
In-memory Databases – Challenges and Opportunities

From Software and Hardware Perspectives

Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi∗,
Weng-Fai Wong, Chang Yao, Hao Zhang

National University of Singapore
{tankl, caiqc, ooibc, wongwf, yaochang, zhangh}@comp.nus.edu.sg

ABSTRACT
The increase in the capacity of main memory coupled
with the decrease in cost has fueled research in and de-
velopment of in-memory databases. In recent years, the
emergence of new hardware has further given rise to
new challenges which have attracted a lot of attention
from the research community. In particular, it is widely
accepted that hardware solutions can provide promising
alternatives for realizing the full potential of in-memory
systems. Here, we argue that naive adoption of hard-
ware solutions does not guarantee superior performance
over software solutions, and identify problems in such
hardware solutions that limit their performance. We also
highlight the primary challenges faced by in-memory
databases, and summarize their potential solutions, from
both software and hardware perspectives.

1. INTRODUCTION
Despite the dominance of disk-based data pro-

cessing systems for Big Data [17], in-memory com-
puting is recently gaining traction rapidly. This
is fueled by several contributing factors: the in-
creased capacity of main memory, the low cost of
DRAM, and more importantly, the orders of mag-
nitude higher main memory bandwidth than the
most advanced disk- or flash-based storage. While
in-memory databases have been studied since the
80s, recent advances in hardware technology have
re-generated interests in hosting the entirety of the
database in memory in order to provide faster ac-
cesses and real-time analytics. A comprehensive
survey on in-memory data management and pro-
cessing can be found in [33].

However, in-memory databases not only embrace
opportunities with the emergence of new technol-
ogy, they also face challenges and problems that are
non-trivial to be addressed. Simply replacing the
storage layer of a traditional disk-based database
with memory will not satisfy the real-time perfor-
∗Corresponding author.

mance requirements because of the retention of the
clumsy components from traditional database sys-
tems, such as the buffer manager, latching, lock-
ing and logging [8, 34]. Other sources of overhead
from pointer-chasing, cache-un-friendly structures,
transaction isolation and syscalls, further exacer-
bate the performance problems. In addition to the
classical storage layer performance issues, in-memory
data-bases are increasingly hitting the communica-
tion and concurrency bottlenecks [35, 29].

A significant amount of researches have been done
to address these challenges, through the design of
new algorithms/data structures on top of existing
software stack, from the aspects of in-memory data
placement [27], parallelism [7], efficient logging [21],
concurrency control [29, 31], etc. Nevertheless, ad-
vances in hardware are fast changing the commod-
ity processor scene. The availability of technolo-
gies such as NUMA architecture [20], SIMD instruc-
tions [30], RDMA networking, hardware transac-
tional memory (HTM) [16], non-volatile memory
(NVM), and on-chip GPUs [5], FPGAs and other
hardware accelerators, can potentially provide bet-
ter performance with low overhead [16, 11, 9, 19].

In this paper, we argue that these are by them-
selves not magic bullets. Each hardware solution
has its own limitations and idiosyncrasies. With-
out new software optimization techniques, and ex-
tensive tuning, it will be hard to fully realize the
potentials that the technology brings. We highlight
some of these issues, and identify promising research
directions that our community can contribute for
both OLTP and OLAP systems.

The remainder of the paper is structured as fol-
lows. Section 2 discusses the challenges faced by in-
memory databases, and Section 3 surveys existing
approaches to address these challenges from both
software and hardware perspectives. In Section 4,
we point out the potential problems coming from
hardware solutions. We propose some open research
directions in Section 5, and conclude in Section 6.

SIGMOD Record, June 2015 (Vol. 44, No. 2) 35



2. CHALLENGES FOR IN-MEMORY
DATABASES

2.1 Parallelism
In general, there are three levels of parallelism,

i.e., data-level parallelism (e.g., bit-parallel, SIMD),
shared-memory scale-up parallelism (e.g., thread/
process) and shared-nothing scale-out parallelism
(e.g., distributed computation). Ideally, we would
like to achieve linear scalability as the computation
resources increase. This, however, is non-trivial and
requires considerable tuning and well-designed al-
gorithms. The fact that all these three levels of
parallelism have been deployed in a wide variety of
combinations further compounds the problem.

Research challenge 1: How can OLTP and OLAP
systems benefit from the wide variety of parallelism
paradigms present in today’s systems?

2.2 Concurrency Control
An efficient concurrency control protocol is nec-

essary and important in order to ensure the atom-
icity and isolation properties, and not to offset the
benefit derived from parallelism. With the increas-
ing number of machines that can be deployed in
a cluster and the increasing number of CPU cores
in each machine, it is not uncommon that more
threads/processes will run in parallel, which dra-
matically increase the complexity for concurrency
control. Surprisingly, current concurrency control
algorithms fail to scale beyond 1024 cores [32].

Research challenge 2: We need truly scalable
concurrency control.

2.3 Communication
Network communication is incurred for a variety

of critical operations: data replication for fault tol-
erance, information exchange for coordination, data
transmission for data sharing or load balancing, and
so on. The limited size of main memory of a single
server, in contrast to the big volume of data, ex-
acerbates the network communication requirement.
However, the data access latency gap between main
memory and network is huge, making communica-
tion efficiency important to the overall performance.

Research challenge 3: How can we bridge the
communication gap that is growing both in magni-
tude and diversity?

2.4 Storage
Even though in-memory databases store all the

data in the main memory, the data should also be
persisted to non-volatile storage for durability and

fault tolerance. In traditional disk-based databases,
this is achieved by logging each data update to a
disk-resident write-ahead log. Logging to disk, how-
ever, is prohibitively expensive in the context of in-
memory databases due to the extremely slow disk
access, in contrast to the fast memory access.

Research challenge 4: How can we scale in-memo-
ry databases to exploit expanding NVM capacities
effectively?

3. SOFTWARE AND HARDWARE
SOLUTIONS

We shall summarize the potential solutions to
these challenges, from both software and hardware
perspectives in this section.

3.1 Parallelism
On the software level, we can impose different

computation models or techniques to realize paral-
lelism of different granularities, namely, fine-grained,
coarse-grained and embarrassing parallelism. Multi-
threaded programs are a common case that utilizes
the multi-core architecture to scale up [29], while
distributed computing takes advantage of the re-
sources from hundreds or thousands of servers to
scale out the computing/storage capability.

NUMA architecture is proposed to solve the data
starvation problem in modern CPUs, by eliminating
the coordination among different processors when
accessing its local memory, and thus fully exert-
ing the accumulated power from multiple proces-
sors. SIMD provides an easier alternative to achieve
data-level parallelism, for its capability to operate
on multiple data objects in one instruction [30].
In addition, bit-parallel algorithms are proposed to
fully unleash the intra-cycle parallelism of modern
CPUs, by packing multiple data values into one reg-
ister, which can be processed in parallel [7]. The
introduction of on-chip hardware accelerators such
as GPUs, FPGAs, and other heterogeneous cores
presents another challenge, as their usage does not
just require new code but in fact new algorithms.

3.2 Concurrency Control
Following the canonical categorization in [32], con-

currency control protocol can either be lock-based
or timestamp-based, from the software perspective.
A significant amount of research is trying to im-
prove its efficiency, such as Very Lightweight Lock-
ing (VLL) [25] for lock-based approaches, and some
MVCC protocols [13, 23] for timestamp-based ap-
proaches. High overhead from 2PC for distributed
transactions are alleviated by some 2PC-avoidance
partition schemes [10] and speculative concurrency

36 SIGMOD Record, June 2015 (Vol. 44, No. 2)



strategies [24, 14].
The ideal case for concurrency control is that all

transactions are executed in parallel without any
concurrency control protocol overhead, which is usu-
ally very hard to achieve in practice. It has been
shown that HTM-based timestamp-based concur-
rency control performs quite close to the ideal and
hence simply cannot be ignored [16].

3.3 Communication
To improve the network performance, there are

mainly two main approaches.
Minimizing communication. Data locality is

key to minimizing communication overhead. With
good data locality, there will be less frequent access
to remote data. This can be achieved by a good par-
titioning algorithm [24], or an efficient query rout-
ing mechanism to push computation close to the
data [14]. The data locality can only be considered
from the software perspective, since the strategy is
usually application-specific.

Improving the communication efficiency.
From a software perspective, the network communi-
cation efficiency can be improved by object coalesc-
ing or batch communication [35, 2], kernel-bypass
networking (e.g., netmap [26]), data-plane operat-
ing systems (e.g., IX [1]), and other techniques.
On the other hand, RDMA boosts the networking
performance from the hardware perspective, by en-
abling zero-copy and one-sided networking [22, 2].
In particular, RDMA enables user-level data trans-
mission without involving the kernel or the CPU,
thus achieving low latency and high throughput on
the hardware level. It is free from the complexi-
ties and problems (e.g., lack of congestion control,
retransmission) imposed by software solutions.

3.4 Storage
To alleviate durability overhead for in-memory

databases, recent studies [21] proposed to use com-
mand logging, which logs only operations instead of
the updated data, and combines with group commit
to further reduce the number of loggings. However,
there still exists a fundamental design trade-off be-
tween the high durability and logging overhead. If
only a small number of transactions are committed
each time, then the logging overhead may still sub-
stantially affect the transaction throughput due to
its orders of magnitude higher latency than the exe-
cution time of transactions. On the other hand, ac-
cumulating a large number of transactions for group
commit can lead to more data lost upon failure.

The emergence of NVM, including flash, PCM or
STT-RAM, offers a new promising alternative for

 0

 20

 40

 60

 80

1 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t 
(K

 r
e
q
/s

)

Number of Parallel Connections

ETH-PUT
ETH-GET

RDMA-PUT
RDMA-GET

(a) Throughput

 0

 200

 400

 600

 800

1 2 4 8 16 32 64

la
te

n
c
y
 (

m
ic

ro
s
e
c
o
n
d
s
)

Number of Parallel Connections

ETH-PUT
ETH-GET
RDMA-PUT
RDMA-GET

(b) Latency

Figure 1: Redis Performance with Ethernet and
RDMA

data storage. These non-volatile technologies have
been touted as DRAM replacements [6]. However, if
we look deeper, things are not as rosy. The denser
form of flash memory, i.e., NAND flash, works in
units of pages. PCM and STT-RAM are bit ad-
dressable but PCM suffers from inherent endurance
and write disturbance issues [15] while STT-RAM
suffers from inherently non-zero write failure prob-
abililty [18]. Furthermore, all three classes of NVM
have asymmetric read and write latencies [18].

4. POTENTIAL PROBLEMS WITH
HARDWARE SOLUTIONS

The challenges faced by in-memory databases can
be addressed from both software and hardware per-
spectives. Software solutions are constrained by the
underlying software stack, and increasingly hitting
the performance bottleneck [3], while hardware so-
lutions can boost the performance from the lowest
underlying layers (i.e., transistors, circuits), which
usually does not introduce much overhead.

However, näıve adoption of hardware solutions
does not guarantee superior performance over soft-
ware solutions. For example, simply using RDMA
does not necessarily improve the performance greatly.
In Figure 1, we show the performance difference
for Redis [28], with its default Ethernet network (1
Gbps), and simple replacement of RDMA network
(40 Gbps), as an illustration for the unexpected be-
havior by only relying on hardware. Specifically,
we can see that RDMA does not improve its per-
formance significantly in terms of both through-
put and latency, even though RDMA throughput
is 40× faster than Ethernet. With enough connec-
tions (i.e., more than 32), the performance is almost
the same, losing the potential high performance ad-
vantage of RDMA networking. We summarize some
issues that arise from hardware solutions below.

Mismatch with traditional software/OS
stack. Newly-emerged hardware sometimes does
not match with the traditional software/OS stack,
which will cause unexpected behaviors or perfor-
mance degradation. For example, although the byte

SIGMOD Record, June 2015 (Vol. 44, No. 2) 37



addressability and durable writes of NVM render it
perfect for building an in-memory database, simply
replacing DRAM or the disk with NVM to build an
in-memory database fails to take advantage of these
features. This is because of the mismatch between
block/page granularity of OS paging and the byte
granularity of NVM, and the fact that the system is
oblivious to the limited lifetime of NVM. The dis-
parity in the write patterns between two partitions
as described in Section 3.4, and the workload with
high write skewness, can result in some NVM cells
being written much more times and consequently
worn out much earlier than others. This poses a
stringent requirement for the wear-levelling algo-
rithm. In addition, traditional file system requires
read or write syscalls to access the file, whose over-
head can play a significant role in the total latency
when accessing NVM.

Scalability. The scale of some new hardware
cannot catch up with advances of other parts of
the system, and some new hardware cannot easily
scale up/out without significant performance degra-
dation. For example, it is not uncommon that a
multicore machine has more than 100 cores and
hundreds or thousands gigabytes of memory, but
HTM can only scale to a limited number of CPU
cores [16], and Xeon Phi coprocessor can only sup-
port up to 16 GB memory. Doubts have also been
raised on the scalability of some of the RDMA solu-
tions [4]. RDMA memory consumption also poses a
big challenge on large cluster due to the flexibility of
communication model and user-dependent message
passing implementation, losing the advantages that
can be derived from mature network stack mecha-
nism and memory management by OS.

Another scalability issue is that the current hard-
ware support for virtual memory does not scale to
terabytes (and beyond) of physical memory. The
use of small page sizes and fine protection bound-
aries will require significant space overhead in the
corresponding page tables. The näıve solution of en-
larging page sizes is only a stop-gap measure as it
will eventually lead to large page protection bound-
aries, fragmentation, and inefficient use of memory.

Generality/Compatibility. Hardware soluti-
ons are usually architecture specific, and not general
enough to satisfy the different requirements from a
variety of applications. For example, RDMA can-
not easily communicate with the traditional Ether-
net network directly. In addition, not all database
transaction semantics can be expressed using HTM,
since there are some other factors restricting its us-
age, e.g., limited HTM transaction size that is re-
stricted by L1 cache, unexpected transaction abort

due to cache pollution problems. Moreover, data
alignment requirement for SIMD makes SIMD-based
implementation architecture specific.

Extra overhead. In order to utilize some hard-
ware, there are extra preparation work to do, which
may offset the performance gain from the hardware.
For example, in order to use SIMD instructions, we
need to gather data into SIMD registers and scat-
ter it to the correct destination locations, which is
tricky and can be inefficient. RDMA only allows a
pre-registered memory region to be the transmission
source/destination, which also cannot be released/
modified until the transmission is completed.

Bottleneck shift. Even though the use of new
hardware may tackle one bottleneck, the contribu-
tion to the system’s overall performance may be re-
stricted. In some cases, it only results in a bottle-
neck shift. For instance, the adoption of RDMA
usually moves the bottleneck from network I/O to
CPU, as with a fast networking, CPU is usually
busy with data preparation and notification check-
ing [11, 2]. And even though HTM can reduce the
overhead caused by concurrency control to some ex-
tent, some components such as durability and com-
munication still restrict the overall performance.

5. INTEGRATED SOFTWARE AND
HARDWARE DESIGN

In this section, we discuss some open research di-
rections in taking advantage of both software and
hardware. We believe that hardware solutions, when
combined with software solutions, would be able to
fully exploit the potentials of in-memory databases.

Atomic primitives can be used for single object
synchronization, and virtual snapshot by fork -ing
facilitates a hardware-assisted isolation among pro-
cesses [12]. HTM combined with other concurrency
control mechanisms (e.g., timestamp-based) can be
an alternative to the lock-based mechanism, but its
special features (e.g., limited transaction size, un-
expected aborts under certain conditions) should
be taken into consideration. A mix of these pro-
tection mechanisms should enable a more efficient
concurrency control model. Since the bottleneck
for in-memory databases shifts from disk to mem-
ory. a good concurrency control protocol also needs
to consider the underlying memory hierarchy, such
as NUMA architecture and caches, whose perfor-
mance highly depends on the data locality. The co-
ordination overhead caused by 2PC protocol can be
further alleviated, by eliminating distributed trans-
actions via a dynamic data partition strategy, or de-
signing a protocol based on distributed atomic op-
erations provided by RDMA, for example. A client-

38 SIGMOD Record, June 2015 (Vol. 44, No. 2)



oriented transaction execution strategy, where the
processing is performed at the client side simulta-
neously rather than in a centralized server, is also
promising, which is made viable by the one-sided
networking feature provided by RDMA.

In order to speed up the performance, various
levels of parallelism should be exploited. Specif-
ically, the data-level parallelism (e.g., bit-parallel,
SIMD) can make extensive use of the “circuits”
for parallelization. GPU, with a massively paral-
lel architecture consisting of thousands of smaller
cores, fits perfectly for embarrassingly parallel algo-
rithms (e.g., filter, deep learning). Thus a software-
coordinated CPU-GPU framework, which combines
CPU’s generality and GPU’s specificity, can be uti-
lized to distribute the tasks with different paral-
lelism properties to different units in the warehouse
or OLAP systems. The emergence of MIC co-proce-
ssors (e.g., Intel Xeon Phi), provides a promising al-
ternative for parallelizing computation, with many
lower-frequency in-order cores and wider SIMD. Nev-
ertheless, robust data structures that are parallelism-
conscious, memory-economical, and access-efficient
form the foundation for further parallelism explo-
ration. For example, the skip-list, which allows
fast point- and range-queries of an ordered sequence
of elements with O(logn) complexity, can poten-
tially be an alternative to B-trees for in-memory
databases, as it can be implemented latch-free eas-
ily and can be structured to be more parallelism-
conscious (e.g., SIMD-friendly, NUMA-aware).

Distributed computing requires fast networking
in order to achieve high scalability, where RDMA
can play a big role. However, simply relying on
RDMA networking is not guaranteed to improve
the system performance, due to the restrictions of
RDMA, bottleneck shift issues, etc. Combined with
a good partition strategy (i.e., to achieve data local-
ity), and efficient communication model (e.g., batch
or coalescing transmission), the communication per-
formance can be significantly enhanced. Besides,
special features provided by RDMA should be taken
into consideration, such as inline data, unsignalled,
unreliable transport type, to fully exert its perfor-
mance potential. And a heterogeneous software-
coordinated communication model is also worth in-
vestigating, which can exploit the advantages from
both the Ethernet and RDMA networks. Moreover,
with the increasing throughput of RDMA network,
the throughput of intra- and inter-server (i.e., mem-
ory bus among NUMA nodes and network in a clus-
ter) is becoming similar. Hence, it is possible to de-
velop a unified system framework that can be used
in both a single server with multiple NUMA nodes

OS

hardware

applications

Kernel-bypass

syscall

Figure 2: Interfaces with Hardware

and a cluster connected via high-speed networks.
For NVM-based in-memory databases, we believe

a unified space management is required to effec-
tively exploit its features (e.g., byte addressability
and durable write). Although NVM is proposed to
be placed side-by-side with DRAM on the memory
bus, its distinct characteristics, such as limited en-
durance, write/read asymmetry, uncertainty of or-
dering and atomicity make it difficult to work ef-
fectively and efficiently. One way is to manage the
NVM space as the main memory in a log-structured
manner, such that the unnecessary reads/writes and
the expensive syscalls, if used as a block device, will
be eliminated, and the sequential write can be fully
exploited. Due to the append-only feature of the
log, the writes to NVM will be distributed uniformly
among all cells, which in turn prolongs the lifetime
of NVM. Besides, NVM enables more efficient fault
tolerance strategies, if equipped with carefully de-
signed algorithms to guarantee write atomicity and
deterministic orderings.

As shown in Figure 2, the manipulation of hard-
ware can be achieved either through syscalls or kernel-
bypass methods. Some new hardware already pro-
vides direct kernel-bypass interfaces. But with kernel-
bypass, the mature functionalities of the OS, such as
memory management, concurrency control, buffer
management are no longer available. It will also
mean breaking the traditional boundaries of protec-
tion and separation of responsibilities. It is essential
to retain key features of traditional OSes, even if di-
rect access to the hardware is enabled. This can be
achieved by moving the data path from the kernel
space to the user space, resulting in a data-plane
OS. Alternatively, new ABI boundaries will have to
be drawn so that infrequent yet secure operations
are handled over to the OS, while others are exe-
cuted directly in the user-space.

6. CONCLUSIONS
In this paper, we summarized the challenges of

in-memory databases, and their solutions from both
the software and hardware perspectives. While hard-
ware solutions are known for its efficiency with less
overhead, as shown in this paper, they do not always
outperform software solutions. In order to fully ex-

SIGMOD Record, June 2015 (Vol. 44, No. 2) 39



ploit the potentials of in-memory systems, we be-
lieve that a combined hardware-software solution is
needed. There are a lot more that our community
can bring to the table!

7. ACKNOWLEDGMENTS
This work was supported by the National Re-

search Foundation, Prime Ministers Office, Singa-
pore under Grant No. NRF-CRP8-2011-08.

8. REFERENCES
[1] A. Belay, G. Prekas, A. Klimovic, S. Grossman,

C. Kozyrakis, and E. Bugnion. Ix: A protected
dataplane operating system for high throughput and
low latency. In OSDI ’14, pages 49–65, 2014.

[2] Q. Cai, H. Zhang, G. Chen, B. C. Ooi, and K.-L. Tan.
Memepic: Towards a database system architecture
without system calls. Technical report, NUS, 2015.

[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: Why is it only a research toy?
Queue, 6(5):40:46–40:58, Sept. 2008.

[4] Chelsio. Roce at a crossroads. Technical report,
Chelsio Communications Inc., 2014.

[5] S. Damaraju, V. George, S. Jahagirdar, T. Khondker,
R. Milstrey, S. Sarkar, S. Siers, I. Stolero, and
A. Subbiah. A 22nm ia multi-cpu and gpu
system-on-chip. In ISSCC ’12, pages 56–57, 2012.

[6] J. DeBrabant, A. Joy, A. Pavlo, M. Stonebraker,
S. Zdonik, and S. R. Dulloor. A prolegomenon on oltp
database systems for non-volatile memory. In ADMS
’14, pages 57–63, 2014.

[7] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice: Pushing
the envelop of main memory data processing with a
new storage layout. In SIGMOD ’15, 2015.

[8] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. Oltp through the looking glass, and
what we found there. In SIGMOD ’08, pages 981–992,
2008.

[9] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh.
Improving main memory hash joins on intel xeon phi
processors: An experimental approach. In PVLDB ’15,
pages 642–653, 2015.

[10] E. P. C. Jones, D. J. Abadi, and S. Madden. Low
overhead concurrency control for partitioned main
memory databases. In SIGMOD ’10, pages 603–614,
2010.

[11] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
rdma efficiently for key-value services. In SIGCOMM
’14, pages 295–306, 2014.

[12] A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In ICDE ’11, pages
195–206, 2011.

[13] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory
databases. In PVLDB ’11, pages 298–309, 2011.

[14] J. Lee, Y. S. Kwon, F. Farber, M. Muehle, C. Lee,
C. Bensberg, J. Y. Lee, A. H. Lee, and W. Lehner. Sap
hana distributed in-memory database system:
Transaction, session, and metadata management. In
ICDE ’13, pages 1165–1173, 2013.

[15] S. Lee, M. Kim, G. Do, S. Kim, H. Lee, J. Sim,
N. Park, S. Hong, Y. Jeon, K. Choi, et al.
Programming disturbance and cell scaling in phase

change memory: For up to 16nm based 4F2 cell. In
VLSIT ’10, pages 199–200, 2010.

[16] V. Leis, A. Kemper, and T. Neumann. Exploiting
hardware transactional memory in main-memory
databases. In ICDE ’14, pages 580–591, 2014.

[17] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu. Distributed
data management using mapreduce. ACM Computing
Surveys, 46(3):31:1–31:42, Jan. 2014.

[18] H. Li, X. Wang, Z.-L. Ong, W.-F. Wong, Y. Zhang,
P. Wang, and Y. Chen. Performance, power, and
reliability tradeoffs of STT-RAM cell subject to
architecture-level requirement. IEEE Transactions on
Magnetics, 47(10):2356–2359, Oct. 2011.

[19] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and
Y. M. Teo. A performance study of big data on small
nodes. In PVLDB ’15, 2015.

[20] L. M. Maas, T. Kissinger, D. Habich, and W. Lehner.
Buzzard: A numa-aware in-memory indexing system.
In SIGMOD ’13, pages 1285–1286, 2013.

[21] N. Malviya, A. Weisberg, S. Madden, and
M. Stonebraker. Rethinking main memory oltp
recovery. In ICDE ’14, pages 604–615, 2014.

[22] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In
USENIX ATC ’13, pages 103–114, 2013.

[23] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for
main-memory database systems. In SIGMOD ’15,
2015.

[24] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware
automatic database partitioning in shared-nothing,
parallel oltp systems. In SIGMOD ’12, pages 61–72,
2012.

[25] K. Ren, A. Thomson, and D. J. Abadi. Lightweight
locking for main memory database systems. In PVLDB
’13, pages 145–156, 2013.

[26] L. Rizzo. Netmap: A novel framework for fast packet
i/o. In USENIX ATC ’12, pages 101–112, 2012.

[27] S. M. Rumble, A. Kejriwal, and J. Ousterhout.
Log-structured memory for dram-based storage. In
FAST ’14, pages 1–16, 2014.

[28] S. Sanfilippo and P. Noordhuis. Redis. http://redis.io,
2009.

[29] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. In SOSP ’13, pages 18–32, 2013.

[30] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. Simd-scan: Ultra fast
in-memory table scan using on-chip vector processing
units. In PVLDB ’09, pages 385–394, 2009.

[31] C. Yao, D. Agrawal, P. Chang, G. Chen, B. C. Ooi,
W.-F. Wong, and M. Zhang. Dgcc: A new dependency
graph based concurrency control protocol for multicore
database systems. ArXiv e-prints, Mar. 2015.

[32] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and
M. Stonebraker. Staring into the abyss: An evaluation
of concurrency control with one thousand cores. In
PVLDB ’15, pages 209–220, 2014.

[33] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and
M. Zhang. In-memory big data management and
processing: A survey. TKDE, 27(7):1920–1947, July
2015.

[34] H. Zhang, G. Chen, W.-F. Wong, B. C. Ooi, S. Wu,
and Y. Xia. Anti-caching-based elastic data
management for big data. In ICDE ’15, pages 592–603,
2014.

[35] H. Zhang, B. M. Tudor, G. Chen, and B. C. Ooi.
Efficient in-memory data management: An analysis. In
PVLDB ’14, pages 833–836, 2014.

40 SIGMOD Record, June 2015 (Vol. 44, No. 2)




