅ // Initialize result indices
7: f inished ← false // Initialize termination flag

8: while ¬f inished do
9: // Choose join order via UCT algorithm

10: j ← UctChoice(T)
11: // Restore execution state for this join order

12: s ← RestoreState(j,o, S); spr ior ← s
13: // Execute join order during time budget

14: f inished ← ContinueJoin(q, j,o,b, s,R)
15: // Update UCT tree via progress-based rewards

16: RewardUpdate(T , j,Reward(s − spr ior , j))
17: // Backup execution state for join order

18: ⟨o, S⟩ ← BackupState(j, s,o, S)
19: end while
20: return [Materialize(R1[s1] × R2[s2] . . .)|s ∈ R]
21: end function

Algorithm 3: Regret-bounded query evaluation using
a customized execution engine.

the optimizer). Learning optimal join orders while execut-

ing a query leads to unique requirements on the execution

engine. First, we execute many different join orders for the

same query, each one only for a short amount of time. Second,

we may even execute the same join order multiple times with

many interruptions (during which we try different join or-

ders). This specific scenario leads to (at least) three desirable

performance properties for the execution engine. First, the

execution engine should minimize overheads when switch-

ing join orders. Second, the engine should preserve progress

achieved for a given join order even if execution is inter-

rupted. Finally, the engine should allow to share achieved

progress, to the maximal extent possible, between different

join orders as well. The generic approach realizes the latter

point only to a limited extend (by discarding batches pro-

cessed completely by any join order from consideration by

other join orders).

The key towards achieving the first two desiderata (i.e.,

minimal overhead when switching join orders or interrupt-

ing execution) is a mechanism that backs up execution state

as completely as possible. Also, restoring prior state when

switching join order must be very efficient. By “state”, we

mean the sum of all intermediate results and changes to

auxiliary data structures that were achieved during a partial

query evaluation for one specific join order. We must keep

execution state as small as possible in order to back it up and

to restore it efficiently.

Two key ideas enable us to keep execution state small.

First, we represent tuples in intermediate results concisely as

vectors of tuple indices (each index pointing to one tuple in a

base table). Second, we use a multi-way join strategy limiting

the number of intermediate result tuples to at most one at

any point in time. Next, we discuss both ideas in detail.

Traditional execution engines for SPJ queries produce in-

termediate results that consist of actual tuples (potentially

containing many columns with elevated byte sizes). To re-

duce the size of the execution state, we materialize tuples

only on demand. Each tuple, be it a result tuple or a tuple in

an intermediate result, is the result of a join between single

tuples in a subset of base tables. Hence, whenever possi-

ble, we describe tuples simply by an array of tuple indices

(whose length is bounded by the number of tables in the

input query). We materialize partial tuples (i.e., only the re-

quired columns) temporarily to check whether they satisfy

applicable predicates or immediately before returning results

to the user. To do that efficiently, we assume a column store

architecture (allowing quick access to selected columns) and

a main-memory resident data set (reducing the penalty of

random data access).

Most traditional execution engines for SPJ queries process

join orders by a sequence of binary join operations. This

can generate large intermediate results that would become

part of the execution state. We avoid that by a multi-way

join strategy whose intermediate result size is restricted to

at most one tuple. We describe this strategy first for queries

with generic predicates. Later, we discuss an extension for

queries with equality join predicates based on hashing.

Intuitively, our multi-way join strategy can be understood

as a depth-first search for result tuples. Considering input

tables in one specific join order, we fix one tuple in a prede-

cessor table before considering tuples in the successor table.

We start with the first tuple in the first table (in join order).

Next, we select the first tuple in the second table and verify

whether all applicable predicates are satisfied. If that is the

case, we proceed to considering tuples in the third table. If

not, we consider the next tuple in the second table. Once all

tuples in the second table have been considered for a fixed

tuple in the first table, we “backtrack” and advance the tuple

indices for the first table by one. Execution ends once all

tuples in the first table have been considered.

Example 4.1. Figure 5 illustrates the process for a three-
table join. Having fixed a tuple in the left-most table (at the

left, we start with the first tuple), the join order index is

increased. Next, we find the first tuple in the second table

satisfying the join condition with the current tuple in the

first table. Having found such a tuple, we increase the join

order index again. Now, we iterate over tuples in the third

table, adding each tuple combination satisfying all applicable

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1160

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

2

3

1

4
5

6

7

8

9

...
10

Figure 5: Depth-first multi-way join strategy: we in-
crease the join order index once the first tuple satis-
fying all applicable predicates is found, we decrease it
once all tuples in the current table were considered.

conditions to the result. After all tuples in the last table

have been considered, we decrease the join order index and

consider the next tuple in the second table.

Algorithm 2 implements that approach. Function Contin-

ueJoin realizes the execution strategy described before. For

a fixed amount of processing time (we use the number of

outer while loop iterations as a proxy in our implementa-

tion) or until all input data is processed, it either increases

“depth” (i.e., join order index i) to complete a partial tuple,

satisfying all applicable predicates, further, or it advances

tuples indices using Function NextTuple. The latter func-

tion increases the tuple indices for the current join order

index or backtracks if the table cardinality is exceeded. Note

that the same result tuple might be added multiple times in

invocations of the execution engine for different join orders.

However, we add tuple index vectors into a result set, avoid-
ing duplicate entries (of course, two different tuple index

vectors can represent two result tuples with the same values

in each column).

We discuss the main function (SkinnerC) learning opti-

mal join orders using a customized execution engine (see

Algorithm 3). The most apparent difference to the version

from Section 4.3 is the lack of a dynamic timeout scheme.

Instead, we use the same timeout for each invocation of

the execution engine. This becomes possible since progress

made when executing a specific join order is never lost. By

minimizing the size of the execution state, we have enabled

an efficient backup and restore mechanism (encapsulated by

functions BackupState and RestoreState whose pseudo-

code we omit) that operates only on a small vector of indices.

The number of stored vectors is furthermore proportional

to the size of the UCT tree. The fact that we do not lose par-

tial results due to inappropriate timeouts anymore has huge

impact from the theoretical perspective (see Section 5) as

well as for performance in practice (see Section 6). Learning

overheads are lower than before since we only maintain a

single UCT search tree accumulating knowledge from all

executions.

In Section 4.3, we used a binary reward function based

on whether the current batch was processed. We do not pro-

cess data batch-wise anymore and must therefore change

the reward function (represented as function Reward in the

pseudo-code which depends on execution state delta and join

order). For instance, we can we use as reward the percentage

of tuples processed in the left-most table during the last in-

vocation. This function correlates with execution speed and

returns values in the range between 0 and 1 (the standard

formulas used for selecting actions by the UCT algorithm

are optimized for that case [29]). SkinnerDB uses a slight

refinement: we sum over all tuple index deltas, scaling each

one down by the product of cardinality values of its associ-

ated table and the preceding tables in the current join order.

Note that the UCT algorithm averages rewards over multiple

invocations of the same join order and keeps exploring (i.e.,

obtaining a reward of zero for one good join order during a

single invocation of the execution engine will not exclude

that order from further consideration).

We have not yet discussed how our approach satisfies

the third desiderata (sharing as much progress as possible

among different join orders) mentioned at the beginning.

We use in fact several techniques to share progress between

different join orders (those techniques are encapsulated in

Function RestoreState). First, we use again offset counters

to exclude for each table tuples that have been joined with

all other tuples already (vector o in the pseudo-code which

is implicitly initialized to one). In contrast to the version

from Section 4.3, offsets are not defined at the granularity

of data batches but at the granularity of single tuples. This

allows for a more fine-grained sharing of progress between

different join orders than before.

Second, we share progress between all join orders with

the same prefix. Whenever we restore state for a given join

order, we compare execution progress between the current

join order and all other orders with the same prefix (iterat-

ing over all possible prefix lengths). Comparing execution

states s and s ′ for two join orders j and j ′ with the same

prefix of length k (i.e., the first k tables are identical), the

first order is “ahead” of the second if there is a join order

position p ≤ k such that sji ≥ s ′ji for i < p and sjp > s ′jp + 1.

In that case, we can “fast-forward” execution of the second

join order, skipping result tuples that were already gener-

ated via the first join order. We do so by executing j ′ from a

merged state s ′′ where s ′′j′i
= sj′i for i < p, s ′′j′p

= sj′p − 1, and

s ′′j′i
= oj′i for i > p (since we can only share progress for the

common prefix). Progress for different join orders is stored

in the data structure represented as S in Algorithm 3, Func-

tion RestoreState takes care of fast-forwarding (selecting

the most advanced execution state among all alternatives).

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1161

So far, we described the algorithm for queries with generic

predicates. Our actual implementation uses an extended ver-

sion supporting equality join predicates via hashing. If equal-

ity join predicates are present, we create hash tables on all

columns subject to equality predicates during pre-processing.

Of course, creating hash tables to support all possible join

orders creates overheads. However, those overheads are typ-

ically small as only tuples satisfying all unary predicates are

hashed. We extend Algorithm 2 to benefit from hash tables:

instead of incrementing tuple indices always by one (line 5),

we “jump” directly to the next highest tuple index that satis-

fies at least all applicable equality predicates with preceding

tables in the current join order (this index can be determined

efficiently via probing).

5 FORMAL ANALYSIS
We prove correctness (see Section 5.1), and the regret bounds

(see Section 5.2) for all Skinner variants.

5.1 Correctness
Next, we prove correctness (i.e., that each algorithm pro-

duces a correct query result). We distinguish result tuples

(tuples from the result relation joining all query tables) from

component tuples (tuples taken from a single table).

Theorem 5.1. Skinner-G produces the correct query result.

Proof. Offsets exclude component tuples from consid-

eration when executing the following joins. We show the

following invariant: all result tuples containing excluded

component tuples have been generated. This is certainly

true at the start where offsets do not exclude any tuples.

Offsets are only advanced if batches have been successfully

processed. In that case, all newly excluded component tuples

have been joined with tuples from all other tables that are

not excluded. But excluded tuples can be neglected accord-

ing to our invariant. The algorithm terminates only after all

tuples from one table have been excluded. In that case, all

result tuples have been generated. Still, we need to show

that no result tuple has been generated more often than with

a traditional execution. This is the case since we exclude

all component tuples in one table after each successfully

processed batch. □

Theorem 5.2. Skinner-H produces the correct query result.

Proof. We assume that executing a query plan produced

by the traditional optimizer generates a correct result. The

result produced by Skinner-G is correct according to the

preceding theorem. This implies that Skinner-H produces a

correct result as it returns the result generated by one of the

latter two algorithms. □

Theorem 5.3. Skinner-C produces the correct query result.

Proof. Skinner-C does not produce any duplicate result

tuples as justified next. Result tuples are materialized only

at the very end of the main function. The result set contains

tuple index vectors until then. Vectors are unique over all

result tuples (as they indicate the component tuples from

which they have been formed) and, due to set semantics, no

vector will be contained twice in the result. Also, Skinner-C

produces each result tuple at least once. This is due to the

fact that i) complete tuples are always inserted into the result

set, ii) partial tuples (i.e., i < m) are completed unless they

violate predicates (then they cannot be completed into result

tuples), and iii) tuple indices are advanced in a way that

covers all combinations of component tuples. □

5.2 Regret Bounds
Regret is the difference between actual and optimal execution

time. We denote execution time by n and optimal time by n∗.
Skinner-G and Skinner-H choose timeout levels (represented

by the y axis in Figure 3) that we denote by l . We use the

subscript notation (e.g., nl) to denote accumulated execution

time spent with a specific timeout level. We study regret

for fixed query properties (e.g., the number of joined tables,

m, or the optimal reward per time slice, r ∗) for growing
amounts of input data (i.e., table size) and execution time.

In particular, we assume that execution time, in relation to

query size, is large enough to make the impact of transitory

regret negligible [12]. We focus on regret of the join phase

as pre-processing overheads are linear in data and query size

(while post-processing overheads are polynomial in query

and join result size). We assume that time slices are chosen

large enough to make overheads related to learning and join

order switching negligible. Specifically for Skinner-G and

Skinner-H, we assume that the optimal timeout per time

slice applies to all batches. To simplify the analysis, we study

slightly simplified versions of the algorithms from Section 4.

In particular, we assume that offsets are only applied to

exclude tuples for the left-most table in the current join

order. This means that no progress is shared between join

orders that do not share the left-most table. For Skinner-

C, we assume that the simpler reward function (progress

in left-most table only) is used. We base our analysis on

the properties of the UCT variant proposed by Kocsis and

Szepesvari [29].

For a given join order, processing time in SkinnerDB is

equivalent to processing time in traditional engines if scaling

down the size of the left-most table scales down execution

time proportionally (i.e., execution time behaves similarly

to the Cout cost metric [30]). If so, the regret bounds apply

compared to an optimal traditional query plan execution.

Before analyzing Skinner-G, we first prove several proper-

ties of the pyramid timeout scheme introduced in Section 4.3.

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1162

Lemma 5.4. The number of timeout levels used by Skinner-G
is upper-bounded by log(n).

Proof. We add a new timeout level L, whenever the equa-
tion nl ≥ nL + 2

L
is satisfied for all 0 ≤ l < L for the first

time. As nl is generally a sum over powers of two (2
l
), and as

nL = 0 before L is used for the first time, the latter condition

can be tightened to 2
L = nl for all 0 ≤ l < L. Hence, we

add a new timeout whenever the total execution time so far

can be represented as L · 2L for L ∈ N. Assuming that n is

large, specifically n > 1, the number of levels grows faster if

adding levels whenever execution time can be represented

as 2
L
for L ∈ N. In that case, the number of levels can be

bounded by log(n) (using the binary logarithm). □

Lemma 5.5. The total amount of execution time allocated
to different (already used) timeout levels cannot differ by more
than factor two.

Proof. Assume the allocated time differs by more than

factor two between two timeout levels, i.e. ∃l1, l2 : nl1 >
2 · nl2 (and nl1 ,nl2 , 0). Consider the situation in which this

happens for the first time. Since ∀i : ni ≥ ni+1, we must

have n0 > 2 · nL where L is the largest timeout level used so

far. This was not the case previously so we either selected

timeout level 0 or a new timeout level L in the last step. If

we selected a new timeout level L then it was nl ≥ nL + 2
L

for all 0 ≤ l < L which can be tightened to ∀0 ≤ l < L :

nl = 2
L
(exploiting that nL = 0 previously and that timeouts

are powers of two). Hence, selecting a new timeout cannot

increase the maximal ratio of time per level. Assume now

that timeout level 0 was selected. Denote by δi = ni − ni+1
for i < L the difference in allocated execution time between

consecutive levels, before the last selection. It is δi ≤ 2
i
since

ni is increased in steps of size 2
i
and strictly smaller than

2
i+1

(otherwise, level i + 1 or a higher one would have been

selected). It was n0 − nL =
∑

0≤i<L δi ≤
∑

0≤i<L 2
i < 2

L
. On

the other side, it was nL ≥ 2
L
(as nL , 0 and since nL is

increased in steps of 2
L
). After n0 is increased by one, it is

still n0 ≤ 2 · nL . The initial assumption leads always to a

contradiction. □

We are now ready to provide worst-case bounds on the

expected regret when evaluating queries via Skinner-G.

Theorem 5.6. Expected execution time regret of Skinner-G
is upper-bounded by (1 − 1/(log(n) ·m · 4)) · n +O(log(n)).

Proof. Total execution time n is the sum over execution

time components nl that we spent using timeout level l ,
i.e. we have n =

∑
0≤l ≤L nl where L + 1 is the number of

timeout levels used. It is L+1 ≤ log(n) due to Lemma 5.4 and

∀l1, l2 ∈ L : nl1 ≥ nl2/2 due to Lemma 5.5. Hence, for any

specific timeout level l , we havenl ≥ n/(2·log(n)). Denote by
l∗ the smallest timeout, tried by the pyramid timeout scheme,

which allows to process an entire batch using the optimal join

order. It is nl ∗ ≥ n/(2 · log(n)). We also have nl ∗ = nl ∗,1+nl ∗,0
where nl ∗,1 designates time spent executing join orders with

timeout level l∗ that resulted in reward 1, nl ∗,0 designates
time for executions with reward 0. UCT guarantees that

expected regret grows as the logarithm in the number of

rounds (which, for a fixed timeout level, is proportional to

execution time). Hence, nl ∗,0 ∈ O(log(nl ∗)) and nl ∗,1 ≥ nl ∗ −
O(log(nl ∗)). Denote by b the number of batches per table.

The optimal algorithm executes b batches with timeout l∗

and the optimal join order. Skinner can execute at most

m · b −m + 1 ∈ O(m · b) batches for timeout l∗ before no
batches are left for at least one table, terminating execution.

Since l∗ is the smallest timeout greater than the optimal

time per batch, the time per batch consumed by Skinner-

G exceeds the optimal time per batch at most by factor 2.

Hence, denoting by n∗ time for an optimal execution, it is

n∗ ≥ nl ∗,1/(2 ·m), therefore n
∗ ≥ (nl ∗ −O(log(n)))/(2 ·m) ≥

nl ∗/(2 ·m) −O(log(n)) (sincem is fixed), which implies n∗ ≥
n/(4 · m · log(n)) − O(log(n)). Hence, the regret n − n∗ is
upper-bounded by (1− 1/(4 ·m · log(n))) · n +O(log(n)). □

Next, we analyze regret of Skinner-H.

Theorem 5.7. Expected execution time regret of Skinner-H
is upper-bounded by (1 − 1/(log(n) ·m · 12)) · n +O(log(n)).

Proof. Denote by nO and nL time dedicated to execut-

ing the traditional optimizer plan or learned plans respec-

tively. Assuming pessimistically that optimizer plan execu-

tions consume all dedicated time without terminating, it is

nO =
∑

0≤l ≤L 2
l
for a suitable L ∈ N at any point. Also, we

have nL ≥
∑

0≤l<L 2
l
as time is divided between the two

approaches. It is nL/n ≥ (2
L − 1)/(2L+1 + 2L − 2) which con-

verges to 1/3 as n grows. We obtain the postulated bound

from Theorem 5.6 by dividing the “useful” (non-regret) part

of execution time by factor three. □

The following theorem is relevant if traditional query

optimization works well (and learning creates overheads).

Theorem 5.8. Themaximal execution time regret of Skinner-
H compared to traditional query execution is n · 4/5.

Proof. Denote by n∗ execution time of the plan produced

by the traditional optimizer. Hence, Skinner-H terminates

at the latest once the timeout for the traditional approach

reaches at most 2 · n∗ (since the timeout doubles after each

iteration). The accumulated execution time of all prior in-

vocations of the traditional optimizer is upper-bounded by

2 ·n∗ as well. At the same time, the time dedicated to learning

is upper-bounded by 2 ·n∗. Hence, the total regret (i.e., added
time compared to n∗) is upper-bounded by n · 4/5. □

Finally, we analyze expected regret of Skinner-C.

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1163

Theorem 5.9. Expected execution time regret of Skinner-C
is upper-bounded by (1 − 1/m) · n +O(log(n)).

Proof. Regret is the difference between optimal execution

time, n∗, and actual time, n. It is n−n∗ = n · (1−n∗/n). Denote
by R the total reward achieved by Skinner-C during query

execution and by r the average reward per time slice. It is n =
R/r . Denote by r ∗ the optimal reward per time slice. Reward

is calculated as the relative tuple index delta in the left-most

table (i.e., tuple index delta in left-most table divided by table

cardinality). An optimal execution always uses the same join

order and therefore terminates once the accumulated reward

reaches one. Hence, we obtain n∗ = 1/r ∗. We can rewrite

regret as n − n∗ = n · (1 − (1/r ∗)/(R/r)) = n · (1 − r/(R · r ∗)).
The difference between expected reward and optimal reward

is bounded as r ∗ − r ∈ O(log(n)/n) [29]. Substituting r by
r ∗ − (r ∗ − r), we can upper-bound regret by n · (1 − 1/R) +
O(log(n)). Denote by Rt ≤ R rewards accumulated over time

slices in which join orders starting with table t ∈ T were

selected. Skinner-C terminates whenever Rt = 1 for any

t ∈ T . Hence, we obtain R ≤ m and n · (1 − 1/m) +O(log(n))
as upper bound on expected regret. □

Instead of the (additive) difference between expected and

optimal execution time, we can also consider the ratio.

Theorem 5.10. The ratio of expected to optimal execution
time for Skinner-C is upper-bounded and that bound converges
tom as n grows.

Proof. Let a = n−n∗ be additive regret, i.e. the difference
between actual and optimal execution time. It is n∗ = n − a
and, as a ≤ (1 − 1/m) · n + O(log(n)) due to Theorem 5.9,

it is n∗ ≥ n − (1 − 1/m) · n −O(log(n)) = n/m −O(logn) =
n · (1/m −O(log(n))/n). Optimal execution time is therefore

lower-bounded by a term that converges to n/m as n grows.

Then, the ratio n/n∗ is upper-bounded bym. □

6 IMPLEMENTATION AND EVALUATION
We evaluate the performance of SkinnerDB experimentally.

Additional results can be found in the appendix.

6.1 Experimental Setup
Skinner-G(X) is the generic Skinner version (see Section 4.3)

on top of database system X in the following. Skinner-H(X)

is the hybrid version on system X. We execute Skinner on

top of MonetDB (Database Server Toolkit v1.1 (Mar2018-

SP1)) [8] and Postgres (version 9.5.14) [42]. We use different

mechanisms to force join orders for those systems. Postgres

has dedicated knobs to force join orders. For MonetDB, we

“brute-force” join orders by executing each join as a sepa-

rate query, generating multiple intermediate result tables.

Skinner-C, described in Section 4.5, uses a specialized execu-

tion engine.We setw =
√
2 in the UCT formula for Skinner-G

Table 1: Performance of query evaluation methods on
the join order benchmark - single-threaded.

Approach Total
Time

Total
Card.

Max.
Time

Max.
Card.

Skinner-C 183 112M 9 18M

Postgres 726 681M 59 177M

S-G(PG) 13,348 N/A 840 N/A

S-H(PG) 2,658 N/A 234 N/A

MonetDB 986 2,971M 409 1,186M

S-G(MDB) 1,852 N/A 308 N/A

S-H(MDB) 762 N/A 114 N/A

Table 2: Performance of query evaluation methods on
the join order benchmark - multi-threaded.

Approach Total
Time

Total
Card.

Max.
Time

Max.
Card.

Skinner-C 135 112M 7 18M

MonetDB 105 2,971M 26 1,186M

S-G(MDB) 1,450 N/A 68 N/A

S-H(MDB) 345 N/A 86 N/A

and Skinner-H and w = 10
−6

for Skinner-C. Unless noted

otherwise, we use a timeout of b = 500 loop iterations for

Skinner-C (i.e., thousands or even tens of thousands of join

order switches per second). For Skinner-G and -H, we must

use much higher timeouts, starting from one second. All

SkinnerDB-specific components are implemented in Java.

Our current Skinner-C version only allows to parallelize the

pre-processing step. Extending our approach to parallel join

processing is part of our future work. To separate speedups

due to join ordering from speedups due to parallelization, we

compare a subset of baselines in single- as well as in multi-

threaded mode. The following experiments are executed on

a Dell PowerEdge R640 server with 2 Intel Xeon 2.3 GHz

CPUs and 256 GB of RAM.

6.2 Performance on Join Order Benchmark
We evaluate approaches on the join order benchmark [25],

a benchmark on real, correlated data. We follow the advice

of the paper authors and explicitly prevent Postgres from

choosing bad plans involving nested loops joins. Tables 1

and 2 compare different baselines in single-threaded and for

Skinner, and MonetDB, in multi-threaded mode (our server

runs Postgres 9.5 which is not multi-threaded). We compare

approaches by total and maximal (per query) execution time

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1164

Table 3: Performance of join orders in different ex-
ecution engines for join order benchmark - single
threaded.

Engine Order Total Time Max. Time

Skinner Skinner 183 9

Optimal 180 7

Postgres Original 726 59

Skinner 567 14

Optimal 555 14

MonetDB Original 986 409

Skinner 138 7

Optimal 134 6

(in seconds). Also, we calculate the accumulated intermedi-

ate result cardinality of executed query plans. This metric

is a measure of optimizer quality that is independent of the

execution engine. Note that we cannot reliably measure car-

dinality for Skinner-G and Skinner-H since we cannot know

which results were generated by the underlying execution

engine before the timeout.

Clearly, Skinner-C performs best for single-threaded per-

formance. Also, its speedups are correlated with significant

reductions in intermediate result cardinality values. As veri-

fied in more detail later, this suggests join order quality as

the reason. For multi-threaded execution on a server with 24

cores, MonetDB slightly beats SkinnerDB. Note that our sys-

tem is implemented in Java and does not currently parallelize

the join execution phase.

When it comes to Skinner on top of existing databases,

the results are mixed. For Postgres, we are unable to achieve

speedups in this scenario (as shown in the appendix, there

are cases involving user-defined predicates where speedups

are however possible). Postgres exploits memory less aggres-

sively than MonetDB, making it more likely to read data

from disk (which makes join order switching expensive). For

single-threaded MonetDB, however, the hybrid version re-

duces total execution time by nearly 25% and maximal time

per query by factor four, compared to the original system.

This is due to just a few queries where the original optimizer

selects highly suboptimal plans.

To verify whether Skinner-C wins because of better join

orders, we executed final join orders selected by Skinner-

C in the other systems. We also used optimal join orders,

calculated according to the Cout metric. Tables 3 and 4 show

that Skinner’s join orders improve performance uniformly,

compared to the original optimizer. Also, Skinner’s execution

time is very close to the optimal order, proving the theoretical

guarantees from the last section pessimistic.

Table 4: Performance of join orders in different ex-
ecution engines for join order benchmark - multi-
threaded.

Engine Order Total Time Max. Time

Skinner Skinner 135 7

Optimal 129 7

MonetDB Original 105 26

Skinner 53 2.7

Optimal 51 2.3

Table 5: Impact of replacing reinforcement learning
by randomization.

Engine Optimizer Time Max. Time

Skinner-C Original 182 9

Random 2,268 332

Skinner-H(PG) Original 2,658 234

Random 3,615 250

Skinner-H(MDB) Original 761 114

Random ≥ 5,743 ≥ 3,600

Table 6: Impact of SkinnerDB features.

Enabled Features Total
Time

Max.
Time

indexes, parallelization, learning 135 7

parallelization, learning 162 9

learning 185 9

none 2,268 332

6.3 Further Analysis
We experiment with different variants of SkinnerDB. First

of all, we compare learning-based selection against random-

ized selection. Table 5 shows the performance penalty for

randomized selection. Clearly, join order learning is cru-

cial for performance. In Table 6, we compare the impact of

randomization to the impact of parallelizing pre-processing

and adding hash indices on all join columns (which Skin-

nerDB exploits if the corresponding table is not used in pre-

processing). Clearly, join order learning is by far the most

performance-relevant feature of SkinnerDB.

We analyze in more detail where the speedups compared

to MonetDB come from (all results refer to single-threaded

mode). Figure 6 shows on the left hand side the percentage

of execution time, spent on the top-k most expensive queries

(x axis). MonetDB spends the majority of execution time

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1165

0 50 100

0

0.5

1

Queries

R
u
n
T
i
m
e
(
%
)

Skinner

MonetDB

(a) MonetDB spends most time

executing a few expensive queries.

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

MonetDB Time (ms)

S
p
e
e
d
u
p

(b) SkinnerDB realizes high speedup

for two expensive queries.

Figure 6: Analyzing the source of SkinnerDB’s
speedups compared to MonetDB.

0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

Time (scaled)

#
N
o
d
e
s
(
s
c
a
l
e
d
)

(a) The growth of the search tree

slows down over time.

1 2 3 4 5

0.6

0.8

Top-k Orders

S
e
l
e
c
t
i
o
n
s
(
%
)

T:500

T:10

(b) SkinnerDB spends most time

executing one or two join orders.

Figure 7: Analysis of convergence of SkinnerDB.

executing two queries with highly sub-optimal join orders

(we reached out to the MonetDB team to make sure that

no straight-forward optimizations remove the problem). On

the right side, we draw speedups realized by Skinner versus

MonetDB’s query execution time. MonetDB is actually faster

for most queries while SkinnerDB has highest speedups for

the two most expensive queries. Since those queries account

for a large percentage of total execution time, Skinner-C

outperforms MonetDB in single-threaded mode.

Figure 7 analyzes convergence of Skinner-C to optimal

join orders. On the left side, we show that the growth of the

search tree slows as execution progresses (a first indication

of convergence). On the right side, we show that Skinner-C

executes one (with a timeout of b = 10 per time slice) or

two (with a timeout of b = 500, allowing less iterations for

convergence) join orders for most of the time.

Finally, we analyze memory consumption of Skinner-C.

Compared to traditional systems, Skinner-C maintains sev-

eral additional, auxiliary data structures. First, it keeps the

UCT search tree. Second, it maintains a tree associating each

join order to the last execution state (one tuple index for

each base table). Third, it must keep the tuple vectors of

all join result tuples in a hash table to eliminate duplicates

from different join orders. On the other side, Skinner-C does

5 10 15

10
0

10
2

10
4

Joined Tables

#
N
o
d
e
s

(a) Search tree size is correlated

with query size.

5 10 15

10
1

10
3

10
5

Joined Tables

#
N
o
d
e
s

(b) Size of join order progress

tracker tree.

5 10 15

10
0

10
3

10
6

Joined Tables

#
S
i
z
e

(c) Size of final result tuple

indices.

5 10 15

10
−2

10
−1

10
0

Joined Tables

A
l
l
D
a
t
a
(
G
B
)

(d) Combined size of intermediate

results, progress, and tree.

Figure 8: Memory consumption of SkinnerDB.

not maintain any intermediate results as opposed to other

systems (due to depth-first multiway join execution). Fig-

ure 8 shows the maximal sizes of the aforementioned data

structures during query executions as a function of query

size. Storing result tuple index vectors (Figure 8(c)) has domi-

nant space complexity, followed by the progress tracker, and

the UCT search tree. Overall, memory consumption is not

excessive compared to traditional execution engines.

7 CONCLUSION
We introduce a new quality criterion for query evaluation

strategies: we consider the distance (either difference or ra-

tio) between expected execution time and processing time for

an optimal join order. We designed several query evaluation

strategies, based on reinforcement learning, that are opti-

mized for that criterion.We implemented them in SkinnerDB,

leading to the following insights. First, regret-bounded query

evaluation leads to robust performance even for difficult

queries, given enough data to process. Second, performance

gains by robust join ordering can outweigh learning over-

heads for benchmarks on real data. Third, actual performance

is significantly better than our theoretical worst-case guar-

antees. Fourth, to realize the full potential of our approach,

an (in-query) learning-based optimizer must be paired with

a specialized execution engine.

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1166

REFERENCES
[1] A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone, G. Lohman, V. Markl, I.

Popivanov, and V. Raman. 2004. Automated statistics collection in DB2

UDB. In PVLDB. 1169–1180. https://doi.org/10.1145/1066157.1066293

[2] Mert Akdere and Ugur Cetintemel. 2011. Learning-based query perfor-

mance modeling and predection. In ICDE. 390–401. ftp://ftp.cs.brown.

edu/pub/techreports/11/cs11-01.pdf

[3] Khaled Hamed Alyoubi. 2016. Database query optimisation based on
measures of regret. Ph.D. Dissertation.

[4] Khaled H Alyoubi, Sven Helmer, and Peter T Wood. 2015. Order-

ing selection operators under partial ignorance.. In CIKM. 1521–1530.

https://doi.org/10.1145/2806416.2806446 arXiv:1507.08257

[5] Ron Avnur and Jm Hellerstein. 2000. Eddies: continuously adap-

tive query processing. In SIGMOD. 261–272. https://doi.org/10.1145/

342009.335420

[6] Brian Babcock and S Chaudhuri. 2005. Towards a robust query op-

timizer: a principled and practical approach. In SIGMOD. 119–130.
http://dl.acm.org/citation.cfm?id=1066172

[7] Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive re-

optimization. In SIGMOD. 107–118. https://doi.org/10.1145/1066157.

1066171

[8] P.A. Boncz, Kersten M.L., and Stefacn Mangegold. 2008. Breaking the

memory wall in MonetDB. CACM 51, 12 (2008), 77–85.

[9] Nicolas Bruno and Surajit Chaudhuri. 2002. Exploiting statistics on

query expressions for optimization. In SIGMOD. 263–274. https://doi.

org/10.1145/564720.564722

[10] Surajit Chaudhuri and Vivek Narasayya. 2001. Automating statistics

management for query optimizers. In ICDE. 7–20. https://doi.org/10.

1109/69.908978

[11] Anne Condon, Amol Deshpande, Lisa Hellerstein, and Ning Wu. 2009.

Algorithms for distributional and adversarial pipelined filter ordering

problems. ACM Transactions on Algorithms 5, 2 (2009), 1–34. https:

//doi.org/10.1145/1497290.1497300

[12] Pierre-Arnaud Coquelin and Rémi Munos. 2007. Bandit algo-

rithms for tree search. In Uncertainty in Artificial Intelligence. 67–74.
arXiv:arXiv:cs/0703062v1

[13] Harish D., Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying

robust plans through plan diagram reduction. PVLDB 1, 1 (2008),

1124–1140. http://dl.acm.org/citation.cfm?id=1453976

[14] Amol Deshpande. 2004. An initial study of overheads of eddies. SIG-
MOD Record 33, 1 (2004), 44–49. https://doi.org/10.1145/974121.974129

[15] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2006. Adap-

tive Query Processing. Foundations and Trends® in 1, 1 (2006), 1–140.

https://doi.org/10.1561/1900000001

[16] Carmel Domshlak and Zohar Feldman. 2013. To UCT, or not to UCT?.

In International Symposium on Combinatorial Search (SoCS). 1–8. http:

//www.aaai.org/ocs/index.php/SOCS/SOCS13/paper/view/7268

[17] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal.

2011. Performance prediction for concurrent database workloads. In

SIGMOD. 337–348. https://doi.org/10.1145/1989323.1989359

[18] Anshuman Dutt. 2014. QUEST : An exploratory approach to robust

query processing. PVLDB 7, 13 (2014), 5–8.

[19] Anshuman Dutt and Jayant Haritsa. 2014. Plan bouquets: query

processing without selectivity estimation. In SIGMOD. 1039–1050.
https://doi.org/10.1145/2588555.2588566

[20] Amr El-Helw, Ihab F. Ilyas, and Calisto Zuzarte. 2009. StatAdvisor:

recommending statistical views. PVLDB 2, 2 (2009), 1306–1317. http:

//www.vldb.org/pvldb/2/vldb09-525.pdf

[21] Stephan Ewen, Michael Ortega-Binderberger, and Volker Markl. 2005.

A learning optimizer for a federated database management system.

Informatik - Forschung und Entwicklung 20, 3 (2005), 138–151. https:

//doi.org/10.1007/s00450-005-0206-8

[22] Zohar Feldman and Carmel Domshlak. 2014. Simple regret optimiza-

tion in online planning for Markov decision processes. Journal of
Artificial Intelligence Research 51 (2014), 165–205. https://doi.org/10.

1613/jair.4432 arXiv:arXiv:1206.3382v2

[23] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener,

Armando Fox, Michael Jordan, and David Patterson. 2009. Predicting

multiple metrics for queries – better decisions enabled by machine

learning. In ICDE. 592–603.
[24] Sylvain Gelly, L Kocsis, and Marc Schoenauer. 2012. The grand chal-

lenge of computer go:monte carlo tree search and extensions. Commun.
ACM 3 (2012), 106–113. http://dl.acm.org/citation.cfm?id=2093574

[25] Andrey Gubichev, Peter Boncz, Alfons Kemper, and Thomas Neumann.

2015. How good are query optimizers, really? PVLDB 9, 3 (2015),

204–215.

[26] P.J. Haas and A.N. Swami. 2011. Sampling-based selectivity estimation

for joins using augmented frequent value statistics. In ICDE. 522–531.
https://doi.org/10.1109/ICDE.1995.380361

[27] Peter J Haas and Arun N Swami. 1992. Sequential sampling procedures

for query size estimation. SIGMOD Rec. 21, 2 (1992), 341–350. https:

//doi.org/10.1145/141484.130335

[28] Konstantinos Karanasos, Andrey Balmin, Marcel Kutsch, Fatma Ozcan,

Vuk Ercegovac, Chunyang Xia, and Jesse Jackson. 2014. Dynamically

optimizing queries over large scale data platforms. In SIGMOD. 943–
954. https://doi.org/10.1145/2588555.2610531

[29] Levente Kocsis and C Szepesvári. 2006. Bandit based monte-carlo

planning. In European Conf. on Machine Learning. 282–293. http:

//www.springerlink.com/index/D232253353517276.pdf

[30] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. 1986. Op-

timization of Nonrecursive Queries. In VLDB. 128–137. http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1079{&}rep=

rep1{&}type=pdfhttp://dl.acm.org/citation.cfm?id=645913.671481

[31] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein,

and Ion Stoica. 2018. Learning to optimize join queries with deep

reinforcement learning. arXiv:1808.03196 (2018). arXiv:1808.03196

http://arxiv.org/abs/1808.03196

[32] Jiexing Li, Arnd Christian König, Vivek R Narasayya, and Surajit

Chaudhuri. 2012. Robust estimation of resource consumption for SQL

queries using statistical techniques. PVLDB 5, 11 (2012), 1555–1566.

arXiv:1208.0278 http://dl.acm.org/citation.cfm?id=2350229.2350269

[33] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. 1990.

Practical selectivity estimation through adaptive sampling. In SIGMOD.
1–11. https://doi.org/10.1145/93605.93611

[34] Guy Lohman. 2014. Is Query Optimization a “Solved” Problem? SIG-
MOD Blog (2014).

[35] Tanu Malik and Randal Burns. 2007. A black-box approach to query

cardinality estimation. In CIDR. 56–67.
[36] Tanu Malik Tanu Malik, Randal Burns Randal Burns, Nitesh V. Chawla

Nitesh V. Chawla, and Alex Szalay Alex Szalay. 2006. Estimating query

result sizes for proxy caching in scientific database federations. In

ACM/IEEE SC 2006 Conference (SC’06). 102–115. https://doi.org/10.

1109/SC.2006.27

[37] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement

Learning for Join Order Enumeration. arXiv : 1803.00055v2 (2018).

arXiv:arXiv:1803.00055v2

[38] Thomas Neumann and Cesar Galindo-Legaria. 2013. Taking the edge

off cardinality estimation errors using incremental execution. In BTW.

73–92.

[39] Thomas Neumann and Alfons Kemper. 2015. Unnesting Arbitrary

Queries. In BTW. 383–402. http://www.btw-2015.de/res/proceedings/

Hauptband/Wiss/Neumann-Unnesting{_}Arbitrary{_}Querie.pdf

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1167

https://doi.org/10.1145/1066157.1066293
ftp://ftp.cs.brown.edu/pub/techreports/11/cs11-01.pdf
ftp://ftp.cs.brown.edu/pub/techreports/11/cs11-01.pdf
https://doi.org/10.1145/2806416.2806446
http://arxiv.org/abs/1507.08257
https://doi.org/10.1145/342009.335420
https://doi.org/10.1145/342009.335420
http://dl.acm.org/citation.cfm?id=1066172
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1145/564720.564722
https://doi.org/10.1145/564720.564722
https://doi.org/10.1109/69.908978
https://doi.org/10.1109/69.908978
https://doi.org/10.1145/1497290.1497300
https://doi.org/10.1145/1497290.1497300
http://arxiv.org/abs/arXiv:cs/0703062v1
http://dl.acm.org/citation.cfm?id=1453976
https://doi.org/10.1145/974121.974129
https://doi.org/10.1561/1900000001
http://www.aaai.org/ocs/index.php/SOCS/SOCS13/paper/view/7268
http://www.aaai.org/ocs/index.php/SOCS/SOCS13/paper/view/7268
https://doi.org/10.1145/1989323.1989359
https://doi.org/10.1145/2588555.2588566
http://www.vldb.org/pvldb/2/vldb09-525.pdf
http://www.vldb.org/pvldb/2/vldb09-525.pdf
https://doi.org/10.1007/s00450-005-0206-8
https://doi.org/10.1007/s00450-005-0206-8
https://doi.org/10.1613/jair.4432
https://doi.org/10.1613/jair.4432
http://arxiv.org/abs/arXiv:1206.3382v2
http://dl.acm.org/citation.cfm?id=2093574
https://doi.org/10.1109/ICDE.1995.380361
https://doi.org/10.1145/141484.130335
https://doi.org/10.1145/141484.130335
https://doi.org/10.1145/2588555.2610531
http://www.springerlink.com/index/D232253353517276.pdf
http://www.springerlink.com/index/D232253353517276.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1079{&}rep=rep1{&}type=pdf http://dl.acm.org/citation.cfm?id=645913.671481
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1079{&}rep=rep1{&}type=pdf http://dl.acm.org/citation.cfm?id=645913.671481
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1079{&}rep=rep1{&}type=pdf http://dl.acm.org/citation.cfm?id=645913.671481
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1208.0278
http://dl.acm.org/citation.cfm?id=2350229.2350269
https://doi.org/10.1145/93605.93611
https://doi.org/10.1109/SC.2006.27
https://doi.org/10.1109/SC.2006.27
http://arxiv.org/abs/arXiv:1803.00055v2
http://www.btw-2015.de/res/proceedings/Hauptband/Wiss/Neumann-Unnesting{_}Arbitrary{_}Querie.pdf
http://www.btw-2015.de/res/proceedings/Hauptband/Wiss/Neumann-Unnesting{_}Arbitrary{_}Querie.pdf

[40] Hung Q Ngo, Ely Porat, and Christopher Ré. 2012. Worst-case optimal

join algorithms. In PODS. 37–48.
[41] Adrian Daniel Popescu, Andrey Balmin, Vuk Ercegovac, and Anastasia

Ailamaki. 2013. PREDIcT: towards predicting the runtime of large

scale iterative analytics. PVLDB 6, 14 (2013), 1678–1689. https://doi.

org/10.14778/2556549.2556553

[42] PostgreSQL Global Development Group. 2017. PostgreSQL.

https://www.postgresql.org/. https://www.postgresql.org/

[43] Li Quanzhong, ShaoMinglong, VolkerMarkl, Kevin Beyer, Latha Colby,

and Guy Lohman. 2007. Adaptively reordering joins during query

execution. In ICDE. 26–35. https://doi.org/10.1109/ICDE.2007.367848

[44] Vijayshankar Raman Vijayshankar Raman, A. Deshpande, and J.M.

Hellerstein. 2003. Using state modules for adaptive query processing.

In ICDE. 353–364. https://doi.org/10.1109/ICDE.2003.1260805

[45] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil.

2001. LEO - DB2’s LEarning Optimizer. In PVLDB. 19–28.
[46] TPC. 2013. TPC-H Benchmark. http://www.tpc.org/tpch/

[47] Kostas Tzoumas, Timos Sellis, and Christian S Jensen. 2008. A rein-
forcement learning approach for adaptive query processing. Technical
Report.

[48] Todd L. Veldhuizen. 2012. Leapfrog Triejoin: a worst-case optimal join

algorithm. (2012), 96–106. https://doi.org/10.5441/002/icdt.2014.13

arXiv:1210.0481

[49] Stratis D Viglas, Jeffrey F Naughton, and Josef Burger. 2003. Max-

imizing the output rate of multi-way join queries over streaming

information sources. In PVLDB. 285–296. http://dl.acm.org/citation.

cfm?id=1315451.1315477

[50] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-

based query re-optimization. In SIGMOD. 1721–1736. arXiv:1601.05748
http://arxiv.org/abs/1601.05748

A ADDITIONAL EXPERIMENTS
We show results for additional benchmarks and baselines. As

baseline (and underlying execution engine for SkinnerDB),

we add a commercial database system ((“ComDB”) with an

adaptive optimizer. We also re-implemented several research

baselines (we were unsuccessful in obtaining the original

code), notably Eddies [47] and the Re-optimizer [50]. Some of

our implementations are currently limited to simple queries

and can therefore not be used for all benchmarks. The fol-

lowing experiments are executed on the hardware described

before, except for our micro-benchmarks on small data sets

which we execute on a standard laptop with 16 GB of main

memory and a 2.5 GHZ Intel i5-7200U CPU.

We use an extended version of theOptimizer Torture Bench-
mark proposed byWu et al. The idea is to create corner cases

where the difference between optimal and sub-optimal query

plans is significant. UDF Torture designates in the following

a benchmark with queries where each join predicate is a

user-defined function and therefore a black box from the

optimizer perspective. We use one good predicate (i.e., join

with that predicate produces an empty result) per query

while the remaining predicates are bad (i.e., they are always

satisfied for the input data). We experiment with different

table sizes and join graph structures. Correlation Torture is an
extended variant of the original benchmark proposed by Wu

10
0

10
2

10
4

T
i
m
e
(
m
s
)

Chain Queries, 100 tuples/table

4 6 8 10

10
0

10
2

10
4

Tables

T
i
m
e
(
m
s
)

Star Queries, 100 tuples/table

Skinner-C Eddy Optimizer

Reoptimizer Postgres S-G(Postgres)

S-H(Postgres) Com-DB S-G(Com-DB)

S-H(Com-DB) MonetDB

Figure 9: UDF Torture benchmark.

et al [50]. This benchmark introduces maximal data skew

by perfectly correlating values in different table columns.

As in the original benchmark, we create chain queries with

standard equality join and filter predicates. Correlations be-

tween predicates and data skew make it however difficult

for standard optimizers to infer the best query plan. We

vary the position of the good predicate via parameterm be-

tween the beginning of the chain (m = 1) and the middle

(m = nrTables/2).
UDF predicates may hide complex code, invocations of

external services, or even calls to human crowd workers.

They often have to be treated as black boxes from the opti-

mizer perspective which makes optimization hard. Figure 9

(this and the following figures show arithmetic averages over

ten test cases) compares all baselines according to the UDF

Torture benchmark described before (the red line marks the

timeout per test case). Skinner-C generally performs best

in this scenario and beats existing DBMS by many orders

of magnitude. We compare a Java-based implementation

against highly optimized DBMS execution engines. However,

a high-performance execution engine cannot compensate

for the impact of badly chosen join orders. Among the other

baselines using the same execution engine as we do, Eddy

performs best while Optimizer and Re-optimizer incur huge

overheads. Re-optimization is more useful in scenarios where

a few selectivity estimates need to be corrected. Here, we

essentially start without any information on predicate se-

lectivity. For Postgres, our adaptive processing strategies

reduce execution time by up to factor 30 for Postgres and

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1168

https://doi.org/10.14778/2556549.2556553
https://doi.org/10.14778/2556549.2556553
https://www.postgresql.org/
https://doi.org/10.1109/ICDE.2007.367848
https://doi.org/10.1109/ICDE.2003.1260805
http://www.tpc.org/tpch/
https://doi.org/10.5441/002/icdt.2014.13
http://arxiv.org/abs/1210.0481
http://dl.acm.org/citation.cfm?id=1315451.1315477
http://dl.acm.org/citation.cfm?id=1315451.1315477
http://arxiv.org/abs/1601.05748
http://arxiv.org/abs/1601.05748

10
2

10
3

10
4

T
i
m
e
(
m
s
)

m = 1; 1,000,000 tuples/table

4 6 8 10

10
2

10
3

10
4

Tables

T
i
m
e
(
m
s
)

m = nrTables/2; 1,000,000 tuples/table

Skinner-C Eddy Optimizer

Reoptimizer Postgres S-G(Postgres)

S-H(Postgres) Com-DB S-G(Com-DB)

S-H(Com-DB) MonetDB

Figure 10: Correlation Torture benchmark.

large queries. For the commercial DBMS with adaptive opti-

mizer, we achieve a speedup of up to factor 15 (which is in

fact a lower bound due to the timeout).

Even standard equality predicates can make optimization

difficult due to predicate correlations. We evaluate all base-

lines on the Correlation Torture benchmark [50], Figure 10

shows first results. Many of the tendencies are similar to the

ones in the UDF Torture benchmark. Skinner-C performs

best, traditional query optimizers cope badly with strong

predicate correlations. Compared to Figure 9, the relative

performance gap is slightly smaller. At least in this case, UDF

predicates cause more problems than correlations between

standard predicates. Again, our adaptive processing strate-

gies improve performance of Postgres and the commercial

DBMS significantly and for each configuration (query size

and setting form).

A query evaluation method that achieves bounded over-

head in each single case is typically preferred over a method

that oscillates between great performance and significant

overheads (even if the average performance is the same). Fig-

ure 11 summarizes results for a new run of the Correlation

Torture benchmark, varying number of tables, table size, as

well as parameterm. We study robustness of optimization

and focus therefore on baselines that use the same execution

engine. Note that we compare baselines not onlywith regards

to time, but also with regards to the number of predicate

evaluations (see lower row) which depends only on the opti-

mizer. We classify for each baseline a test case as optimizer
failure if evaluation time exceeds the optimum among the

other baselines for that test case by factor 10. We call a test

0

20

40

#
F
a
i
l
u
r
e
s

By Time

0

10

20

#
D
i
s
a
s
t
e
r
s

By Time

4 6 8 10

10

20

30

40

Tables

#
F
a
i
l
u
r
e
s

By #Evaluations

4 6 8 10

5

10

15

20

Tables

#
D
i
s
a
s
t
e
r
s

By #Evaluations

Skinner Eddy Optimizer Reoptimizer

Figure 11: Number of “optimizer failures” and “opti-
mizer disasters”.

4 6 8 10

10
1

10
2

10
3

Tables

T
i
m
e
(
m
s
)

UDF Equality Predicates, 250 tuples/table

Skinner-C Eddy Reoptimizer

Postgres S-G(Postgres) S-H(Postgres)

Com-DB S-G(Com-DB) S-H(Com-DB)

Figure 12: Trivial Optimization benchmark.

case an optimizer disaster for factor 100. The figure shows a
tight race between Eddy and the traditional optimizer. Re-

optimization clearly improves robustness. However, using

our regret-bounded algorithms avoids any failures or disas-

ters and is therefore the most robust optimization method.

All implementations in Figure 11 share code to the extend

possible. Still, some of the baselines need to add code that

could in principle decrease performance (e.g., per-tuple rout-

ing policies for Eddy). To exclude such effects, we also count

the number of atomic predicate evaluations for each baseline

and re-calculate failures and disasters based on that (bottom

row in Figure 11). The tendencies remain the same.

Our primary goal is to achieve robust query evaluation for

corner cases. Still, we also consider scenarios where sophis-

ticated optimization only adds overheads. Figure 12 shows

results for the Trivial Optimization benchmark in which all

query plans avoiding Cartesian products are equivalent. We

are mostly interested in relative execution times obtained

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1169

10
2

10
4

T
i
m
e
(
m
s
)

Standard TPC-H

Q2 Q3 Q5 Q7 Q8 Q9 Q10Q11Q18Q21

10
1

10
4

10
7

Query

T
i
m
e
(
m
s
)

TPC-H with UDFs

Skinner-C Postgres S-G(Postgres)

S-H(Postgres) MonetDB

Figure 13: Performance on TPC-H queries.

for the same execution engine with different optimization

strategies. Clearly, optimizers that avoid any exploration per-

form best in this scenario. For the four baselines sharing the

Java-based execution engine (Optimizer, Re-Optimizer, and

Eddy), this is the standard optimizer. For the baselines that

are based on existing DBMS, the original optimizer works

best in each case. While robustness in corner cases clearly

costs peak performance in trivial cases, the overheads are

bounded.

Finally, we benchmark several baselines on the more com-

plex queries of the TPC-H benchmark [46]. We restrict eval-

uated approaches to the ones where our current implementa-

tion supports the full set of TPC-H queries. Figure 13 reports

processing times of ten TPC-H queries that join at least three

tables. For each query and each approach, we calculate the

relative overhead (i.e., query execution time of approach di-

vided by execution time of best approach for this query). The

“Max. Rel.
´
’ column contains for each approach the maximal

value over all queries. We study original TPC-H queries as

well as a variant that makes optimization hard. The latter

variant replaces all unary query predicates by user-defined

functions. Those user-defined functions are semantically

equivalent to the original predicate. They typically increase

per-tuple evaluation overheads. Most importantly, however,

they prevent the optimizer from choosing good query plans.

The upper half of Figure 13 shows results on original TPC-

H queries while the lower half reports on the UDF variant.

Table 7 summarizes results, reporting total benchmark time

as well as the maximal per-query time overhead (compared

to the optimal execution time for that query over all base-

lines). MonetDB is the clear winner for standard queries (also

note that MonetDB and SkinnerDB are column stores while

Postgres is a row store). SkinnerDB achieves best perfor-

mance on the UDF variant. Among the three Postgres-based

approaches, the original DBMS performs best on standard

cases. The hybrid approach performs reasonably on standard

cases but reduces total execution time by an order of magni-

tude for the UDF scenario. We therefore succeed in trading

peak performance in standard cases for robust performance

in extreme cases.

Table 7: Result summary for TPC-H variants.

Scenario Approach Time (s) Max. Rel.

TPC-H Skinner-C 9 22

Postgres 15 37

S-G(Postgres) 182 594

S-H(Postgres) 38 97

MonetDB 2 3

TPC-UDF Skinner-C 9 3

Postgres 3,117 3,457

S-G(Postgres) 305 154

S-H(Postgres) 142 88

MonetDB 53 20

Research 11: Systems & Machine Learning SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1170

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Algorithms
	4.1 Background on UCT
	4.2 Learning Optimal Join Orders
	4.3 Generic Execution Engines
	4.4 Hybrid Algorithm
	4.5 Customized Execution Engines

	5 Formal Analysis
	5.1 Correctness
	5.2 Regret Bounds

	6 Implementation and Evaluation
	6.1 Experimental Setup
	6.2 Performance on Join Order Benchmark
	6.3 Further Analysis

	7 Conclusion
	References
	A Additional Experiments

