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ABSTRACT

Server hardware is about to drastically change. As typ-
ified by emerging hardware such as UC Berkeley’s Fire-
box project and by Intel’s Rack-Scale Architecture (RSA),
next generation servers will have thousands of cores, large
DRAM, and huge NVRAM. We analyze the characteristics
of these machines and find that no existing database is ap-
propriate. Hence, we are developing FOEDUS, an open-source,
from-scratch database engine whose architecture is drasti-
cally different from traditional databases. It extends in-
memory database technologies to further scale up and also
allows transactions to efficiently manipulate data pages in
both DRAM and NVRAM. We evaluate the performance of
FOEDUS in a large NUMA machine (16 sockets and 240
physical cores) and find that FOEDUS achieves multiple or-
ders of magnitude higher TPC-C throughput compared to
H-Store with anti-caching.

1. DATABASES ON FUTURE SERVERS
Future server computers will be equipped with a large

number of cores, large DRAM, and low-power, non-volatile

random-access memory (NVRAM) with huge capacity. This

disruptive difference in hardware also demands drastic changes

to software, such as databases. Traditional OLTP databases
do not scale up to a large number of cores. Recent advances
in main-memory optimized databases have achieved far bet-
ter scalability, but they cannot efficiently handle NVRAM
as secondary storage. To fully exploit future hardware, we
need a redesign of databases.

We are building FOEDUS' (Fast Optimistic Engine for Data
Unification Services), an open-source?, ground-up database
engine for the next generation of server hardware. FOEDUS
is a full-ACID database engine whose architecture is com-
pletely different from traditional databases. It is designed to
scale up to a thousand cores and make the best use of DRAM
and NVRAM, allowing a mix of write-intensive OLTP trans-
actions and big-data OLAP queries.

FOEDUS employs a lightweight optimistic concurrency

control (0CC) similar to those used in in-memory databases [30].

Unlike in-memory databases, however, FOEDUS maintains
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data pages in both NVRAM and DRAM and bridges the
two in a unique manner for high scalability.

The key idea in FOEDUS is to maintain a physically in-
dependent but logically equivalent dual of each data page.
The one side of the dual is a mutable Volatile Page in
DRAM and the other side is an immutable Snapshot Page
in NVRAM. FOEDUS constructs a set of snapshot pages
from logical transaction logs, not from volatile pages, so that
transaction execution and construction of snapshot pages are
completely independent and run in parallel.

FOEDUS sequentially writes snapshot pages to NVRAM
to maximize the I/O performance and endurance of NVRAM,
similarly to LSM-Trees [23]. Unlike LSM-Trees, however,
FOEDUS’s Stratified Snapshots mirror each volatile page
by a single snapshot page in a hierarchical fashion. When
the volatile page is dropped to save DRAM, serializable
transactions have to read only one snapshot page to retrieve
the searched keys or non-existence thereof.

Another novel technique in this paper is the Master-Tree
(a portmanteau of Masstree [22] and Foster B-tree [13]).
It advances the state-of-the-art of OCC for simplicity and
higher performance in future hardware, providing strong in-
variants to simplify OCC and reduce its aborts/retries.

These techniques together achieve excellent scalability. In
our experiments on hundreds of CPU cores, we observed
100x higher throughput than H-Store [9], the state-of-the-
art database, with anti-caching feature.

The key contributions in this paper are as follows:

e Analysis of next-generation server hardware trends and
the resulting challenges for databases (§ 2-3).

e A new approach to scale beyond DRAM yet keep the
performance of in-memory databases; duality of volatile
pages and stratified snapshot pages (§ 4-7).

e A highly scalable and simple tree data structure for a
thousand cores and NVRAM; Master-Tree (§ 8).

e OLTP scalability evaluation in an unprecedented scale;
240 physical cores in a single machine (§ 9).

2. NEXT GENERATION SERVERS

In this section, we characterize next-generation servers.
Several universities and companies have recently started to
design servers based on emerging hardware, such as Fire-
box [4], Intel’s Rack-Scale Architecture (RSA), and Hewlett-
Packard’s The Machine [1].

These designs widely vary in some component. For in-
stance, they differ in the technology to use for interconnect.
However, they have some common features, described below.



2.1 Thousands of CPU cores

Virtually all hardware vendors agree that many-core sys-
tems are the future. Typical servers in current data centers
are equipped with up to one hundred CPU cores. Next-
generation servers are expected to have thousands of CPU
cores for an even higher density of computational power [35].

Non-uniform/coherent memory: However, with great
(computational) power comes great responsibility. The cost
of maintaining coherent memory-caches and other issues limit
the number of CPU cores that can be placed in a uni-
form memory-access region. Most many-core servers to-
day have two to eight CPU sockets that are connected to
each other via QPI, which exhibits latency and bandwidth
limitations as the number of sockets increases. Future ma-
chines will have further non-uniformity or potentially cache-
incoherence in memory-accesses [4].

2.2 Large DRAM and Huge NVRAM

Over decades, the capacity of DRAM has increased expo-
nentially. Future servers will have a large amount of main
memory; hundreds of TB or more. Nevertheless, it is also
a widely accepted observation that DRAM is becoming in-
creasingly expensive to scale to smaller feature sizes for the
scale beyond [3].

NVRAM: Major hardware vendors are developing inno-
vative memory devices to overcome the limitations of DRAM.

Some of the front runners among them include Phase-
Change Memory (PCM) [18], STT-MRAM, and Memristors [29)].
In addition to lowering the cost per bit (compared to DRAM),
the retention time of these technologies is also many years,
making them non-volatile. With the widening performance
gap between main memory and storage, the next big leap in
system performance can be achieved by using the emerging
NVRAM technologies as the primary data store [7].

Performance: NVRAM is expected to perform orders of
magnitude faster than state-of-the-art non-volatile devices,
such as SSD. However, the expected bandwidth and latency
of NVRAM has a wide variation across vendors and even
within each vendor because producing a mass-marketed stor-
age device involves a wide range of challenges. The currently
dominant expectation for the near future is that NVRAM
will have higher latency than DRAM. For example, a cur-
rent PCM product has 5 to 30 us read latency and 100 us
write latency [17].

Endurance and thermal issues: A key limitation of
emerging NVRAM technologies is their limited endurance.
Depending on the type of cell (single level vs. multi level
cell) and material used, NVRAM endurance is many orders
of magnitude lower than DRAM. For example, PCM’s en-
durance vary from 10° to 10® writes, and Memristor has an
endurance of 10! writes [19], whereas DRAM has an en-
durance of > 10'® writes. In addition, technologies such as
PCM and Memristor are also thermally sensitive: PCM re-
tention time goes down with increase in temperature [6] and
Memristor suffers from increased sneak current with temper-
ature [28]. Prior work on NVRAM have shown that simple
wear-leveling and wear-out tolerance techniques can allevi-
ate the endurance problem and provide more than five years
of server lifetime [26, 34].

2.3 Desiderata for Databases

These characteristics pose several requirements to databases

running on future servers.

SOC/NUMA-aware memory accesses: Software in
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future servers must take into account that memory-access
costs will be highly non-uniform. System-on-chip (SOC) [4]
is one direction that can deal with even cache-incoherent ar-
chitectures. Be it incoherent or not, DBMS must carefully
place data so that most accesses to DRAM and NVRAM
are local. In this paper, we interchangeably use the words
SOC/NUMA-node and SOC-friendly / NUMA-aware to mean
the requirement, targeting both SOC and NUMA systems.
Avoid contentious communications: = The massive
number of cores demands avoiding contentious communi-
cations as much as possible. For instance, many databases
employ LSN-based concurrency control, which fundamen-
tally requires at least one atomic compare-and-swap (CAS)
in a single address (tail LSN) from every thread. We ob-
served via experiments that even one contentious atomic CAS
per transaction severely limits the performance when there
are hundreds of cores, which is consistent with observations
in prior work [30]. Databases inherently have synchronous
communications, but all of them should be non-contentious.
NVRAM for big data, DRAM for hot data: A
database must make use of NVRAM for big-data that do
not fit in DRAM. However, DRAM still has an advantage
in latency. Frequently-accessed data must reside in DRAM
while cold data are moved in/out to NVRAM. When data
are written to NVRAM, it is desirable that writes are con-
verted into a small number of sequential writes so that the
performance and the endurance of NVRAM are maximized.

3. RELATED WORK

Individual desiderata above are not new. We discuss key
challenges to address all of them by reviewing prior work in
the database literature categorized into three types; tradi-
tional, in-memory, and hybrid.

3.1 Traditional Databases

Traditional databases are optimized for disks. They can
use NVRAM as faster secondary storage device, but they
are significantly slower and less scalable compared to more
recent alternatives in many-core servers [9]. Our empir-
ical evaluation observes that even a well-optimized disk-
based database does not benefit from replacing SSDs with
NVRAM due to bottlenecks other than I/O, which is the
key issue in traditional databases.

Shadow Paging: One noteworthy approach in tradi-
tional databases is Shadow Paging, which uses copy-on-write
to modify each data page and atomically switches to the new
versions during transaction commit [33]. Although Shadow-
ing can avoid random in-place updates, it causes severe con-
tention when the transaction runs in serializable isolation
level and consists of multiple data accesses. Hence, its use
in real world is limited to some filesystem that needs only
local consistency or non-serializable database.

3.2 In-memory Databases

In-memory databases perform significantly faster and scale
much better in many-core environments [10, 30], but they
cannot utilize NVRAM.

SILO/Masstree:  Nevertheless, recent efforts in in-
memory databases have devised several breakthroughs to
scale up to a large number of cores equipped with large
NUMA memories. FOEDUS inherits the key enablers from
these efforts: lightweight optimistic concurrency control (0CC)
protocol in SILO [30] and cache-sensitive data structures,
such as Masstree [22]. Because these are essential pieces of
FOEDUS, we recap SILO’s OCC protocol and Masstree in
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Figure 1: Various architectures to go beyond DRAM. a) xcts go through bufferpool that pages in/out, b)
only non-key data are evicted, c) global bloom filters tell what is evicted, d) dual of volatile/snapshot pages.

later sections along with the design of FOEDUS.

Hekaton/Bw-Tree: SQL Server Hekaton [10] employs
a commit verification protocol similar to SILO. One differ-
ence is that Hekaton uses the Bw-tree [20] for range-accessed
indexes, which has a read-lock to prevent writers from ac-
cessing the tuple until the transaction that read the tuple
commits. This protocol can reduce aborts, but instead even
a read incurs an atomic write to shared memory. In other
words, although both SILO and Hekaton employ OCC, SILO
is more optimistic.

FOEDUS employs SILO-like OCC to minimize synchronous
communications for reads because read operations happen
more often than writes even in OLTP databases. Instead,
the FOEDUS’s Master-Tree ameliorates the issue of aborts.

Key Issues: In contrast with traditional databases, in-
memory databases scale well but the entire data set must
fit in DRAM. The key challenge arises when one tries to
provide both scalability and ability to go beyond DRAM.

3.3 Hybrid Databases

An emerging hybrid approach combines in-memory and
on-disk DBMSs to address the issues together. FOEDUS,
H-Store with anti-caching [8, 9], and Siberia [12] fall
into this category. Figure 1 summarizes these hybrid ap-
proaches for handling data sets larger than DRAM. Tra-
ditional databases use a bufferpool to handle disk-resident
pages, which is tightly coupled with logging and locking/latch-
ing modules. All hybrid databases avoid this major source
of contention and overhead so that they can keep the high
performance of in-memory databases.

Anti-caching: H-Store with anti-caching keeps all es-
sential data in DRAM and evicts only cold data to secondary
storage so that a transaction can speculatively identify the
set of records to retrieve from secondary storage in one pass.
One limitation of this approach is that it has to keep all in-
dexes and key attributes in memory. Another limitation is
that it has to evict/retrieve/repack each tuple and maintain
per-tuple metadata to track what is evicted, to where, and
last access time. Hence, it has substantial overheads and
memory footprints.

Siberia: Siberia uses Hekaton as the primary hot-store
in DRAM while it moves infrequently used tuples to a sep-
arate cold-store on disk, tracking which tuple is in the cold-
store with global Bloom Filters. An interesting benefit of
this approach is that the two data stores can be structured
differently (e.g., column-store for cold-store).

Although Siberia can move entire tuples to cold store, it
still has out-of-page Bloom Filters. A system that main-
tains such global metadata out-of-page must either hold a
huge number of metadata proportional to the size of the
entire database and/or suffer from false positives.

Key Issues: Prior approaches have either physical de-
pendency or logical inequivalence between corresponding hot
and cold data.
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Anti-cache, like traditional bufferpools, keeps two data
physically dependent to each other, thus the tuple/page
must be evicted /retrieved in a synchronized fashion. On the
other hand, Siberia does not maintain logical equivalence in
any granularity of data between hot-store and cold-store.
Hence, to retrieve a piece of information, such as the value
of a tuple or the existence of keys in a certain range, it needs
to maintain a global data structure and lookup in it for each
tuple to coordinate the two stores.

4. KEY IDEA: DUAL PAGES

This paper suggests an alternative approach for hybrid
databases to bridge hot and cold data; duality of pages.
FOEDUS stores all data in fixed-size pages and maintains
all metadata in-page in a hierarchical fashion, using dual
page pointers, depicted in Figure 2.

Volatile

- Snapshot 3
E Pointer Pointer <
=
£ | NULL | NULL % s nullptr
2 ]
s X NULL = : Volatile-Page is just made. No Snapshot yet.
° -9
- NULL Y 2 snapshot-Page is latest. No modification.
o s
5<| X | Y g : Xis the latest truth, but Y may be equivalent.

Figure 2: States/Transitions of Dual Page Pointers.

A dual page pointer points to a pair of logically equiva-
lent pages, a mutable volatile page in DRAM for the latest
version and an immutable snapshot page in NVRAM for
previous version (which might be the latest if there was no
modification).

The two pages are physically independent, thus a transac-
tion that modifies the volatile page does not interfere with a
process that updates the snapshot page and vice versa. Yet,
the two pages are logically equivalent, thus we do not need
additional information or synchronization to figure out the
location of any data represented by the page.

When a volatile page exists, it is guaranteed to represent
all data that exist in the snapshot page. When it is null, on
the other hand, the corresponding snapshot page is guaran-
teed to represent all data that exist in the database.

No out-of-page information: FOEDUS maintains no
out-of-page information, such as a separate memory region
for record bodies [30], mapping tables [20], a central lock
manager, etc. This invariant is essential for highly scal-
able data management where contentious communications
are restricted to each page and all footprints are propor-
tional only to the size of hot (DRAM-resident) data, not
cold (NVRAM-resident) data. In an extreme-but-possible
case where there are TBs of all-cold data, FOEDUS does
not need any information in DRAM except a single dual
pointer to the root page whereas anti-caching and Siberia
both require huge amounts of metadata.

By storing all data purely in-page, FOEDUS also elim-
inates data compaction and migration, which often cause
severe scalability issues for garbage collector (GC). FOEDUS
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Figure 3: FOEDUS Architecture Overview. All page pointers are dual pointers. Volatile Pages in DRAM are
physically independent but logically equivalent duals of Snapshot Pages in NVRAM, which are separately
and concurrently constructed by Log Gleaner from logical transaction logs.

reclaims pages when they are no longer needed, but the re-
claimed page can be immediately reused in another context
without compaction or migration because we use a fixed-size
page everywhere. This design also eliminates an additional
CPU cache miss and potentially a remote SOC access be-
cause the record data are always in the page itself.

5. SYSTEM OVERVIEW OF FOEDUS
Figure 3 shows the architectural overview of FOEDUS.

Conceptually, FOEDUS is a multi-version DBMS with lightweight

OCC to coordinate transactions, which accesses two sets of
data pages lazily synced via logical transaction logs.

Storages: Storage is the unit of data structure in FOE-
DUS. One table consists of one or more storages, such as a
primary index and secondary indexes. FOEDUS maintains
a tiny amount of static information for each storage, such as
name, type, and pointer to the root page.

Dual Pointers: As described in previous section, most
page pointers in FOEDUS are dual page pointers except
a few temporary pointers, such as foster-twins described
later. A transaction follows or atomically installs the volatile
pointer to modify tuples in the page or its descendants.
A transaction might follow the snapshot pointer when the
volatile pointer is null (i.e., the snapshot page is the latest
information) or it is not a serializable transaction. The
main body of this paper focuses on the serializable exe-
cution. Appendix B discusses SI transactions in FOEDUS.

Page Pools and Data Sharing: We have two DRAM-
resident page pools; one for volatile pages and another for
caching snapshot pages. In traditional databases, all CPU
cores would share all pages in such page pools. In FOEDUS;
snapshot cache is completely SOC-local to eliminate inter-
SOC communications, utilizing the fact that snapshot pages
are immutable thus safe to replicate. Although the volatile
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pool inherently requires remote access to make transactions
serializable, FOEDUS places a volatile page in a node that
first modifies the page to exploit locality of access.
Commit Protocol and Logging: In order to guaran-
tee ACID properties, each transaction in FOEDUS main-
tains read- and write-sets as well as log buffers. This book-
keeping information is completely thread-private to avoid
contentions and inter-SOC communications. Section 6 ex-
plains the detailed protocols to verify and apply them when
the transaction commits.
Stratified Snapshots:

Stratified Snapshots are the cen-

tral mechanism of FOEDUS to store snapshot pages in NVRAM

and maintain the duality with volatile pages. It consists of
an arbitrary number of snapshots, each of which is a com-
plete, durable, and immutable image of the entire database
as of a certain epoch (snapshot-epoch), which serves both
transactional processing and crash recovery. Section 7 de-
scribes stratified snapshots in details.

Master-Trees: FOEDUS provides a few storage types,
such as Heap and Hash-index. Its most general storage type
is Master-Tree, a variant of B-trees designed for NVRAM
and many-cores. Section 8 explains Master-Tree in details.

NVRAM Interface: FOEDUS manipulates NVRAM
devices only via standard filesystem APIs. FOEDUS does
not require vendor-specific APIs to support a wide range of
NVRAMs, even including high-end flash devices.

6. LOGGING AND COMMITTING

FOEDUS employs SILO’s decentralized logging and opti-
mistic committing protocols [30, 37] and extends it to snap-
shot pages stored in NVRAM. Section 6.1 gives a detailed
review of the SILO’s protocols while Section 6.2 explains
FOEDUS’s extension.



Algorithm 1: SILO precommit protocol [30]

Algorithm 2: FOEDUS precommit protocol

Input: R: Read set, W: Write set, N: Node set

/* Precommit-lock-phase */
Sort W by unique order;

foreach w € W do Lock w;

Fences, get commit epoch;

/* Precommit-verify-phase */

foreach r, observed € R do if r.tid # observed and
r ¢ W then abort;

foreach n,observed € N do if n.version # observed
then abort;

Generate TID, apply W, and publish log;

6.1 Logs and Read/Write Sets

Transactional Logging: Each worker thread (trans-
action) holds a circular, private log-buffer as shown in the
left-bottom of Figure 3. The log buffer is written only by
the worker thread and read by the log writer to write out to
log files stored in NVRAM. Each log entry contains the ID
of the storage, the key string, and the payload of the record
inserted/modified /etc by the logical action.

The log buffer maintains a few markers that point to posi-
tions in the buffer 1) durable: upto where the log writer has
written out to files, 2) committed: upto where the thread has
completed pre-commit, and 3) current: where the thread
is currently writing to. The job of a log writer is to dump out
logs between durable and committed, then advance durable.

Read/Write Sets: Each transaction maintains read-
set and write-set, which record the addresses of tuples the
transaction accessed. The main differences from traditional
databases are that 1) it only remembers the observed version
number (Transaction-ID, or TID) of the tuple as of reading
instead of taking a read-lock, and 2) it merely pushes the
planned modification to the transaction’s private log buffer
and remembers the log position in the corresponding write
set instead of immediately locking the tuple and applying
the modification.

SILO’s Commit Protocol: The core mechanism of
our concurrency control lies in its pre-commit procedure,
which concludes a transaction with verification for serializ-
ability but not for durability. We provide durability for a
group of transactions by occasionally flushing transaction
logs with fsync to log files in NVRAM for each epoch, a
coarse-grained timestamp. In other words, pre-commit guar-
antees ACI out of ACID, whereas D is separately provided by
group-commit. Algorithm 1 summarizes the original version
of the pre-commit protocol proposed in SILO.

It first locks all records in the write set. SILO uses concur-
rency control that places an in-page lock mechanism (e.g., 8
bytes TID for each record) that can be locked and unlocked
via atomic operations without a central lock manager. Plac-
ing lock mechanism in-page avoids high overheads and phys-
ical contention of central lock managers [27], and potentially
scales orders of magnitude more in main-memory databases.

It then verifies the read set by checking the current version
numbers after finalizing the epoch of the transaction, taking
memory fences. If other transactions have not changed the
TIDs since the reading, the transaction is guaranteed to be
serializable. For example, write-skews are detected from the
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Input: R: Read set, W: Write set, P: Pointer set

/* Precommit-lock-phase

while until all locks are acquired do
foreach w € W do if w.tid.is-moved() then w.tid
+ track-moved(w)

*/

Sort W by unique order;

foreach w € W do Try lock w. If we fail and find

that w.tid.is-moved(), release all locks and retry
end

Fences, get commit epoch;
/* Precommit-verify-phase
foreach r, observed € R do
if r.tid.is-moved() then r.tid + track-moved(r)
if r.tid # observed and r ¢ W then abort;
end
foreach p € P do if p.volatile-ptr # null then abort;

*/

Generate TID, apply W, and publish log;

discrepancy between the observed TID and the current TID,
which is either locked or updated by a concurrent transac-
tion. The transaction then applies the planned changes in
the private log buffer to the locked tuples, overwriting their
TIDs with a newly generated TID of the transaction that is
larger than all observed TIDs. The committed transaction
logs are then published by moving committed to current so
that log writers can write them to log files for durability.

Advancing Epochs: The current epoch and durable
epoch of the system are periodically advanced by background
threads that check the progress of each logger and worker
thread with some interval (e.g., 20 ms). Pre-committed
transactions are deemed as truly committed when the new
durable epoch is same or larger than their TID’s epoch.
These decentralized logging/commit protocols based on coarse-
grained epochs eliminates contentious communications in
the traditional LSN-based databases.

6.2 Extension for NVRAM

Issues: SILO is a purely in-memory DBMS. It cannot
handle the case where a data page is evicted from DRAM.
On the other hand, FOEDUS might drop a volatile page
when it is physically identical to the snapshot page. After
that, a transaction only sees the read-only snapshot data
page unless it has to modify the data page, in which case
the transaction installs a volatile version of the page based
on the latest snapshot page. However, this can violate seri-
alizability when other concurrent transactions have already
read the snapshot pages.

Pointer Set: To detect the installation of new volatile
pages, each transaction in FOEDUS maintains a pointer
set in addition to read-set/write-set. Whenever a serializ-
able transaction follows a pointer to a snapshot page because
there was no volatile page, it adds the address of the volatile
pointer to the pointer set so that it can verify it at the pre-
commit phase and abort if there has been a change as shown
in Algorithm 2.

The pointer set is analogous to the node-set (page-version
set) in SILO. The difference is that the purpose of the SILO
node-set is to validate page contents, whereas FOEDUS uses
the pointer set to verify page ezistence. SILO cannot ver-




ify the existence of new volatile pages, which SILO did not
need because it is a pure in-memory database. FOEDUS
protects the contents of pages with a different mechanism,
called foster-twins. We revisit FOEDUS’s commit protocol
with the foster-twin technique in Section 8.

FOEDUS’s pointer set usually contains only a few entries
for each transaction because we do not have to add pointer
sets once we follow a snapshot pointer. By definition, ev-
erything under a snapshot page is stable. We have to verify
only the first pointer we followed to jump from the volatile
world to the snapshot world. There is no path from the
snapshot world back to the volatile world. In an extreme
(but not uncommon) case, we have only one pointer set for
reading millions of records and several thousands of pages in
a serializable OLAP transaction. In fact, we empirically ob-
serve that placing data in snapshot pages significantly (3x)
speeds up the version verification during pre-commit.

7. STRATIFIED SNAPSHOTS

Stratified Snapshots are FOEDUS’s main data repository
placed in NVRAM. As the name suggests, stratified snap-
shots are layers of snapshots each of which is constructed
by the Log Gleaner from log files. The log gleaner does
not dump out the entire image of the database for each ex-
ecution, which would be prohibitively expensive for large
databases. Instead, it replaces only the modified parts of
the database. LSM-tree [23] also writes out only changed
data, but the difference is that log gleaner always outputs a
snapshot that is a single image of the entire storage. Mul-
tiple snapshots together form a stratified snapshot where
newer snapshots overwrite parts of older snapshots. Each
snapshot contains a complete path for every record up to
the epoch as of the snapshot. For example, the root page of
a modified storage is always included in the snapshot, but
in many cases the only change from the previous snapshot
version is just one pointer to lower level. All other pointers
to lower level point to previous snapshot’s pages.

The benefit of this design is that a transaction has to read
only one version of stratified snapshots to read a record or a
range of records. This is essential in OLTP databases where
checking an existence of key must be quick (e.g., inserting
into a table that has primary key, or reading a range of keys
as a more problematic case). LSM-Tree approaches would
have to traverse several trees or maintain various Bloom Fil-
ters for serializability [12], whose footprints are proportional
to the size of cold data, not hot data.

7.1 Log Gleaner Overview

The log gleaner occa-
sionally (e.g., every 10
minutes) collects transac-

tional logs in each SOC’s ]
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durance of NVRAM. The new snapshot pages then replace
volatile pages in DRAM to reduce DRAM consumption.
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Figure 4: Log Gleaner

>
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Figure 5: Log Mapper partitions logs. Log Reducer
constructs snapshot pages in batches.

Each execution of log gleaner consists of the four stages
shown in Figure 4, detailed below.

7.2 Assign Partitions

The first stage of log gleaner is to determine the parti-
tioning keys and their assigned nodes (SOCs). To minimize
inter-SOC communications, FOEDUS tries to store snap-
shot pages in a node that will most frequently use the page.
For this purpose, FOEDUS maintains statistics in volatile
pages to record which node has recently modified the page.
FOEDUS uses this information to determine the boundary
keys defining the partitions and their assigned nodes. This
statistics is maintained without transactional guarantees to
avoid unnecessary overheads.

7.3 Log Mappers and Reducers

The second stage of log gleaner is to run mappers/reducers
in each node as Figure 5 illustrates.

Mappers: First, each mapper reads the log files contain-
ing log entries in the target epochs for the snapshot. Then, it
buckets log entries by storages, buffering several log entries
per storage, usually in MBs. Once a bucket for a storage
becomes full, it sorts and partitions the logs in the bucket
based on the boundary keys for the storage designed in the
previous stage. The partitioned log entries are sent to each
partition (reducer) per bucket. As far as the partitioning
captures the locality, mappers send most logs to a reducer
in the same node.

The mapper ships the log entries to the reducer’s buffer in
a three-step concurrent copying mechanism. It first reserves
space to copy into the reducer’s buffer by atomically mod-
ifying the state of the reducer’s buffer. It then copies the
entire bucket (usually MBs) into the reserved space by single
write, which is much more efficient than issuing many writes
especially in a remote node. This copying is the most ex-
pensive operation in this protocol, but it happens in parallel
to copying from other mappers. Finally, the mapper atomi-
cally modifies the state of reducer’s buffer to announce the
completion of the copying.



Reducers: A reducer maintains two buffers, one for cur-
rent batch and another for previous batch. A mapper writes
to the current batch until it becomes full. When it becomes
full, the reducer atomically swaps the current and previous
batch and then waits until all mappers complete their copy-
ing. While mappers copy to the new current buffer, the
reducer dumps the ex-current buffer to a file (sorted runs)
after sorting them by storages, keys, and then serialization
order (epoch and in-epoch ordinals).

Once all mappers are finished, each reducer does a merge-
sort on the current buffer in memory, dumped sorted-runs,
and previous snapshot pages if the key ranges overlap. In
sum, this results in streams of logs sorted by storages, keys,
and then serialization order, which can be efficiently applied.

Batching and Optimization: Separating the construc-
tion of snapshot pages from transaction execution enables
several optimizations in mappers and reducers.

One optimization is compaction of log entries. In a few
places where FOEDUS performs a batch-sort of logs, some
log entries can be eliminated without affecting correctness.
For example, repeated overwrites to one tuple in a storage
can be safely represented by just one last update log for the
tuple as far as the updated region (e.g., column) is the same.
Deletion nullifies all previous inserts and modifications. In-
crement operations can be combined into one operation, too.
This often happens in summary tables (e.g., warehouse in
TPC-C), which compact several thousands log entries into
just one before the mapper sends it out to reducers.

Another optimization in reducers is to batch-apply a set
of logs into one data page. Reducers construct snapshot
pages based on fully sorted inputs from log entries and pre-
vious snapshot pages. Hence, reducers simply append a large
number of records in tight loops without any binary search
or insert-in-between, which makes processing of the same
amount of data substantially more efficient than in trans-
action executions. Also, some tasks are much easier to do
using log records after a transaction has been committed
than with live pages in DRAM during transaction process-
ing. For example, it is very efficient for reducers to physically
delete an empty page or a logically-deleted record as opposed
to performing the same task during transaction processing.
FOEDUS never physically deletes a record in volatile pages
to simplify its concurrency control.

In Section 9, we observe that a single reducer instance can
catch up with a huge influx of logs emit by several worker
threads because of these optimizations.

7.4 Combining Root Pages and Metadata

When all mappers and reducers are done, the log gleaner
collects root pages from reducers and combines them to a
single new root page for each storage that had any modi-
fication. The log gleaner then writes out a new snapshot
metadata file that contains updated metadata of all stor-
ages (e.g., page ID of their latest root pages in the stratified
snapshots).

Combining root pages is a trivial job because the par-
titions are non-overlapping. The tricky case happens only
when there is a skew; the choice of partitioning keys failed to
capture the log distribution accurately. For example, there
might be a case where one node receives few logs that result
in a B-tree of two levels while another node receives many
more logs that result in a B-tree of four levels. FOEDUS
so far leaves the tree imbalanced in this case. It is possible
to re-balance the tree, but it might result in unnecessary

697

remote accesses for the node that has smaller sub-trees. In
the above example, transactions on the first node can access
local records in three reads (the combined root page and its
sub-tree) while, if the re-balanced tree has five levels, they
might have to read two more pages in higher levels that are
likely in remote nodes.

7.5 Install/Drop Pointers

Once the metadata file and the snapshot files are writ-
ten, the log gleaner installs new snapshot pointers and drops
pointers to volatile pages that had no modifications during
the execution of log gleaner. FOEDUS keeps volatile ver-
sions of frequently modified pages and their ascendants.

Installing Snapshot Pointers:  The log gleaner in-
stalls snapshot pointers to corresponding dual pointers based
on key ranges of the pages. A volatile page corresponds to
a snapshot page if and only if the key ranges are exactly the
same. Reducers try to minimize the cases of non-matching
boundaries by peeking the key ranges of volatile pages while
they construct snapshot pages, but it is possible that the
volatile page had another page split because log gleaner runs
concurrently to transactions. In such a case, the log gleaner
leaves the snapshot pointer of the dual pointer to NULL,
thus it cannot drop the volatile page until next execution.

Dropping Volatile Pointers: The last step of log gleaner
drops volatile pointers to save DRAM. We currently pause
transaction executions during this step by locking out new
transactions. We emphasize that this does not mean the
entire log gleaner is a stop-the-world operation. Dropping
volatile pointers based on an already-constructed snapshot is
an instantaneous in-memory operation that finishes in mil-
liseconds. In the case of TPC-C experiments in Section 9,
it takes only 70 milliseconds even after gleaning all data
(initial data population). The log-gleaner spends the vast
majority of time in mappers and reducers, which work fully
in parallel to transaction executions. By pausing transaction
executions while dropping volatile pointers, we can avoid ex-
pensive atomic operations for each pointer only at the cost
of a sub-second transaction latency once in several minutes.

7.6 Snapshot Cache

Transactions read the snapshot pages via snapshot cache
to avoid repeated 1/0 like traditional buffer pools.

However, because snapshot pages are immutable, this snap-
shot cache has several unique properties that distinguish it
from typical buffer pools. First, snapshot cache is SOC-
local. One snapshot page might be cached in more than one
SOCs to avoid remote memory access. Such a replication
for mutable pages in traditional databases would cause ex-
pensive synchronization. Second, when a thread requests a
page that has already been buffered, it is acceptable if oc-
casionally the page is re-read and a duplicate image of the
page added to the buffer pool. This does not violate cor-
rectness, nor does it impact performance insofar as it occurs
only occasionally. The occasional extra copies wastes only a
negligible amount of DRAM, and the performance benefits
FOEDUS gains by exploiting these relaxed requirements are
significant. Snapshot cache does not use any locks or even
atomic operations. It only needs a few memory fences and
an epoch-based grace-period before reusing evicted pages.

7.7 Crash Recovery

In traditional databases, a crash recovery is a complex
procedure because of the interaction between transaction
logs and data pages, which may or may not have the modi-
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Figure 6: Master-Tree: Foster-Twin provides strong invariants to simplify OCC and reduce retries.

fications right before the crash. In fact, recent research [36]
finds that most databases, including commercial databases,
may fail to recover from power-failure, causing data loss or
even inconsistent state.

The key principle of FOEDUS, physical separation be-
tween the volatile pages and snapshot pages, simplifies this
problem. The only additional thing FOEDUS does after
restart is to truncate transactional log files up to the place
the previous execution durably flushed. As there is no volatile
page after restart, FOEDUS then simply invokes a log gleaner
just like a periodic execution, which is well optimized as de-
scribed above. There is no code path specific to restart. This
makes FOEDUS’s crash recovery significantly more robust
and efficient.

The interval between log gleaner executions (usually a few
minutes) is also the upper limit of recovery time because
log gleaning during restart cannot be slower than that of
during normal executions as there are no live transactions
to put pressure on CPU cores, its caches, and volatile pages
to install/drop pointers from. Hence, stratified snapshots
are also efficient checkpoints to quickly restart from.

8. MASTER-TREE

Master-Tree combines techniques in Masstree [22] and Fos-
ter B-Tree [13] to build B-trees appropriate for NVRAM and
OCC. Not only combining the two, Master-Tree also has a
key distinction that provides strong invariants to drastically
simplify our OCC protocol and reduce aborts/retries. Sec-
tion 8.1 briefly reviews the two prior work and describes
how FOEDUS combines them. Section 8.2 then details our
innovative foster-twin technique.

8.1 Basic Data Structures

Master-Tree leverages Masstree’s cache-craftiness and em-
ploys a variant of its OCC protocol. In short, Masstree is
a 64-bit B-trie where each layer is a B-tree optimized for
64-bit integer keys. Most key comparisons are done as ef-
ficient 64-bit integer comparisons with only a few cacheline
fetches per page, digging down to next layers when keys are
longer than 64-bit. When Masstree splits a full page, it does

RCU (read-copy-update) to create a new version of the page
and atomically switches the pointer as shown in Figure 6.
A transaction in SILO guarantees serializability by taking
node-set (page-version set) to the page and aborting if the
page-version tells that the page has split.

Masstree is a pure main-memory data structure where a
page stays there forever. To allow page-in/out, we extend
it with Foster B-Tree techniques. The key issue to page-
in/out in Masstree is that it has multiple incoming pointers
per page, such as next/prev/parent pointer in addition to
the pointer from parent pages. In a database with page
in/out, such multiple incoming pointers cause many issues in
concurrency control. Foster B-Tree solves it by the concept
of foster-child, a tentative parent-child relationship that is
de-linked when the real parent page adopts the foster-child.
Master-tree guarantees a single incoming pointer per page
with this approach except retired pages explained later.

Master-tree also extensively uses system transactions for
various physical operations. For example, inserting a new
record usually consists of a system transaction that physi-
cally inserts a logically-deleted record of the key with suffi-
cient body length and a user transaction that logically flips
the deleted flag and installs the record. It is worth not-
ing that system transactions are especially useful when used
with logical logging, not physiological logging. Because a
system transaction does nothing logically, it does not have
to write out any log nor touch log manager, which was one
drawback of inserting with system transactions [13]. A sys-
tem transaction in FOEDUS merely takes read-set/write-set
and follows the same commit protocol as usual transactions.

Master-tree makes several contributions in extending prior
work for FOEDUS. However, this paper focuses on a key
invention: the foster-twins.

8.2 Foster-Twins

Page Split Issue: As described earlier, SILO uses an
in-page locking mechanism based on TID. One issue of this
protocol is that an in-page lock state (TID) can cause false
aborts due to page splits or requires per-tuple GC.

When a page splits, we must keep at least the lock states
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of all existing records in the old page because the concur-
rent transactions are pointing to the physical addresses in
the old page. This means we cannot move any records to
make room for new insertions, defeating the purpose of split.
One trivial alternative is to abort such transactions (they
can at least see that something happened by seeing updated
TID in the old page or checking the split-counter used in
SILO), but this causes the transaction to abort even when
the tuple in the read-set was not modified. For an extreme
but not uncommon case, even a single-threaded execution
might have unnecessary aborts. The transaction inserts
many pseudo-deleted records by system transactions, adding
the records to write-set to logically insert at the pre-commit
phase. Once it triggers splits of the page, the transaction
has to abort at pre-commit even though there is no concur-
rent transaction. Another trivial alternative is to re-search
all keys at pre-commit from the root of the tree, but this is
significantly more expensive and sometimes no better than
aborting and retrying the whole transaction.

Yet another trivial solution is to have pointers rather than
data in pages. The pointers point to dynamically-sized tu-
ple data in centrally allocated memory-pool, for example
delta-records in Bw-trees [20]. This avoids the problem of
a lock state disappearing at split, but instead requires per-
tuple GC. When these tuples are not needed any longer, we
have to reclaim memory for them. However, per-tuple GC is
significantly more costly and complicated compared to per-
page GC for fixed-size data pages. Per-tuple GC inherently
causes defragmentation due to various sizes of tuples and
thus must do compaction like general GCs in managed lan-
guages, which is notoriously expensive. Further, the pointer
approach requires one CPU cache miss for accessing each
tuple because the tuple data are not physically placed in a
data page.

Foster-Twins: To solve the problem, we introduce a
foster-child variation that we call foster-twins. When a page
splits, we mark the TIDs of all records in the page as moved
and also create two foster children; or foster-twins. Foster-
twins consist of minor (or left) foster child and major (right)
foster child. The minor foster child is responsible for the first
half of key regions after split while the major foster child is
responsible for the second half. In other words, the major
foster child is the foster child in a Foster B-Tree while the
minor foster child is a fresh-new mirror of the old page (but
after compaction). At the beginning of the split, we mark
the old page as moved, meaning that the page must no longer
have any modifications. In the next tree traversal, the parent
page of the old page finds it and adopts the major foster
child like a Foster B-Tree, but also it modifies the pointer
to the old page to the minor foster child, marking the old
page retired. Retired pages are reclaimed based on epochs
to guarantee that no transactions are referencing them as
of reclaiming. Like a Foster B-Tree, our Master-tree has
only one incoming pointer per page, thus there is no other
reference to the retired page except concurrent transactions
that took the address of the TIDs as read-set and write-
set. The concurrent transactions, during their pre-commit
phase, become aware of the moved-mark on the records and
track the re-located records in foster-minor or foster-major
children.

Commit Protocol: Now, let us revisit Algorithm 2 in
the earlier section. The difference from Algorithm 1 is that
we locate the new location of TID as we see the moved bit,
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using the foster-twin chain. In case of frequent splits, the
foster-twin might form a binary tree of an arbitrary depth
(although rarely more than one depth), hence this tracking
might recurse. We do this tracking without locking to avoid
deadlocks. We then sort them by address and take locks.
However, this might cause staleness; concurrent transactions
might have now split the page again, moving the TIDs. In
that case, we release all locks and retry the locking protocol.

Benefits: The main benefit of foster-twins is that every
page has a stable key-region for its entire life. Regard-
less of splits, moves, or retirement, a page is a valid page
pointing to precisely the same set of records via foster-twins.
Thus, even if concurrent transactions see moved or even re-
tired pages, they do not have to retry from the root of the
tree (which [22] and [30] does). This property drastically
simplifies our OCC algorithm. Especially in interior pages,
we never have to do the hand-over-hand verification proto-
col nor the split-counter protocol in the original Masstree.
A tree search simply reads a probably-correct page pointer
and follows it without even memory fences. It just checks
the key-range, an immutable metadata of the page, and only
locally retries in the page if it does not match.

When a transaction contains cursors or miss-search, FOE-
DUS verifies the number of physical tuples in the border
page to avoid phantoms. However, unlike the page-version
verification in SILO, FOEDUS does not need to check any
information in intermediate pages or anything other than
the number of tuples, such as split-counters.

The simplification not only improves scalability by elimi-
nating retries and fences but also makes Master-Tree a more
maintainable non-blocking data structure. While non-blocking
algorithm is the key to higher scalability in many-cores,
a complex non-blocking algorithm that consists of various
atomic operations and memory fences is error-prone and
hard to implement, debug, test, and even reason about its
correctness [31]. Even a non-blocking algorithm published
in a well-thought paper and an implementation in a widely
used library are sometimes found to contain a bug after a few
years [5]. Making the algorithm trivially simple and robust
thus has tremendous benefits for real database systems.

Cursors do a similar trick described in Appendix C. Fi-
nally, we point out that the idea of Foster-Twins also applies
to other dynamic tree data structures.

9. EXPERIMENTS

This section provides an empirical evaluation of FOEDUS
to verify its efficiency and scalability. We have two sets
of experiments; in-memory and NVRAM. The in-memory
experiments evaluate the performance of FOEDUS as an in-
memory database while the NVRAM experiments evaluate
the performance when a part of the data reside NVRAM.

9.1 Setup

We run our experiments on two servers detailed in Ta-
ble 1. The two servers have identical CPUs and OS. The
only difference is the number of CPU sockets; DragonHawk
has 4 times more CPUs.

We have implemented FOEDUS as a general embedded
database library written in C4++. All experiments presented
in this section use the standard TPC-C benchmark. In each
evaluated system, we assign every worker thread to its own
home warehouse as done in the systems we compare with
[9, 25, 30]. This also means that the scale factor (the num-
ber of warehouses) is same as the number of threads. TPC-C



Table 1: Experimental Environments

Model HP DL580 HP DragonHawk
Sockets 4 16
Cores (w/HT) 60 (120) 240 (480)
CPU Intel Xeon E7-4890 v2 @ 2.80GHz
CPU Cache L2 256KB/core, L3 38MB //socket
DRAM 3TB 12 TB
(ON] Fedora 19 RHEL 7.0z
(Kernel) (3.16.6) (3.16.6)
N S S
ORI J
'E AR AN AR
a FOEDUS |
5 F FOEDUS-Log & |
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Remote transaction ratio [/neworder 1%, payment 15%]

Figure 7: In-memory TPC-C with varied remote
transaction fractions on DragonHawk. Remote-
fraction=1 is the regular TPC-C. ’-Log’ writes out
transactional logs to NVRAM (5 us latency).

has two kinds of transactions that might access remote ware-
houses, payment and neworder. Some experiments vary the
fraction of these transactions touching remote warehouses.

We retrieved the latest versions of the systems and com-
piled them by the latest compilers with highest optimization
levels. We also carefully tuned each system for the environ-
ments, varying several parameters and choosing the best-
performing ones. In fact, we observe throughput of most,
but not all, systems evaluated in this section even better
than the numbers in prior publications [14, 30, 32].

Above all, we configured H-Store, the academic branch
of VoltDB, with help from the H-Store team. H-Store runs
independent sites, each of which consists of a native execu-
tion engine written in C++ and a Java VM that hosts users’
stored procedures. We allocate 8-12 sites and set the number
of partitions in each site to 8 in order to avoid the scalability
issue of Java GC. All clients are non-blocking and configured
to maximize H-Store’s throughput.

All experiments use the serializable isolation level.

9.2 In-Memory Experiments

The first set of experiments places all data in DRAM to
compare FOEDUS with the best performance of in-memory
databases. We evaluate three systems; FOEDUS, H-Store,
and SILO. In these experiments, we turn on/off transac-
tional logging in each system. When we turn on trans-
actional logging, we use our emulated NVRAM device de-
scribed in next section with 5 us latency. Both SILO and
FOEDUS assign 12 worker threads per socket.

Figure 7 shows the results of experiments on DragonHawk.
The x-axis is the fraction of each orderline stored in remote
warehouses, which we call remote-ratio below. We also
vary the fraction of remote payments accordingly (remote-
ratio * 15%, up to 100%). Prior work [30] did an equivalent
evaluation. We denote remoteness as a fraction of remote or-
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derlines, not remote transactions. As each neworder trans-
action issues 5 to 15 line-items, remote-ratio=1 corresponds
to about 10% remote transactions.

In the regular TPC-C setting (remote-ratio=1), FOE-
DUS achieves 400 times higher throughput over H-Store.
The throughput of H-Store significantly drops when some
transactions touch remote warehouses because H-Store trig-
gers distributed transactions with global locks for such trans-
actions. In fact, more than 90% of transactions in H-Store
abort with higher remote ratios. This makes H-Store per-
form even slower on DragonHawk except remote-ratio=0.
On the other hand, FOEDUS and SILO suffer from only
modest slowdowns because of their lightweight concurrency
control and cache-conscious data structures, resulting in sev-
eral orders of magnitude faster performance for larger re-
mote ratios.

Table 2: In-memory TPC-C Scale-up (Remote=1).
Total/per-core Throughput [kTPS]. Log ON.

Server FOEDUS | SILO | H-Store
DL580 3659 1868 55.3
(per-core) (61.0) | (31.1) (0.92)
DragonHawk 13897 | 5757 35.2
(per-core) (57.9) | (24.0) (0.15)

FOEDUS also performs consistently faster than SILO.
FOEDUS’s throughput is twice that of SILO because Master-
Tree eliminates most transaction aborts and all global search
retries as well as hand-over-hand verification steps in interior
pages. Table 2 compares the entire and per-core throughput
of the systems on DL580 (60 cores) and DragonHawk (240
cores). Although both FOEDUS and SILO scale well, the
relative performance difference modestly but consistently
grows as the number of core grows. In all remote-ness set-
tings, FOEDUS performs 2.4x faster than SILO on 240 cores
and 2x faster on 60 cores. FOEDUS is less affected by trans-
actional logging, too. Whether FOEDUS writes out logs to
tmpfs or NVRAM, it only issues a few large sequential writes
for each epoch, thus the latency has almost no impact.

These results verify the scalability of FOEDUS on a large
number of cores with highly non-uniform memory accesses.

9.3 NVRAM Experiments

The second set of experiments places the data files and
transactional log files in an emulated NVRAM device. We
again evaluate three systems, but this time we do not evalu-
ate SILO because it is a pure in-memory database. Instead,
we compare FOEDUS with H-Store with anti-caching (75%
eviction threshold) and a variant of Shore-MT [14, 16, 25, 32].

9.3.1 NVRAM Emulator

As discussed in Section 2, the latency of future NVRAM
devices widely varies. We therefore developed a simple emu-
lator to emulate NVRAM devices with an arbitrary latency.
Our emulator leverages the fact that all three systems we
evaluate use standard filesystem APIs to access and manip-
ulate log and data files. It emulates NVRAM using DRAM
and by extending a Linux memory file system (i.e., tmpfs)
to inject software-created delays to each file read and write
I/0O operation. It creates delays using a software spin loop
that uses the x86 RDTSCP instruction to read the processor
timestamp counter and spin until the counter reaches the in-
tended delay. It also allocates and places data in emulated
NVRAM in a NUMA-aware fashion. Our NVRAM emula-



tor is completely transparent and requires no source code
changes to applications as long as they access NVRAM via
the filesystem API.

Compared to previous hardware-based approaches for em-
ulating NVRAM [11], our emulation approach requires no
special hardware or firmware, and most importantly it is
not limited to single-socket systems. Thus, our approach
enables us to evaluate larger scale systems comprising thou-
sands of cores and huge NVRAM.

9.3.2 Transaction Throughput

Figure 8 shows TPC-C throughput of the three systems
in DragonHawk with various NVRAM latencies that cover
all expectations and types of NVRAM (100 ns to 50 us).

FOEDUS: Because most of its writes are large and
sequential, FOEDUS is nearly completely unimpacted by the
higher NVRAM latency. Even though the size of snapshot-
cache was only 50% of the entire data size, the page-based
caching effectively reduces the number of read accesses to
NVRAM.

FOEDUS-NoSC: To confirm the effects of the snapshot-

cache, FOEDUS NoSC always reads snapshot pages from NVRAM.
As the result shows, the throughput visibly deteriorates around

10 us and hits major I/O bottlenecks around 30 us. In other
words, when the snapshot-cache is too small or its cache re-
placement algorithm (so far a simple CLOCK) does not cap-
ture the access pattern, the performance of FOEDUS highly
depends on whether the read latency of the NVRAM de-
vice is <10 us or not. Another interesting result is that the
throughput of FOEDUS NoSC is lower than FOEDUS even when
the latency is negligibly low (e.g., 100 ns). This is because
snapshot-cache also avoids the overhead to invoke filesystem
APT and copying the page (4 KB) itself, which is expensive
especially when the snapshot page exists in another SOC.
Therefore, SOC-local snapshot-cache is beneficial regardless
of the NVRAM device’s latency.

H-Store: On the other hand, anti-caching in H-Store in-
curs high overheads due to its need to maintain the status of
eviction for each tuple and frequent I/Os to NVRAM. Java
stored procedures with query optimization help developers
but have overheads, too. Furthermore, anti-caching requires
an additional JNTI call when the transaction retrieves evicted
tuples (dependencies). As a result, FOEDUS’s throughput
is more than 100 times higher than that of H-Store.

Note: The current implementation of anti-caching in H-
Store has some unstability when a transaction retrieves a tu-
ple from anti-cache in remote partitions. Hence, this experi-
ment runs H-Store without remote transactions (remote=0),
which is guaranteed to only improve H-Store’s performance
(according to Figure 7, about 2x) rather than degrade.

Shore-MT: Shore-MT keeps about the same perfor-
mance as H-Store in all latencies. Its throughput drops only
when NVRAM latency is beyond the expected range. We
observed 10% slow down with 0.1 ms latency, 70% with 0.5
ms, and 150% with 1 ms. However, even an SSD device in
the current market has less than 0.1 ms latency. In other
words, Shore-MT benefits from replacing HDDs with SSDs
but not from replacing SSDs with NVRAMs because its disk-
based architecture incurs high overheads that overshadow
the differences in ps order. In fact, we did not observe per-
formance differences by varying the size of its bufferpool.
The figure shows the throughput of Shore-MT whose buffer-
pool size is 75% of the data file, but 50% bufferpool size had
almost identical throughput in all realistic latency settings
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Figure 8@ NVRAM TPC-C with varied NVRAM
latency on DragonHawk, Remote=1 except H-Store
(Remote=0). Transactional Logging on.

for NVRAM. Shore-MT does not scale up to the large num-
ber of cores, either. Due to contentions in locking and log-
ging modules, we had to limit the number of worker threads
to 26 to get its peak performance, which is consistent with
the numbers [32] observes.

9.3.3 Log Gleaner Throughput

Next, we measure the performance of the log gleaner. Al-
though the log gleaner runs concurrently to transactions
without any interference, the log gleaner must catch up
with the rate at which transactions emit logs. Otherwise,
too many volatile pages must be kept in-memory, eventually
causing transactions to pause until the log gleaner catches
up. The same applies to log writers. If loggers cannot write
out logs to files fast enough, the circular log buffers of work-
ers become full and cause paused transaction executions.

Table 3: FOEDUS Log Gleaner Throughput.
| Module | Throughput +stdev [10° logs/sec] |

Mapper 3.39 £ 0.13 per instance
Reducer 3.89 £ 0.25 per instance
Logger 12.2 £ 1.3 per instance

Table 3 shows the throughput of each module in the TPC-
C experiments on NVRAM. Assuming 50k transactions per
core per second, which emit about half a million log entries
per core per second, this result indicates that 1 or 2 log map-
pers and 1 log reducer can catch up with 8 worker threads.
For example, in the environments we used in the experi-
ments which have 15 cores per CPU, we assign 12 worker
threads, 2 log mappers, and 1 log reducer per socket.

One logger in FOEDUS keeps up with 24 worker threads.
Despite the similar design in transactional logging, SILO
reports a different balance; 1 logger thread can handle up
to only 7 worker threads [30]. The improvement is due to
FOEDUS’s design to directly write out worker buffers to log
files. A logger in FOEDUS does not have its own buffer
aside from a small 4 KB buffer to align boundary cases for
direct I/O. On the other hand, SILO copies logs from worker
buffers to loggers buffers, doubling the overhead.

These results on NVRAM verify that 1) FOEDUS achieves
a high performance on NVRAM equivalent or better than in-
memory systems, and that 2) FOEDUS’s logging and snap-
shotting framework can handle a large influx of transaction
logs with a sizable number of cores per socket.



9.4 Where the time goes

This section analyzes the current bottlenecks in FOEDUS.
Figure 9 shows the results of CPU profiling in DragonHawk
during the TPC-C executions in the in-memory setting and
the NVRAM setting with a latency of 5 us. In this figure,
Lock-Acquire contains the wait time of conflicting locks.
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Figure 9: CPU Profile of FOEDUS during TPC-C.

Unlike the famous analysis in Shore [15], the vast majority
of CPU cycles are spent in actual transactional processing in
both settings. This is a significant improvement especially
considering that the prior analysis was about overheads on
single-threaded execution. FOEDUS effectively keeps lock-
ing and logging contentions small even on the unprecedent-
edly large number of cores. It is exactly one of the goals to
completely separate transactional modifications in volatile
pages from log writers and the log gleaner. They can thus
construct snapshot pages in parallel to transaction execu-
tions without any races or frequent flushes.

The CPU profile also shows an interesting benefit of the
stratified snapshots. Although the NVRAM execution adds
the cost to access NVRAM (NVRAM-IO), it reduces lock con-
tention (25.5% — 15.2%) and the overheads of verification
(1.8% — 0.6%). As Section 7 discusses, snapshot pages
are immutable. Once the transaction followed a snapshot
pointer, it never has to check record TIDs, page versions,
or page locks except for the single pointer to jump from the
volatile world to the snapshot world. This property dra-
matically reduces the number of read-sets to verify in the
pre-commit phase and speeds up reading static pages. This
is especially beneficial for OLAP workloads, discussed next.

9.5 OLAP Experiments

TPC-C is an insert-heavy OLTP workload. In order to
evaluate the efficiency of FOEDUS for OLAP workloads,
we also ran an altered TPC-C that executes analysis-style
queries on orders of magnitude larger data. We found that
FOEDUS achieves orders of magnitude larger throughput
compared to H-Store. Further, we observed an interest-
ing aspect of the dual page architecture; FOEDUS performs
faster, not slower, if it drops all volatile pages (hot-data)
from DRAM and has only snapshot pages (cold-data). This
happens because verification costs are more significant in
OLAP settings and snapshot pages are more efficient to read
than equivalent volatile pages thanks to its immutability and
density. Appendix A describes this experiment in details.

9.6 Discussions

Finally, we discuss a few issues that are not explicitly
visible in the performance numbers.

First, we observed and also confirmed with the original
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authors that some of the bottlenecks in H-Store are at-
tributed to the Java runtime. H-Store/VoltDB allows users
to write their transaction in Java stored procedures that
communicate with the native execution engine via JNI. This
causes expensive cross-boundary costs as well as the need
for JavaVM’s GC. Although garbage collection could be ex-
pensive in any language, Java GC is especially known for
its poor scalability for small and frequent transactions like
OLTP on large NUMA machines. On the other hand, FOE-
DUS supports only C/C++ interface, which does not have
this issue but is not as productive as Java in terms of devel-
opers’ productivity. Providing both developer productivity
and system efficiency requires further research.

Second, there is another approach to bring the perfor-
mance of purely in-memory databases to NVRAM. One can
run a purely in-memory database, such as SILO, on a vir-
tual memory backed by NVRAM. This approach does not
require any code change in the database, but has a few
fundamental limitations. The most important limitation
is that it cannot recover from a system crash without re-
doing all transactional logs. A modification to a virtual
memory right before the crash might or might not be made
durable. Unless the NVRAM device and the OS provide
additional guarantees, such as write-order-dependency and
flush-on-failure, the database needs an extra mechanism to
handle recovery. Further, the OS must wisely choose mem-
ory regions to swap out and modify mapping tables (e.g.,
hash-table) in a thread-safe fashion just like database buffer-
pools, which poses challenges on scalability and complexity.
In fact, [14] observes that virtual memory performs poorly
as a bufferpool mechanism. One reason is that an OS has
no application-domain knowledge. Nevertheless, it is still an
interesting direction to overcome these limitations without
completely changing the architecture of existing DBMSs for
the sake of software compatibility.

10. CONCLUSIONS

The advent of NVRAM and thousand CPU cores demands
new database management systems. Neither disk-based nor
in-memory databases will scale. We presented the design of
FOEDUS, our from-scratch OLTP engine that scales up to a
thousand cores and fully exploits NVRAM. Our experiments
on a 240-core server revealed that FOEDUS performs orders
of magnitude faster than state-of-the-art databases and is
substantially more resilient to contention.

There are several topics in FOEDUS we will further in-
vestigate. Although the performance results on the 240 core
server imply that FOEDUS will not peak out its perfor-
mance at least for high-hundreds of cores, we will run ex-
periments on a thousand cores as soon as possible. We plan
to improve the resilience to even higher contention, the main
drawback of OCC, by autonomously combining pessimistic
approaches depending on workloads.

Another issue we plan to work on is to improve the auto-
matic partitioning algorithm in the log gleaner. The current
algorithm simply checks which node has modified the page
recently. This sometimes misses the best partitioning, for
example a page that is occasionally modified in node-1 but
very frequently read in node-2. However, we must avoid re-
quiring each read operation to write something to a global
place, even just statistics. We have a preliminary idea on
efficient collection of statistics for partitioning and will eval-
uate its accuracy and overheads.



APPENDIX

A. OLAP EXPERIMENTS

Section 9 used the standard TPC-C to evaluate the per-
formance of FOEDUS, which is an insert-heavy OLTP work-
load. This section evaluates the efficiency of FOEDUS for
OLAP workloads, using an altered TPC-C workload as a
micro-benchmark. The OLAP workload uses order-status,
a read-only transaction in TPC-C that consists of three cur-
sor accesses; 1) retrieving customer-ID from customer name,
2) retrieving last order-ID from customer-ID, and 3) retriev-
ing line items of the order.

We also increased the average number of tuples this query
reads. Each order in TPC-C contains 5 (MIN_OL_CNT) to
15 (MAX_OL_CNT) line items. Analytic queries usually read
hundreds or thousands of tuples. We thus varied MAX_OL_CNT
from 15 to 500. The initial size of the database is increased
accordingly, turning it to an OLAP-style database of 0.5 TB.

Throughput: Figure 10 shows the throughputs of the
OLAP workload. In this experiment, we disabled H-Store’s
anti-caching to evaluate its best performance, assuming that
DRAM is larger than the data set. The workload has no
distributed transaction, either. We tested two configurations
of FOEDUS to evaluate different aspects of its architecture.
FOEDUS-Hot keeps all volatile pages, thus no snapshot pages
on NVRAM are accessed. FOEDUS-Cold, on the other hand,
drops all volatile pages, thus the transactions read snapshot
pages from NVRAM (5 us latency) with a large snapshot
cache.
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FOEDUS-Cold —e—
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Figure 10: OLAP Workload (order-status with

many more records). FOEDUS-Hot keeps all
volatile pages while -Cold has only snapshot pages.

FOEDUS achieved orders of magnitude higher through-
puts than H-Store. This is not a surprising result because
H-Store is not designed for OLAP workloads. A far more
interesting observation is that FOEDUS-Cold is faster than
FOEDUS-Hot for about 30-70% in this cursor-heavy OLAP
workload. We consistently observed the speed-up unless
the snapshot cache is small or the workload consists of a
large number of random seeks (e.g., stock-level, which is
dominated by uniformly random lookups on stock table).
This is surprising because the general assumption in hybrid
databases is that cold-data are slower to manipulate. To an-
alyze how this happens, we took CPU profile of FOEDUS.

Profile: Figure 11 shows the CPU profile in this experi-
ment. A cold execution adds the I/O cost on NVRAM, but
there are a few costs that are substantially lower instead.

First, as reported in the NVRAM experiment, reading
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Figure 11: CPU Profile of FOEDUS during a cursor-
heavy OLAP workload on 0.5 TB data.

from snapshot pages reduces the verification cost (5.0% —
0.5%), which is much more significant in this OLAP setting.

Second, the snapshot versions of Master-Tree’s border pages
are always fully sorted. Hence, a cold execution skips the
sorting step to scan a border page. Appendix C explains
how cursors work in Master-Trees.

Third, stratified snapshots contain more dense intermedi-
ate pages than the volatile pages. Fill factor is almost 100%
and it does not have foster twins. There are simply fewer
intermediate pages to read.

Finally, the snapshot cache serves as a local replica, thus
reading from it causes only NUMA-local accesses. On the
other hand, mutable volatile pages cannot be replicated eas-
ily. Especially on a larger database (MAX_OL_CNT=500), this
causes a significant speedup (70%) due to memory band-
width limitation across sockets.

In sum, the complete separation of volatile and snapshot
pages has a few additional performance benefits for OLAP
workloads. These observations verify the design of dual
pages, whose main goal is to scale beyond the size of DRAM
and also efficiently process big-data OLAP applications.

B. NON-SERIALIZABLE TRANSACTIONS

FOEDUS provides a few weaker isolation levels for use-
cases where the user prefers even higher efficiency and scal-
ability at the cost of non-serializable results. This appendix
section discusses a popular isolation level, snapshot isolation
(s1).

B.1 Snapshot Isolation (SI)

SI guarantees that all reads in the transaction will see a
consistent and complete image of the database as of some
time (time-stamp). FOEDUS’s SI requires that the time-
stamp of an SI transaction in FOEDUS must be the epoch of
the latest (or older) snapshot. Unlike a database that assigns
a transaction’s time-stamp at its beginning (e.g., Oracle),
the granularity of timestamps in FOEDUS is much coarser.

B.2 How FOEDUS Executes SI

The execution of SI transactions in FOEDUS is fairly sim-
ple because a stratified snapshot by itself is a complete, con-
sistent, and immutable image of the entire database as of a
single point of time (snapshot epoch). For reads, a transac-
tion merely follows the root snapshot pointer for all storages
as of the latest snapshot. It does not have to remember read



sets nor pointer sets. For writes, it does the same as serial-
izable execution.

FOEDUS’s multi-versioning is based on pages. Unlike
tuple-based multi-versioning databases where a new key in-
sertion might be physically modifying the page, reading and
traversing immutable snapshot pages in FOEDUS does not
need any additional logic (e.g., skipping a tuple with a newer
time-stamp) even for cursor accesses. The transaction merely
reads locally-cached snapshot pages and processes them as if
the system is single-threaded. Further, because all data as of
the exact epoch reside in the page, reading each tuple does
not need to access UNDO logs, which is the major source of
I/O overheads and CPU cache misses in traditional MVCC
databases. In fact, FOEDUS does not have any UNDO logs
because FOEDUS applies the changes to data only after the
transaction is committed.

The drawback, however, is the coarser granularity of time-
stamps, which is more likely to cause write skews. The
reason for us to choose this design of SI is that, because
FOEDUS provides a highly scalable and efficient serializ-
able execution, a user application of FOEDUS would choose
SI probably because of a significantly high priority on per-
formance rather than recency of reads, or full serializability.
Hence, the drastically simple and efficient protocol above
would best serve the usecases.

B.3 Instant Recovery for SI

As described in Section 7.7, FOEDUS runs the log gleaner
after restart, taking up to a few minutes when the previ-
ous execution did not run log gleaner during the shutdown,
probably because of a system crash. When the user needs
to run only read-only SI transactions, FOEDUS can even
skip this step because stratified snapshots are immediately
queriable databases by themselves unlike traditional check-
points. This is a restricted form of instant recovery [24] that
provides additional fault tolerance at no cost.

C. CURSORS IN MASTER-TREE

Master-Tree provides a cursor interface for range access,
which is the raison d’étre of B-trees. A cursor in Master-
Tree is designed with the same principles as point-queries
discussed in the main body, namely no global retries or hand-
over-hand verifications.

Algorithm 3 summarizes how Master-Tree scans records
forward. The key idea is again the foster-twin and the stable
key-region of pages.

In intermediate pages, the cursor remembers up to which
key it scanned so far (last). The next page to follow is cor-
rect if and only if the page’s low fence key is equal to the
key. If it does not match, there was some reorganization in
the page, but it is guaranteed that the separator still exists
in the page. Thus, it locally re-locates the position rather
than aborting the transaction or globally retrying from the
root. Observe that the algorithm is correct even if the inter-
mediate page is now moved or retired. The cursor eventually
reaches the exactly same set of border pages without locks
or hand-over-hand verifications.

In border pages, however, we have to check the possibility
of phantoms. Hence, the transaction remembers the key
count of the page as of initially opening the page in addition
to per-tuple read-sets. Also, like Masstree [22], Master-Tree
never changes the location of existing records to simplify
concurrency control. It always appends a new record at the
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Algorithm 3: Summary of Master-Tree’s cursor scan

Procedure cursor_next()
| move_border(last route);
Procedure move_inter(route)
pos = route.pos + 1;
if pos > page.count then wind up and move;
if page.fences[pos| # route.last then relocate pos;
next = page.pointers[pos];
if next.low # route.last then local retry;
route.pos = pos, route.last = next.high;
follow (next);
Procedure move_border(route)
pos = +-route.pos;
if pos > page.count then wind up and move;
if Points to next layer then follow(next layer);
Optimistic-Read(page.records[route.order[pos]]);
Procedure follow(page)
route < new route(pos = 0, last = page.low);
if page is border and volatile then
if page is moved then follow(foster twins);

/* Verified during precommit */
remember page.count;
route.order = sort(page.keys);
end
move_border/inter(route);
0 16 32
Reserved
32 48 64 i/ICE
Thread-ID (tail) | MCS-Node (tail) ¢
64 68 96
Flags Epoch Version
96 128 5 Number
] In-Epoch Ordinal (VID)

Figure 12: FOEDUS’s TID Layout.

end of the page. Thus, keys are not sorted in border pages.
To efficiently scan the page, a cursor calculates the order
of keys in the page when it follows a pointer to the page.
Bw-Tree has a similar step [20]. This sorting is skipped in
snapshot pages because log gleaner always construct a page
that is fully sorted.

D. DETAILED DATA LAYOUTS

This appendix section provides a concrete layout of a few
data structures explained in the main body. Although the
main idea and mechanism will stay the same, the exact data
layout might change over time. We thus recommend to check
the latest source code of FOEDUS.

D.1 TID

TID (Transaction-ID) is the metadata placed next to ev-
ery tuple. Our TID layout is slightly different from SILO
to accommodate more information and to employ MCS-
locking [21], which avoids remote-spinning for higher scal-
ability. FOEDUS’s TID consists of two parts, each of which
is 64-bits as shown in Figure 12. The first part, MCS-Lock,
contains the ID of the tail-waiter of the tuple and address
of its lock-node. A transaction atomically swaps (e.g., x86
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Figure 13: Example Log Record: Master-Tree Log.

lock xchg) this portion to install its lock request and spins
locally on its own node as done in typical MCS-locking.

The second part, VID, is the version number protected by
the lock. All logical status of the record are stored in this
part, including moved flag, deleted flag, next-layer flag,
and being-written flag that indicates whether the record
is half-written. Most code in FOEDUS only deals with this
part. For instance, an optimistic read just reads VID, take
a consume or acquire fence, then read the tuple. Logical
log records, described next, also contain only VIDs.

D.2 Log Record

Figure 13 exemplifies the logical log record in FOEDUS.

Unlike traditional LSN-based databases, it does not con-
tain any physical information, such as page-ID and undo-
chain. All log records are 64-bit aligned with appropriate
paddings. In addition to performance benefits, such as ef-
ficiently slicing a 64-bit key for Master-Tree with aligned
pointers, the alignment is essential to contiguously fill an
arbitrary part of unused log regions with a special filler log
for each Direct-IO operation.

D.3 Read-Write Set

Each transaction maintains an array of the following read-
and write-sets.

struct Read { struct Write {

VID observed_; MCSNode locked_;

StrID storage_; StrID storage_;

void*x address_; void*x address_;

Writex related_; Readx related_;
}s Logx  log-;

};

Figure 14: Read- and Write-Set Structure.

The related_ field is set when an operation both reads
and writes to a tuple, which is a very common case. The bi-
directional chain is useful to avoid a few redundant work dur-
ing the pre-commit phase, such as tracking moved records.

A write set additionally contains the MCS lock node of
the transaction, which is needed to unlock. Both the log
pointer and the MCS node always point to the transaction’s
Oown memory.

E. H-STORE CONFIGURATION

This appendix section provides the full details of the H-
Store configuration for verifying and reproducing our per-
formance comparison with H-Store.

Versions and Patches: Following recommendations
from the H-Store team, we used the latest version of H-Store
as of Dec 2014 with a patch provided by the H-Store team to
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Table 4: H-Store General Configuration.

| Parameter Name | Configuration

site.jvm_asserts false
site.cpu_affinity true
client.blocking false
client.memory 20480

site.memory 30720
global. memory 2048
client.txnrate 10000

client.threads_per_host [Adjusted to the throughput]
hosts localhost:0:0-7;localhost:1:8-15;...

Table 5: H-Store Command Logging Configuration.

| Parameter Name | Configuration |
site.commandlog_enable true
site.commandlog_dir [The NVRAM filesystem]
site.commandlog_timeout 500

Table 6: H-Store Anti-caching Configuration.
| Parameter Name | Configuration |
HISTORY,CUSTOMER,
ORDERS,ORDER_LINE
[The NVRAM filesystem]

true
1000

evictable

site.anticache_dir
site.anticache_enable
site.anticache_threshold_mb

partially fix the unstability issue of anti-caching mentioned
in Section 9. The H-Store team also recommended us to dis-
able remote transactions to measure the best performance
of anti-caching, thus we disabled remote transactions in all
experiments that use H-Store’s anti-caching.

General Configuration: In both in-memory and NVM
experiments, we used the parameters listed in Table 4 to run
the experiments.

Based on recommendations by the H-Store team, we ran
the experiments with turning CPU affinity ON/OFF and
observed that enabling CPU affinity gives a better perfor-
mance. We always kept the JVM heap size within 32 GB
so that the JVM can exploit Compressed-0ops [2] for its
best performance. The JVM we used is 64-bit OpenJDK
24.51-b03 (1.7.0_51), Server VM.

For TPC-C benchmark, we modified the tpcc.properties
file. The only changes from the default setting are the
fraction of remote-transactions. We vary neworder_multip
(multip stands for multi-partition) and payment_multip as
described in Section 9. When remote=0, we also set false to
neworder_ and payment_multip_mix so that H-Store com-
pletely avoids the overhead of distributed transactions.

For the OLAP experiment in this appendix, we varied the
transaction weights and MAX_OL_CNT in TPCCConstants. java.
We also slightly modified the data loader to flush more fre-
quently to handle an increased number of records.

Command Logging Configuration: In the NVM ex-
periment and in-memory experiment with logging, we en-
abled H-Store’s command-logging feature, placing the log
files in our emulated NVRAM device as listed in Table 5.

Anti-caching Configuration: In the NVM experi-
ment, we used H-Store’s default implementation of anti-
caching backed by BerkeleyDB on history, customer, or-
ders, orderline with 1 GB eviction threshold (or 75%) per
site as listed in Table 6.
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