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Abstract—Disk-based database systems use buffer managers
in order to transparently manage data sets larger than main
memory. This traditional approach is effective at minimizing
the number of I/O operations, but is also the major source of
overhead in comparison with in-memory systems. To avoid this
overhead, in-memory database systems therefore abandon buffer
management altogether, which makes handling data sets larger
than main memory very difficult.

In this work, we revisit this fundamental dichotomy and design
a novel storage manager that is optimized for modern hardware.
Our evaluation, which is based on TPC-C and micro benchmarks,
shows that our approach has little overhead in comparison
with a pure in-memory system when all data resides in main
memory. At the same time, like a traditional buffer manager,
it is fully transparent and can manage very large data sets
effectively. Furthermore, due to low-overhead synchronization,
our implementation is also highly scalable on multi-core CPUs.

I. INTRODUCTION

Managing large data sets has always been the raison d’être
for database systems. Traditional systems cache pages using
a buffer manager, which has complete knowledge of all page
accesses and transparently loads/evicts pages from/to disk. By
storing all data on fixed-size pages, arbitrary data structures,
including database tables and indexes, can be handled uniformly
and transparently.

While this design succeeds in minimizing the number of I/O
operations, it incurs a large overhead for in-memory workloads,
which are increasingly common. In the canonical buffer pool
implementation [1], each page access requires a hash table
lookup in order to translate a logical page identifier into an
in-memory pointer. Even worse, in typical implementations
the data structures involved are synchronized using multiple
latches, which does not scale on modern multi-core CPUs. As
Fig. 1 shows, traditional buffer manager implementations like
BerkeleyDB or WiredTiger therefore only achieve a fraction
of the TPC-C performance of an in-memory B-tree.

This is why main-memory database systems like H-Store [2],
Hekaton [3], HANA [4], HyPer [5], or Silo [6] eschew buffer
management altogether. Relations as well as indexes are directly
stored in main memory and virtual memory pointers are used
instead of page identifiers. This approach is certainly efficient.
However, as data sizes grow, asking users to buy more RAM
or throw away data is not a viable solution. Scaling-out an in-
memory database can be an option, but has downsides including
hardware and administration cost. For these reasons, at some
point of any main-memory system’s evolution, its designers
have to implement support for very large data sets.
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Fig. 1. Single-threaded in-memory TPC-C performance (100 warehouses).

Two representative proposals for efficiently managing larger-
than-RAM data sets in main-memory systems are Anti-
Caching [7] and Siberia [8], [9], [10]. In comparison with a
traditional buffer manager, these approaches exhibit one major
weakness: They are not capable of maintaining a replacement
strategy over relational and index data. Either the indexes,
which can constitute a significant fraction of the overall data
size [11], must always reside in RAM, or they require a separate
mechanism, which makes these techniques less general and
less transparent than traditional buffer managers.

Another reason for reconsidering buffer managers are the
increasingly common PCIe/M2-attached Solid State Drives
(SSDs), which are block devices that require page-wise accesses.
These devices can access multiple GB per second, as they
are not limited by the relatively slow SATA interface. While
modern SSDs are still at least 10 times slower than DRAM in
terms of bandwidth, they are also cheaper than DRAM by a
similar factor. Thus, for economic reasons [12] alone, buffer
managers are becoming attractive again. Given the benefits of
buffer managers, there remains only one question: Is it possible
to design an efficient buffer manager for modern hardware?

In this work, we answer this question affirmatively by
designing, implementing, and evaluating a highly efficient
storage engine called LeanStore. Our design provides an
abstraction of similar functionality as a traditional buffer
manager, but without incurring its overhead. As Fig. 1 shows,
LeanStore’s performance is very close to that of an in-memory
B-tree when executing TPC-C. The reason for this low overhead
is that accessing an in-memory page merely involves a simple,
well-predicted if statement rather than a costly hash table
lookup. We also achieve excellent scalability on modern multi-
core CPUs by avoiding fine-grained latching on the hot path.
Overall, if the working set fits into RAM, our design achieves
the same performance as state-of-the-art main-memory database
systems. At the same time, our buffer manager can transparently
manage very large data sets on background storage and, using
modern SSDs, throughput degrades smoothly as the working
set starts to exceed main memory.



II. RELATED WORK

Buffer management is the foundational component in the
traditional database architecture [13]. In the classical design, all
data structures are stored on fixed-size pages in a translation-
free manner (no marshalling/unmarshalling). The rest of the
system uses a simple interface that hides the complexities of
the I/O buffering mechanism and provides a global replacement
strategy across all data structures. Runtime function calls to
pinPage/unpinPage provide the information for deciding
which pages need to be kept in RAM and which can be evicted
to external memory (based on a replacement strategy like
Least-Recently-Used or Second Chance). This elegant design
is one of the pillars of classical database systems. It was also
shown, however, that for transactional, fully memory-resident
workloads a typical buffer manager is the biggest source of
inefficiency [14].

One of the defining characteristics of main-memory databases
is that they do not have a buffer manager. Memory is
instead allocated in variable-sized chunks as needed and data
structures use virtual memory pointers directly instead of page
identifiers. To support data sets larger than RAM, some main-
memory database systems implement a separate mechanism
that classifies tuples as either “hot” or “cold”. Hot tuples are
kept in the efficient in-memory database, and cold tuples are
stored on disk or SSD (usually in a completely different storage
format). Ma et al. [15] and Zhang et al. [16] survey and evaluate
some of the important design decisions. In the following we
(briefly) describe the major approaches.

Anti-Caching [7] was proposed by DeBrabant et al. for
H-Store. Accesses are tracked on a per-tuple instead of a per-
page granularity. To implement this, each relation has an LRU
list, which is embedded into each tuple resulting in 8 byte
space overhead per tuple. Under memory pressure, some least-
recently-used tuples are moved to cold storage (disk or SSD).
Indexes cover both hot as well as cold tuples. Given that it is
not uncommon for indexes to consume half of the total memory
in OLTP databases [11], not being able to move indexes to
cold storage is a major limitation. Thus, Anti-Caching merely
eases memory pressure for applications that almost fit into
main memory and is not a general solution.

Microsoft’s Siberia [10] project is maybe the most compre-
hensive approach for managing large data sets in main-memory
database systems. Tuples are classified as either hot or cold
in an offline fashion using a tuple access log [8]. Another
offline process migrates infrequently accessed tuples between
a high-performance in-memory database and a separate cold
storage in a transactional fashion [10]. Siberia’s in-memory
indexes only cover hot tuples [10] in order to keep these
indexes small. In addition, Bloom filters, which require around
10 bits per key, and adaptive range filters [9] are kept in main
memory to avoid having to access the cold storage on each
tuple lookup. The Siberia approach, however, suffers from high
complexity (multiple offline processes with many parameters,
two independent storage managers), which may have prevented
its widespread adoption.

A very different and seemingly promising alternative is to
rely on the operating system’s swapping (paging) functionality.
Stoica and Ailamaki [17], for example, investigated this
approach for H-Store. Swapping has the major advantage that
hot accesses incur no overhead due to hardware support (the
TLB and in-CPU page table walks). The disadvantage is that
the database system loses control over page eviction, which
virtually precludes in-place updates and full-blown ARIES-style
recovery. The problems of letting the operating system decide
when to evict pages have been discussed by Graefe et al. [18].
Another disadvantage is that the operating system does not
have database-specific knowledge about access patterns (e.g.,
scans of large tables). In addition, experimental results (cf. [18]
and Fig. 9) show that swapping on Linux, which is the most
common server operating system, does not perform well for
database workloads. We therefore believe that relying on the
operating system’s swapping/mmap mechanism is not a viable
alternative to software-managed approaches. Indeed, main-
memory database vendors recommend to carefully monitor
main memory consumption to avoid swapping [19], [20]. An
exception are OLAP-optimized systems like MonetDB, for
which relying on the operating system works quite well.

Funke et al. [21] proposed a hardware-assisted access
tracking mechanism for separating hot and cold tuples in
HyPer. By modifying the Linux kernel and utilizing the proces-
sor’s Memory-Management Unit (MMU), page accesses can be
tracked with very little overhead. Their implementation utilizes
the same mechanism as the kernel to implement swapping
without loosing control over page eviction decisions. It does
not, however, handle index structures. Our approach, in contrast,
is portable as it does not require modifying the operating system
and handles indexes transparently. Combining our approach
with hardware-assisted page access tracking would—at the
price of giving up portability—improve performance further.

SAP HANA has always been marketed as an in-memory
system and, for a long time, a column could only be moved to
or from SSD in its entirety [22]. In a recent paper, Sherkat et
al. [22] describe a new feature that enables block-wise access
to columnar data. Indexes and the delta store, however, still
reside in main memory, which is a major limitation for large
transactional databases.

The fact that practically all in-memory systems have added
some form of support for larger-than-RAM data sets clearly
shows the importance of this feature. Yet we argue that the
techniques discussed above—despite their originality—fall
short of being robust and efficient solutions for the cold storage
problem in transactional or Hybrid Transactional/Analytical
Processing (HTAP) systems. Adding such a foundational feature
to an existing in-memory system as an afterthought will not
lead to the best possible design. We therefore now discuss
a number of recent system proposals that were designed as
storage managers from their very inception.

Bw-tree/LLAMA [23], [24] is a storage engine optimized
for multi-core CPUs and SSDs. In contrast to our design,
updates are performed out-of-place by creating new versions of
modified entries (“deltas”). This design decision has benefits.
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Fig. 2. Tree structure consisting of a root page (P1) and three leaf pages (P2, P4, P3), two of which are in RAM (P2 and P4).

It enables latch-freedom and, for certain write-intensive work-
loads, it can reduce SSD write amplification. The downside is
that creating and traversing deltas is a non-negligible overhead.
Performance is therefore lower than that of in-memory systems
that perform updates in place.

FOEDUS [25] is another recent storage manager proposal.
It has very good scalability on multi-core CPUs as it avoids
unnecessary latch acquisitions, and, like our design, it uses a
buffer manager that caches fixed-size pages in main memory.
However, FOEDUS is optimized for byte-addressable Storage
Class Memories like Phase Change Memory, which have
different properties than SSDs (i.e., byte-addressability).

Pointer swizzling, which is crucial in our design, is an old
technique that has been extensively used in object-oriented
database systems [26]. Swizzling for buffer managers has
only recently been proposed by Graefe et al. [18], who
implemented this idea in the page-based Shore-MT system.
Their design shares important characteristics with our proposal.
However, while their approach succeeds in reducing the
page translation overhead, it does not address the multi-
core scalability issues of page-level latches and mandatory
page pinning. While latch implementations that reduce the
cost of contention (e.g., MCS locks [27]) exist, these still
reduce scalability because of cache invalidations during latch
acquisition. Optimistic locks, in contrast, do not physically
acquire the lock and therefore scale even better.

III. BUILDING BLOCKS

This section introduces the high-level ideas behind LeanStore,
a storage manager for modern hardware (i.e., large DRAM
capacities, fast SSDs, and many cores).

A. Pointer Swizzling

In disk-based database systems, the most important data
structures (e.g., heap files, B-tree indexes) are organized as
fixed-size pages. To refer to other pages, data structures store
logical page identifiers that need to be translated to memory
addresses before each page access. As shown in Fig. 2a, this
translation is typically done using a hash table that contains
all pages currently cached in main memory. Today, database
servers are equipped with main memory capacities large enough
to store the working set of most workloads. As a result, I/O
operations are becoming increasingly uncommon and traditional
buffer managers often become the performance bottleneck [14].

In our design, pages that reside in main memory are directly
referenced using virtual memory addresses (i.e., pointers)—
accessing such pages does not require a hash table lookup.
Pages that are currently on background storage, on the other
hand, are still referenced by their page identifier. This is
illustrated in Fig. 2b, which shows page references as circles
that either contain a pointer or a page identifier. We use pointer
tagging (one bit of the 8-byte reference) to distinguish between
these two states. Consequently, the buffer management overhead
of accessing a hot page merely consists of one conditional
statement that checks this bit.

This technique is called pointer swizzling [28] and has been
common in object databases [29], [26]. A reference containing
an in-memory pointer is called swizzled, one that stores an on-
disk page identifier is called unswizzled. Note that even swizzled
pages have logical page identifiers, which are, however, only
stored in their buffer frames instead of their references.

B. Efficient Page Replacement

Pointer swizzling is a simple and highly efficient approach
for accessing hot pages. However, it does not solve the problem
of deciding which pages should be evicted to persistent storage
once all buffer pool pages are occupied. Traditional buffer
managers use policies like Least Recently Used or Second
Chance, which incur additional work for every page access.
Moreover, for frequently accessed pages (e.g., B-tree roots),
updating access tracking information (e.g., LRU lists, Second
Chance bits) sometimes becomes a scalability bottleneck. Since
our goal is to be competitive with in-memory systems, it is
crucial to have a replacement strategy with very low overhead.
This is particularly important with pointer swizzling as it does
not suffer from expensive page translation.

We therefore deemed updating tracking information for each
page access too expensive and avoid it in our design. Our
replacement strategy reflects a change of perspective: Instead
of tracking frequently accessed pages in order to avoid evicting
them, our replacement strategy identifies infrequently-accessed
pages. We argue that with the large buffer pool sizes that are
common today, this is much more efficient as it avoids any
additional work when accessing a hot page (except for the if
statement mentioned above).

The main mechanism of our replacement strategy is to spec-
ulatively unswizzle a page reference, but without immediately
evicting the corresponding page. If the system accidentally
unswizzled a frequently-accessed page, this page will be quickly



swizzled again—without incurring any disk I/O. Thus, similar
to the Second Chance replacement strategy, a speculatively
unswizzled page will have a grace period before it is evicted.
Because of this grace period, a very simple (and therefore low-
overhead) strategy for picking candidate pages can be used:
We simply pick a random page in the pool.

We call the state of pages that are unswizzled but are still in
main memory cooling. At any point in time we keep a certain
percentage of pages (e.g., 10%) in this state. The pages in the
cooling state are organized in a FIFO queue. Over time, pages
move further down the queue and are evicted if they reach
the end of the queue. Accessing a page in the cooling state
will, however, prevent eviction as it will cause the page to be
removed from the FIFO queue and the page to be swizzled.

cold
(SSD)

hot
(RAM)

cooling
(RAM)

swizzle

unswizzle

evict
load,

swizzle

Fig. 3. The possible states of a page.

The “life cycle” of a page
and its possible states are
illustrated in Fig. 3. Once
a page is loaded from SSD,
it is swizzled and becomes
hot. A hot page may be spec-
ulatively unswizzled and, as
a result, transitions to the
cooling state. A cooling page
can become either hot (on
access) or cold (on eviction).

To summarize, by speculatively unswizzling random pages,
we identify infrequently-accessed pages without having to track
each access. In addition, a FIFO queue serves as a probational
cooling stage during which pages have a chance to be swizzled.
Together, these techniques implement an effective replacement
strategy at low cost.

C. Scalable Synchronization

The design described so far implements the basic functional-
ity of a storage engine but does not support concurrency. Thread
synchronization is tightly coupled with buffer management and
therefore cannot be ignored. For example, before evicting a
particular page, the buffer manager has to ensure that this page
is not currently being accessed by some other thread.

In most buffer manager implementations, synchronization
is implemented using latches. Every page currently in main
memory is associated with a latch. Additional latches protect
the hash table that maps page identifiers to buffer frames. A call
to pinPage will first acquire (and, shortly thereafter, release)
one or more latches before latching the page itself. The page
remains latched—and, as a consequence, cannot be evicted—
until unpinPage is called. Note that the page latches serve
two distinct purposes: They prevent eviction and they are used
to implement data structure specific synchronization protocols
(e.g., lock coupling in B-trees).

Latch-based synchronization is one of the main sources of
overhead in traditional buffer managers. One problem is the
sheer number of latch acquisitions. In Shore-MT, for example, a
single-row update transaction results in 15 latch acquisitions for
the buffer pool and the page latches [30]. An even larger issue
is that some latches are acquired frequently by different threads.

For example, both the latch of a B-tree root and the global
latch for the hash table that translates page identifiers are often
critical points of contention. Due to the way cache coherency
is implemented on typical multi-core CPUs, such “hot” latches
will prevent good scalability (“cacheline ping-pong“).

As a general rule, programs that frequently write to memory
locations accessed by multiple threads do not scale. LeanStore
is therefore carefully engineered to avoid such writes as much
as possible by using three techniques: First, pointer swizzling
avoids the overhead and scalability problems of latching the
translation hash table. Second, instead of preventing page
eviction by incrementing per-page pinning counters, we use
an epoch-based technique that avoids writing to each accessed
page. Third, LeanStore provides a set of optimistic, timestamp-
based primitives [31], [32], [33] that can be used by buffer-
managed data structures to radically reduce the number of latch
acquisitions. Together, these techniques (described in more
detail in Section IV-F and Section IV-G) form a general frame-
work for efficiently synchronizing arbitrary buffer-managed
data structures. In LeanStore, lookups on swizzled pages do not
acquire any latches at all, while insert/update/delete operations
usually only acquire a single latch on the leaf node (unless
a split/merge occurs). As a result, performance-critical, in-
memory operations are highly scalable.

IV. LEANSTORE

In this section, we describe how LeanStore is implemented
using the building blocks presented in Section III.

A. Data Structure Overview

In a traditional buffer manager, the state of the buffer pool
is represented by a hash table that maps page identifiers to
buffer frames. Frames contain a variety of “housekeeping”
information, including (1) the memory pointer to the content of
the page, (2) the state required by the replacement strategy (e.g.,
the LRU list or the Second Chance bit), and (3) information
regarding the state of the page on disk (e.g., dirty flag, whether
the page is being loaded from disk). These points correspond to
3 different functions that have to be implemented by any buffer
manager, namely (1) determining whether a page is in the
buffer pool (and, if necessary, page translation), (2) deciding
which pages should be in main memory, and (3) management of
in-flight I/O operations. LeanStore requires similar information,
but for performance reasons, it uses 3 separate, customized data
structures. The upper half of Fig. 4 shows that a traditional page
translation table is not needed because its state is embedded in
the buffer-managed data structures itself. The information for
implementing the replacement strategy is moved into a separate
structure, which is called cooling stage and is illustrated in
the lower-left corner of Fig. 4. Finally, in-flight I/O operations
are managed in yet another structure shown in the lower-right
corner of Fig. 4.

B. Swizzling Details
Pointer swizzling plays a crucial role in our design. We call

the reference, i.e., the 8-byte memory location referring to a
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Fig. 4. Overview of LeanStore’s data structures. Page P1 represents a root
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P7 and P3 are on persistent storage with P3 currently being loaded.

page, a swip. A swip may either be swizzled (i.e., it stores
an in-memory pointer) or unswizzled (i.e., it stores an on-disk
page identifier). In Fig. 4, swips are shown as circles storing
either a pointer (arrow) or a page identifier (P. . . ). While most
swips will typically reside on buffer-managed pages, some
swips, for example the swips pointing to B-tree root pages,
are stored in memory areas not managed by the buffer pool.
In the figure, this is the case for the swip labeled as “root”,
which is stored outside of the buffer manager.

In a traditional buffer manager, the translation table that
maps page identifiers to pointers is the single source of truth
representing the state of the buffer pool. Pages are always
accessed through this indirection and latches are used for
synchronization. As a result, implementing operations like
page eviction is fairly straightforward. In a pointer swizzling
scheme, in contrast, the information of the translation table
is decentralized and embedded in the buffer-managed data
structure itself, which makes things more complicated. Consider,
for example, a page Px that is referenced by the two pages Py
and Pz. In this situation, Px can be referenced by one swizzled
and one unswizzled swip at the same time. Maintaining
consistency, in particular without using global latches, is very
hard and inefficient. Therefore, in LeanStore, each page has
a single owning swip, which avoids consistency issues when
it is (un)swizzled. Consequently, each buffer-managed data
structure becomes tree-like and the buffer pool in its entirety a
forest of pages. Since each page in the buffer pool is referenced
by exactly one swip, we also say a page can be (un)swizzled,
depending on the state of the swip referencing it.

Another design decision is that we never unswizzle (and
therefore never evict) a page that has swizzled children. A

B-tree inner node, for example, can only be unswizzled (and
eventually evicted) if all of its child nodes have been unswizzled.
Otherwise pages containing memory pointers might be written
out to disk, which would be a major problem because a pointer
is only valid during the current program execution. To avoid this
situation, buffer-managed data structures implement a special
swip iteration mechanism that is described in Section IV-E.
It ensures that, if an inner page happens to be selected for
speculative unswizzling and at least one of its children is
swizzled, one of these children is selected instead. While
this situation is infrequent in normal operation (as there are
typically many more leaf pages than inner pages), it needs to
be handled for correctness. Also note that for tree-like data
structures, preventing the eviction of a parent before its children
is beneficial anyhow, as it reduces page faults.

C. Cooling Stage
The cooling stage is only used when the free pages in the

buffer pool are running out. From that moment on, the buffer
manager starts to keep a random subset of pages (e.g., 10% of
the total pool size) in the cooling state. Most of the in-memory
pages will remain in the hot state. Accessing them has very
little overhead compared to a pure in-memory system, namely
checking one bit of the swip.

As the lower left corner of Fig. 4 illustrates, cooling pages
are organized in a FIFO queue. The queue maintains pointers
to cooling pages in the order in which they were unswizzled,
i.e., the most recently unswizzled pages are at the beginning
of the queue and older pages at the end. When memory for
a new page is needed, the least recently unswizzled page is
used (after flushing it if it is dirty).

When an unswizzled swip is about to be accessed (e.g., swip
P8 on page P1), it is necessary to check if the referenced page
is in the cooling stage. In addition to the queue, the cooling
stage therefore maintains a hash table that maps page identifiers
to the corresponding queue entries. If the page is found in the
hash table, it is removed from the hash table and from the
FIFO queue before it is swizzled to make it accessible again.

Moving pages into the cooling stage could either be done (1)
asynchronously by background threads or (2) synchronously by
worker threads that access the buffer pool. We use the second
option in order to avoid the risk of background threads being
too slow. Whenever a thread requests a new, empty page or
swizzles a page, it will check if the percentage of cooling pages
is below a threshold and will unswizzle a page if necessary.

Our implementation uses a single latch to protect the data
structures of the cooling stage. While global latches often
become scalability bottlenecks, in this particular case, there is
no performance problem. The latch is only required on the cold
path, when I/O operations are necessary. Those are orders of
magnitude more expensive than a latch acquisition and acquire
coarse-grained OS-internal locks anyway. Thus the global latch
is fine for both in-memory and I/O-dominated workloads.

D. Input/Output
Before a cold page can be accessed, it must be loaded

from persistent storage. One potential issue is that multiple



threads can simultaneously try to load the same page. For
correctness reasons, one must prevent the same page from
appearing multiple times in the buffer pool. Also, it is obviously
more efficient to schedule the I/O operation just once.

Like traditional buffer managers, we therefore manage and
serialize in-flight I/O operations explicitly. As Fig. 4 (lower-
right corner) illustrates, we maintain a hash table for all pages
currently being loaded from disk (P3 in the figure). The hash
table maps page identifiers to I/O frames, which contain an
operating system mutex and a pointer to a newly allocated
page. A thread that triggers a load first acquires a global latch,
creates an I/O frame, and acquires its mutex. It then releases
the global latch and loads the page using a blocking system
call (e.g., pread on Unix). Other threads will find the existing
I/O frame and block on its mutex until the first thread finishes
the read operation.

We currently use the same latch to protect both the cooling
stage and the I/O component. This simplifies the implemen-
tation considerably. It is important to note, however, that this
latch is released before doing any I/O system calls. This
enables concurrent I/O operations, which are crucial for good
performance with SSDs. Also let us re-emphasize that this
global latch is not a scalability bottleneck, because—even with
fast SSDs—an I/O operation is still much more expensive than
the latch acquisition.

E. Buffer-Managed Data Structures

The main feature of a buffer manager is its support for
arbitrary data structures while maintaining a single replacement
strategy across the entire buffer pool. Another advantage is that
this is achieved without the need to understand the physical
organization of pages (e.g., the layout of B-tree leaves), which
allows implementing buffer-managed data structures without
modifying the buffer manager code itself. In the following we
describe how LeanStore similarly supports (almost) arbitrary
data structures in a non-invasive way.

As mentioned in Section IV-B, our swizzling scheme requires
that child pages are unswizzled before their parents. To
implement this, the buffer manager must be able to iterate
over all swips on a page. In order to avoid having to know
the page layout, every buffer-managed data structure therefore
implements an “iteration callback”. When called for a leaf page,
this callback simply does nothing, whereas for an inner page, it
iterates over all swips stored on that page. Any buffer-managed
data structure must implement this callback and register it with
the buffer manager. In addition, pages must be self-describing,
i.e., it needs to be possible to determine which callback function
the page is associated with. For this reason, every page stores
a marker that indicates the page structure (e.g., B-tree leaf or
B-tree inner node).

Using the callback mechanism, the buffer manager can
determine whether a page can be unswizzled. If a page has
no children or all child pages are unswizzled, that page can
be unswizzled. If a swizzled child swip is encountered, on
the other hand, the buffer manager will abort unswizzling that
node. Instead, it will try to unswizzle one of the encountered
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swizzled child pages (randomly picking one of these). Note
that this mechanism, which is illustrated in Fig. 5, implicitly
prioritizes inner pages over leaf pages during replacement.

In order to unswizzle a page, besides the callback mechanism,
it is also necessary to find the parent page of the eviction
candidate. Our implementation uses parent pointers, which are
stored in the buffer frame. The parent pointers allow one to
easily access the parent page when unswizzling and must be
maintained by each data structure. Maintaining these parent
pointers is not expensive in our design, because child nodes
are always unswizzled before their parents and because parent
pointers are not persisted.

As mentioned earlier, in our current implementation every
page has one swip, i.e., one incoming reference. This design
decision simplifies bookkeeping for unswizzling and was also
made by Graefe et al.’s swizzling-based buffer manager [18].
However, this is not a fundamental limitation of our approach.
An alternative implementation, in which a page can have
multiple incoming pointers, would also be possible. One way
to achieve this is to store multiple parent pointers in each
frame, which would already be enough to implement inter-leaf
pointers in B+-trees. A more general approach would be to
keep storing only one parent per page, but have two classes
of swips. There would be normal swips that, as in our current
design, are linked through parent pointers. In addition, one
would have “fat” swips that contain both the page identifier
and a pointer.

While our design does impose some constraints on data
structures (fixed-size pages and parent pointers), the internal
page layout as well as the structural organization are flexible.
For example, in prior work [34], we developed a hash index that
can directly be used on top of LeanStore: In this data structure,
the fixed-size root page uses a number of hash bits to partition
the key space (similar to Extendible Hashing). Each partition
is then represented as a space-efficient hash table (again using
fixed-size pages). Heaps can be implemented similar to B-trees
using the tuple identifier as a key. Given that tuple identifiers
are often (nearly) dense, one can use special node layouts
to avoid the binary search used in B-trees and support very
fast scans. The custom node layout also allows implementing
columnar storage and compression.
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F. Optimistic Latches

As Fig. 4 illustrates, each page in the buffer pool is
associated with a latch. In principle, it would be possible
to implement synchronization similar to that of a traditional
buffer manager. By acquiring per-page latches on every page
access, pages are “pinned” in the buffer pool, which prevents
their eviction. Unfortunately, as discussed in Section III-C,
requiring frequent latch acquisitions would prevent any buffer-
managed data structure from being scalable on multi-core
CPUs. To be competitive with pure in-memory systems (in
terms of performance and scalability), for a buffer manager it
is therefore crucial to offer means for efficient synchronization.

The first important technique is to replace the conventional
per-page latches with optimistic latches [31], [32], [33]. Inter-
nally, these latches have an update counter that is incremented
after every modification. Readers can proceed without acquiring
any latches, but validate their reads using the version counters
instead (similar to optimistic concurrency control). The actual
synchronization protocol is data-structure specific and different
variants can be implemented based on optimistic latches.
One possible technique is Optimistic Lock Coupling [33],
which ensures consistent reads in tree data structures without
physically acquiring any latches during traversal. Optimistic
Lock Coupling has been shown to be good at synchronizing
the adaptive radix tree [35], [33] and B-tree [36]. In this
scheme, writers usually only acquire one latch for the page
that is modified, and only structure modification operations
(e.g., splits) latch multiple pages.

G. Epoch-Based Reclamation

With optimistic latches, pages that are being read are neither
latched nor pinned. This may cause problems if some thread
wants to evict or delete a page while another thread is still
reading the page. To solve this problem, we adopt an epoch-
based mechanism, which is often used to implement memory
reclamation in latch-free data structures [6], [32], [23].

The basic idea is to have one global epoch counter which
grows periodically, and per-thread local epoch counters. These
are shown at the right of Fig. 6. Before a thread accesses any
buffer-managed data structure, it sets its local epoch to the
current global epoch, which conceptually means that the thread
has entered that epoch. In Fig. 6, thread 1 has entered epoch e9,
while thread 3 is still in epoch e5. When a thread is finished
accessing the data structure, it sets its local epoch to a special
value (∞) that indicates that the thread does not access any

data at the moment (thread 2 in the example).
When a page is unswizzled, it cannot be reused immediately

(as other threads might still be reading from it). For this reason,
we associate pages in the cooling stage with the global epoch at
the time of unswizzling. (Note that only cooling pages need to
be associated with an epoch, not hot pages.) In the example in
Fig. 6, page P8 was put into the cooling stage during epoch e4,
and page P2 in epoch e7. Right before a page is actually evicted
(which happens when the page reaches the end of the FIFO
queue), its associated epoch is compared with the minimum
of all local epochs. Only if the minimum is larger than the
associated epoch, the page can be safely reused since then it is
ensured that no thread can read that page anymore. Since the
minimum observed epoch of all threads in the example is e5,
P8 can be safely evicted, while P2 is kept in the cooling stage
until after thread 3 is finished with its current operation. It is
unlikely that this check leads to further delay, since it takes
quite some time for a page to reach the end of the FIFO queue.
Checking this condition is, however, necessary for correctness.

Note that incrementing the global epoch very frequently may
result in unnecessary cache invalidations in all cores, whereas
very infrequent increments may prevent unswizzled pages from
being reclaimed in a timely fashion. Therefore, the frequency of
global epoch increments should be proportional to the number
of pages deleted/evicted but should be lower by a constant
factor (e.g., 100).

To make epochs robust, threads should exit their epoch
frequently, because any thread that holds onto its epoch for too
long can completely stop page eviction and reclamation. For
example, it might be disastrous to perform a large full table
scan while staying in the same local epoch. Therefore, we
break large operations like table scans into smaller operations,
for each of which we acquire and release the epoch. We also
ensure that I/O operations, which may take a fairly long time,
are never performed while holding on to an epoch. This is
implemented as follows: If a page fault occurs, the faulting
thread (1) unlocks all page locks, (2) exits the epoch, and
(3) executes an I/O operation. Once the I/O request finishes,
we trigger a restart of the current data structure operation
by throwing a C++ exception. Each data structure operation
installs an exception handler that restarts the operation from
scratch (i.e., it enters the current global epoch and re-traverses
the tree). This simple and robust approach works well for
two reasons: First, in-memory operations are very cheap in
comparison with I/O. Second, large logical operations (e.g., a
large scan) are broken down into many small operations; after
a restart only a small amount of work has to be repeated.

H. Memory Allocation and NUMA-Awareness

Besides enabling support for larger-than-RAM data sets,
a buffer manager also implicitly provides functionality for
memory management—similar to a memory allocator for an
in-memory system. Memory management in a buffer pool is
simplified, however, due to fixed-size pages (and therefore only
a single allocation size). Buffer-managed systems also prevent



memory fragmentation, which often plagues long-running in-
memory systems.

LeanStore performs one memory allocation for the desired
buffer pool size. This allocation can either be provided
physically by the operating system on demand (i.e., first
access) or be pre-faulted on startup. LeanStore also supports
Non-Uniform Memory Access (NUMA)-aware allocation in
order to improve performance on multi-socket systems. In
this mode, newly allocated pages are allocated on the same
NUMA node as the requesting thread. NUMA-awareness is
implemented by logically partitioning the buffer pool and the
free lists into as many partitions as there are NUMA nodes.
Besides the buffer pool memory itself, all other data structures
(including the cooling stage) are centralized in order to maintain
a global replacement strategy. NUMA-awareness is a best effort
optimization: if no more local pages are available, a remote
NUMA page will be assigned.

I. Implementation Details and Optimizations

Let us close this section by mentioning some implementation
details and optimizations that are important for performance.

On top of LeanStore, we implemented a fairly straightfor-
ward B+-tree (values are only stored in leaf nodes). The most
interesting aspect of the implementation is the synchronization
mechanism. Reads are validated using the version counters
embedded into every latch and may need to restart if a conflict
is detected. Range scans that span multiple leaf nodes are
broken up into multiple individual lookups by using fence
keys [37]. Together with the efficient synchronization protocol,
breaking up range lookups obviates the need for the leaf links,
which are common in traditional disk-based B+-trees. An insert,
delete, or update operation will first traverse the tree like a
lookup, i.e., without acquiring any latches. Once the leaf page
that needs to be modified is found, it is latched, which excludes
any potential writers (and invalidates potential readers). If no
structure-modifying operation (e.g., a node split) is needed
(e.g., there is space to insert one more entry), the operation can
directly be performed and the latch can be released. Structure-
modifying operations release the leaf latch and restart from
the root node—but this time latching all affected inner nodes.

In LeanStore, buffer frames are physically interleaved
with the page content (Fig. 2b). This is in contrast with most
traditional buffer managers that store a pointer to the page
content in the buffer frame (Fig. 2a). Interleaving the buffer
frames improves locality and therefore reduces the number of
cache misses because the header of each page is very frequently
accessed. A second, more subtle, advantage of interleaving
is that it avoids performance problems caused by the limited
CPU cache associativity: At typical power-of-two page sizes
(and without interleaving), the headers of all pages fall into
the same associativity set and only a small number of headers
can reside in cache (e.g., 8 for the L1 caches of Intel CPUs).

Because we avoid pinning pages, a page cannot be reused
immediately after unswizzling it. This applies not only to
pages that are speculatively unswizzled but also to pages that

are explicitly deleted (e.g., during a merge operation in a B-
tree). One solution is to use the same mechanism described
in Section IV-G, i.e., to put the deleted page into the cooling
stage. In our implementation, each thread has a small thread-
local cache for deleted pages. Just like in the cooling stage,
the entries are associated with the epoch (of the moment of
their deletion). When a thread requests a new, empty page, it
consults its local cache and, if the global epoch has advanced
sufficiently, chooses a page from the local cache instead of
the cooling stage. As a result, deleted pages are reused fairly
quickly, which improves cache locality and avoids negative
effects on the replacement strategy.

Previously, we argued against asynchronous background
processes, because they can cause unpredictable behavior and
often have complex, hard-to-tune parameters. We make one
exception for writing out dirty pages in the background. Like
in traditional buffer managers, we use a separate background
writer thread to hide the write latency that would otherwise be
incurred by worker threads. Our background writer cyclically
traverses the FIFO queue of the cooling stage, flushes dirty
pages, and clears the dirty flag.

To enable fast scans, LeanStore implements I/O prefetching.
Using the in-flight I/O component, scans can schedule multiple
page requests without blocking. These I/Os are then executed
in the background. Once a prefetching request is finished,
the corresponding page becomes available to other threads
through the cooling stage. Another optimization for large scans
is hinting. Leaf pages accessed by scans can be classified as
cooling instead of hot after being loaded from SSD. These
pages are therefore likely to be evicted quickly. Also, since the
cooling stage size is limited, no hot pages need to be unswizzled.
As a consequence, only a small fraction of the buffer pool will
be invalidated during the scan—avoiding thrashing.

V. IN-MEMORY EVALUATION

In this section, we investigate the performance and scalability
of LeanStore using data sets that fit into main memory. Out-
of-memory workloads are evaluated in Section VI.

A. Experimental Setup

The implementation of LeanStore and the B-tree (actually
a B+-tree) amounts to around 4 K lines of heavily-templated
C++11 code (excluding the benchmarking code). Both the in-
memory B-tree and the buffer-managed B-tree have the same
page layout and synchronization protocol. This allows us to
cleanly quantify the overhead of buffer management.

We use BerkeleyDB 6.0 and WiredTiger 2.9 to compare our
design with traditional buffer managers. While BerkeleyDB
was initially released in 1994, it is still widely used, for
example, as the storage manager of the Oracle NoSQL Database.
WiredTiger is a more recent development that has become
the default storage engine of MongoDB. Both are standalone
storage managers that implement a buffer manager and use
fine-grained latches to support concurrency. We configured
BerkeleyDB and WiredTiger to use B-trees (BerkeleyDB also
supports hashing and WiredTiger supports LSM-trees). For
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Fig. 7. Impact of the 3 main LeanStore features.

both storage managers, we disabled transactions, logging,
compaction, and compression.

The storage managers are directly linked/compiled into our
test driver, which implements TPC-C (without “think” times)
as well as a number of micro benchmarks. Note that even
without transactional semantics, TPC-C, which consists of
inserts, updates, deletes and range scans, is a fairly complex
workload for any storage manager. In terms of access patterns,
there are tables with high locality as well as randomly accessed
tables and the benchmark is very insert-heavy. We use 16 KB
pages and each relation is represented as a single B-tree (no
horizontal partitioning into separate trees).

The experiments were performed on a Linux 4.8 system
with an Intel Xeon E5-2687W v3 CPU (3.1 GHz, Haswell EP,
10 cores, 20 hardware threads) and 64 GB of main memory.

B. TPC-C

Let us begin with a number of in-memory experiments using
TPC-C. We use 100 warehouses, which amounts to (initially)
10 GB, and a buffer pool large enough to encompass all of it.
As Fig. 1 (on page 1) shows, with a single thread, LeanStore
achieves 67 K transactions per second. The in-memory B-tree is
slightly faster at 69 K tps. BerkeleyDB and WiredTiger achieve
only 10 K and 16 K tps, respectively.

To better understand which of LeanStore’s design decisions
are most important, we disabled some of its crucial features.
Specifically, we replaced pointer swizzling with traditional hash
table lookups, implemented LRU instead of our lean eviction
strategy, and used traditional latches instead of optimistic
latches. The performance of the resulting system, which
resembles a traditional buffer manager, is shown in Fig. 7
(labeled as “baseline”). The figure also shows the performance
when swizzling, our replacement strategy, and optimistic latches
are enabled step by step. In the single-threaded case, pointer
swizzling and our replacement strategy (labeled as “lean evict”)
are the largest factors, which together result in around 2×
performance gain. The optimistic latches are only slightly
faster than traditional latches, as single-threaded execution
does not suffer from any latch contention. The multi-threaded
results show a very different picture. First, the performance
differences are much larger. Second, all three features are
crucial for obtaining good performance as any scalability
bottleneck will result in dramatically lower performance. Using
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Fig. 8. Multi-threaded, in-memory TPC-C on 10-core system.

a global hash table for page translation or a single LRU list
or traditional latches immediately prohibits scaling with 10
threads. These results highlight the huge overhead of traditional
buffer managers, in particular in a multi-threaded setting, but
also show that it is indeed possible to implement a buffer
manager with very little overhead.

The performance difference between traditional storage
engines and LeanStore becomes even larger when multiple
threads are used. As Fig. 8 shows, BerkeleyDB barely scales
at all. Its peak performance is 20 K transactions per second
with 5 threads (speedup 2.4×). WiredTiger scales better than
BerkeleyDB and achieves a speedup of 8.8× with 20 threads.
The in-memory B-tree and LeanStore both use the same
optimistic synchronization protocol, which enables excellent
scalability. Also, there is no contention on the cooling stage
latch as it is unused for in-memory workloads. LeanStore
achieves a speedup of 8.8× with 10 threads, and 12.6× with
HyperThreading.

C. System Comparison

Let us now look at other systems besides BerkeleyDB
and WiredTiger. One relevant comparison is to the swizzling-
based Shore-MT variant [18]. In a very similar setup as our
experiments (in-memory TPC-C with 100 warehouses, 12
clients, no locking, and no logging), it achieves around 70K
transactions per second (cf. Figure 14 in [18]), which is 10x
less than LeanStore. We believe that this is due to Shore-MT
having been designed for a disk-based setting (and therefore
having higher CPU overhead) and the scalability issues of
fine-grained latches.

Silo [6] and FOEDUS [25] are more recent systems. While
they cannot be configured to disable transactions and use
different TPC-C implementations, a comparison with these
systems is still interesting. Silo achieves 805K and FOEDUS
1,109K TPC-C transactions per second on our machine.
LeanStore’s performance lies in between with 845K txns/sec.
FOEDUS performs better than LeanStore and Silo because of
workload-specific access path optimizations (e.g., non-growing
tables are stored as fixed-size arrays instead of trees, tables
are vertically partitioned into static and dynamic attributes,
one table is implemented as an append-only structure). While
we used general-purpose B-tree, custom structures can be
integrated into LeanStore too (cf. Section IV-E).



TABLE I
LEANSTORE SCALABILITY RUNNING TPC-C ON 60-CORE NUMA SYSTEM.

remote
txns/sec speedup accesses

1 thread 45K 1.0× 7%
60 threads: baseline 1,500K 33.3× 77%
+ warehouse affinity 2,270K 50.4× 77%
+ pre-fault memory 2,370K 52.7× 75%
+ NUMA awareness 2,560K 56.9× 14%

D. Scalability on Many-Core Systems

Besides the 10-core system, we also investigated LeanStore’s
scalability on a 60-core NUMA system, which consists of four
15-core Intel Xeon E7-4870 v2 CPUs (Ivy Bridge, 2.3GHz).
Achieving good scalability on such systems is challenging
and requires additional optimizations because of the (1) large
number of cores, (2) high synchronization cost due to the lack
of shared L3 cache, and (3) NUMA. Table I shows the TPC-C
performance and speedup with 60 threads and 60 warehouses.
The baseline speedup of 33.3× can be increased to 50.4× by
assigning each worker thread a local warehouse. This well-
known, TPC-C specific optimization [6] reduces contention
in the workload. Another optimization, which increases the
speedup to 52.7×, is to pre-fault the buffer pool memory
to avoid scalability issues in the operating system. The final
change, explicit NUMA-awareness, reduces the percentage
of NUMA-remote DRAM accesses from 75% to 14% and
improves performance by 8%. With all optimizations enabled
and 60 threads, LeanStore achieves a speedup of 56.9×.

VI. OUT-OF-MEMORY EVALUATION

Let us now focus on experiments with data sets that are
larger than main memory, which are, after all, the reason for
buffer managers. For storage, the system has a PCIe-attached
400 GB Intel DC P3700 SSD, which provides 2,700/1,080
MB sequential read/write throughput per second—and, like
most SSDs, can achieve similar performance with random
I/O. Such high-performance SSDs have been commercially
available for some time now and are quite affordable. The
recently-launched Samsung 960 PRO SSD, for example, offers
performance similar to our device for less than $0.7 per GB.

With our high-end SSD, which uses the recently-introduced
NVMe interface, we ran into a number of Linux scalability
issues, in particular when performing many random reads and
writes simultaneously. I/O operations are therefore performed
using direct I/O (O_DIRECT), which prevents operating system
caching and makes performance more stable. We also found
the file system (ext4) to be a scalability bottleneck, even though
our database is organized as a single large file. In addition to
using direct I/O, we therefore access the SSD directly as a
block device avoiding file system overhead altogether.

A. TPC-C

In the first out-of-memory experiment, the data initially fits
into main memory, but then, because of the high write rates of
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Fig. 9. TPC-C with 20 GB buffer pool (100 warehouses, 20 threads). The
data grows from 10 GB to 50 GB—exceeding the buffer pool.

TPC-C, quickly grows to more than twice the size of the buffer
pool. For LeanStore, BerkeleyDB, and WiredTiger, the buffer
pool size is set to 20 GB. We also measured the performance of
the in-memory B-tree when its memory is restricted to 20 GB
and the SSD as a swapping device.

The results in Fig. 9 show that the performance of LeanStore
stays close to the in-memory performance although around
500 MB/sec are written out to the SSD in the background.
Performance stays very high because the replacement strategy
is successful in identifying the working set, which stays in the
buffer pool. With swapping the situation looks very different;
performance drops severely and is highly unstable, which shows
that current implementations of swapping are not a viable
alternative. The performance of BerkeleyDB is generally very
low and it takes over 10 minutes (not fully shown in the graph)
before the buffer pool is exhausted. WiredTiger performs much
better than BerkeleyDB, but is still slower by more than 2x
compared to LeanStore.

As another I/O-based experiment, we measured the “ramp-
up time” from cold cache (e.g., starting the database after a
clean shutdown) for a 10 GB database. Besides the PCIe SSD
(Intel DC P3700 SSD), we used a low-end consumer SATA
SSD (Crucial m4), and a magnetic disk (Western Digital Red)
to measure the influence of different storage devices. With the
PCIe SSD, peak performance is reached after around 8 seconds
whereas the SATA SSD takes longer with 35 seconds. The disk,
on the other hand, only achieves around 10 (!) transactions per
second for around 15 minutes, because the working set of TPC-
C is loaded using a random access pattern. The disk can only
read in pages into the buffer pool at around 5 MB/sec, whereas
the random access pattern does not impede the performance
of SSDs. The large performance gap between magnetic disks
and main memory is likely one of the reasons for why disk-
based systems have fallen out of fashion. Once I/O becomes
necessary, performance often “drops off a cliff”. With modern
SSDs, on the other hand, performance degrades much more
gracefully. High-performance storage engines like LeanStore
therefore should only be used with fast storage devices such
as SSDs—not disks.
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normalized by the 10% cooling pages setting.

B. Point Lookups

All experiments so far were based on TPC-C, which—while
certainly being challenging—may not be representative of
many real-world workloads. In particular, TPC-C is very insert-
heavy (it has a low select to insert ratio), has a number of
large relations (stock, customer) that are accessed in a
completely random fashion, the largest relation (orderline)
has a very peculiar access pattern. As a result, the working set
is a significant fraction of the total data size.

To model common workloads, we therefore implemented
a read-only micro benchmark similar to YCSB workload C.
Our data set has 5 GB and consists of one B-tree storing
41 M key/value pairs (the keys are 8 bytes, the values are 120
bytes) and the buffer pool size is 1 GB. We perform lookups
with 20 threads by drawing keys from a uniform or Zipf
distribution and use a cooling stage size of 10%. Fig. 10
shows the lookup performance and the number of read I/O
operations per second under varying degrees of skew. In low
skew settings, the majority of all lookups lead to page faults
and the throughput is therefore close to the number of I/O
operations. As the skew increases and the number of page
faults decreases, much higher performance is achieved. These
results show that our replacement strategy effectively identifies
the working set.

Our replacement strategy’s only parameter is the percentage
of pages in the cooling stage. To find a good setting, we varied
the size of the cooling stage from 1% to 50%. Fig. 11 shows
the results, which are normalized using the 10% setting, for

different levels of skew. The performance is very stable under
different cooling stage sizes—in particular for “reasonable”
settings between 5% and 20% percent. Under low skew (below
1.55), performance decreases with larger cooling stage sizes,
since there is basically no working set to be identified and
wasting any memory for the cooling stage is unnecessary. Under
very high skew (above 1.7), on the other hand, the working
set is tiny, and can quickly be identified—with a small as well
as a large cooling stage.

Only for very specific skew settings (around 1.6), one can
observe performance that is more than 10% off from the
optimum. For these skew settings, the working set is close to
the buffer pool size. If the cooling stage size is too large,
performance is affected by frequently (and unnecessarily)
swizzling and unswizzling hot pages. In other settings (e.g.,
1.7), the working set cannot effectively be identified if the
cooling stage size parameter is too small. We can generally
recommend a value of 10% for the cooling stage size as a
default setting, because this offers a good tradeoff between the
factors described above.

Besides executing the workload in LeanStore directly, we
also traced all page accesses and simulated different replace-
ment strategies. The page hit rates for a 5 GB data set, 1 GB
buffer pool, and a Zipf factor of 1.0 are as follows:

LeanEvict

Random FIFO 5% 10% 20% 50% LRU 2Q OPT

92.5% 92.5% 92.7% 92.8% 92.9% 93.0% 93.1% 93.8% 96.3%

These results show that the page hit rate of our replacement
strategy (“LeanEvict”) lies between that of very simple strate-
gies (random and FIFO) and that of more elaborate techniques
(LRU, 2Q). However, with the exception of the optimal
replacement strategy (“OPT”), which is only of theoretical
interest, all approaches are fairly close. Also note that the page
hit rates do not directly translate into performance, as more
complex strategies like LRU and 2Q would also result in a
higher runtime overhead that is not captured in page hit rates.
We thus argue that in the modern hardware landscape, simple
strategies are often preferable due to lower runtime overhead.

C. Scans

So far, the evaluation focused on index-heavy workloads,
which are quite challenging for storage engines. Since we
designed LeanStore as a general-purpose storage engine, we
also experimented with full table scans. To do this, we execute
two full table scans using two threads. One thread continuously
scans a 10 GB orderline table, and another thread continuously
scans a 0.7 GB order table (we use TPC-C data with 400
warehouses). We vary the buffer pool size from 2 GB to 12 GB
and enable I/O prefetching. Fig. 12 (top) shows the scan speed
of both threads. The smaller scan, which is shown as the
dotted black line, is unaffected by the different buffer pool
sizes because the replacement strategy always successfully
keeps its pages in the buffer pool. The performance of the
larger scan, on the other hand, depends on the size of the
buffer pool, as is shown by the four green lines of Fig. 12.
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Fig. 12. Concurrent scan of the 0.7 GB order table and the 10 GB orderline
table using buffer pool sizes between 2 GB and 12 GB.

For pool sizes below 12 GB, the larger table cannot fully be
cached. Therefore, parts of it must be continually read from
SSD, as can be observed in Fig. 12 (bottom), which shows
how much data is read from SSD. One interesting case is the
10 GB setting, where the buffer pool is slightly smaller than
the size of both tables combined. Since some data has to be
read from SSD in each iteration of the scan, we see a cyclical
I/O pattern (at 25 and 50 seconds). Despite the occasional I/O,
the scan performance remains high because most of the data
is cached.

VII. SUMMARY

We have presented LeanStore, a novel storage manager that
is based on pointer swizzling, a low-overhead replacement
strategy, and a scalable synchronization framework. Our
experiments show that this design has negligible overhead in
comparison with in-memory data structures, while supporting
the same functionality as a conventional buffer manager.
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