@Andy Pavlo // 15-721 // Spring 202

https://15721.courses.cs.cmu.edu/spring2019/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

amMaZon

The Steven Moy
¢ Foundation for
Keeping it Real

SM

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://aws.amazon.com/products/databases/
https://stevenmoyfoundation.org/

TODAY'S AGENDA

Course Logistics Overview
History of Databases

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

WHY YOU SHOULD TAKE THIS COURSE

DBMS developers are in demand and there are
many challenging unsolved problems in data
management and processing.

[f you are good enough to write code for a DBMS,
then you can write code on almost anything else.

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

e
: salesforce % salesforce
ﬁm et B

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

COURSE OBJECTIVES

Learn about modern practices in database internals
and systems programming.

Students will become proficient in:
— Writing correct + performant code
— Proper documentation + testing

— Code reviews

— Working on a large code base

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

COURSE TOPICS

The internals of single node systems for in-
memory databases. We will ignore distributed
deployment problem:s.

We will cover state-of-the-art topics.
This is not a course on classical DBMS:s.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

COURSE TOPICS

Concurrency Control
Indexing

Storage Models, Compression
Parallel Join Algorithms
Networking Protocols
Logging & Recovery Methods

Query Optimization, Execution, Compilation

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

BACKGROUND

[assume that you have already taken an intro
course on databases (e.g., 15-445/645).

W e will discuss modern variations of classical
algorithms that are designed for today’s hardware.

Things that we will not cover:
SQL, Serializability Theory, Relational Algebra,
Basic Algorithms + Data Structures.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/

$2CMU-DB

COURSE LOGISTICS

Course Policies + Schedule:
— Refer to course web page.

Academic Honesty:

— Refer to CMU policy page.
— If youre not sure, ask me.

— I'm serious. Don’t plagiarize or I will wreck you.

15-721 (Spring 2020)

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

$2CMU-DB

OFFICE HOURS

Before class in my office:
— Mon/Wed: 1:30 - 2:30
— Gates-Hillman Center 9019

Things that we can talk about:
— Issues on implementing projects
— Paper clarifications/discussion
— How to get a database dev job.
— How to handle the police

15-721 (Spring 2020)

11

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

TEACHING ASSISTANTS

Head TA: Matt Butrovich

— 284 Year PhD Student (CSD)

— Lead architect/developer of
CMU’s DBMS project.

— Professional Pit Fighter / Boxer

— Reformed Gang Member (LAX)

— Vicious AF.

15-721 (Spring 2020)

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.cs.cmu.edu/~mbutrovi

$2CMU-DB

COURSE RUBRIC

Reading Assignments
Programming Projects
Final Exam

Extra Credit

15-721 (Spring 2020)

13

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

READING ASSIGNMENTS

One mandatory reading per class (°). You can
skip four readings during the semester.

You must submit a synopsis before class:

— Overview of the main idea (three sentences).

— Main finding/takeaway of paper (one sentence).

— System used and how it was modified (one sentence).
— Workloads evaluated (one sentence).

Submission Form:
https://cmudb.io/15721-s20-submit

15-721 (Spring 2020)

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://cmudb.io/15721-s20-submit

$2CMU-DB

Q@ PLAGIARISM WARNING @

Each review must be your own writing.

You may not copy text from the papers or other
sources that you find on the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.

15-721 (Spring 2020)

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

$2CMU-DB

PROGRAMMING PROJECTS

Projects will be implemented in CMU’s new

DBMS "name to be determined".

— In-memory, hybrid DBMS

— Modern code base (C++17, Multi-threaded, LLVM)
— Strict coding / documentation standards

— Open-source / MIT License

— Postgres-wire protocol compatible

15-721 (Spring 2020)

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/terrier

$2CMU-DB

PROGRAMMING PROJECTS

Do all development on your local machine.
— The DBMS only builds on Linux + OSX.
— We will provide a Vagrant configuration.

Do all benchmarking using Amazon EC2.

— We will provide details later in semester.

15-721 (Spring 2020)

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

PROJECTS #1 AND #2

We will provide you with test cases and scripts for

the first two programming projects.
— We will teach you how to profile the system.

Project #1 will be completed individually.

Project #2 will be done in a group of three.
— 36 people in the class
— ~12 groups of 3 people

15-721 (Spring 2020)

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

PROJECT #3

Each group (3 people) will choose a project that is:

— Relevant to the materials discussed in class.

— Requires a significant programming effort from all team
members.

— Unique (i.e., two groups cannot pick same idea).

— Approved by me.

You don't have to pick a topic until after you come
back from Spring Break.
We will provide sample project topics.

15-721 (Spring 2020)

19

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

Q@ PLAGIARISM WARNING @

These projects must be all of your own code.

You may not copy source code from other groups
or the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.

15-721 (Spring 2020)

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

$2CMU-DB

FINAL EXAM

Take home exam.
Long-form questions on the mandatory readings
and topics discussed in class.

Will be given out in class on April 2279,

15-721 (Spring 2020)

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

EXTRA CREDIT

We are writing an encyclopedia of DBMSs. Each

student can earn extra credit if they write an entry
about one DBMS.

— Must provide citations and attributions.

Additional details will be provided later.

This is optional.

15-721 (Spring 2020)

23

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbdb.io/

$=CMU-DB

24

Q@ PLAGIARISM WARNING @

The extra credit article must be your own writing.
You may not copy text/images from papers or
other sources that you find on the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

$2CMU-DB

GRADE BREAKDOWN

Reading Reviews (15%)
Project #1 (10%)

Project #2 (20%)

Project #3 (45%)

Final Exam (10%)
Extra Credit (+10%)

15-721 (Spring 2020)

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

COURSE MAILING LIST

On-line Discussion through Piazza:
https://piazza.com/cmu/spring2020/15721

[f you have a technical question about the projects,

please use Piazza.
— Don’t email me or TAs directly.

All non-project questions should be sent to me.

15-721 (Spring 2020)

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://piazza.com/cmu/spring2019/15721

27

Andy's

HISTORY OF
DATABASES

WHAT GOES AROUND COMES AROUND WHAT'S REALLY NEW WITH NEWSQL?
Readings in DB Systems, 4th Edition, 2006. SIGMOD Record, vol. 45, iss. 2, 2016

0

\

CMU-DB 15-721 (Spring 2020)

{
I\

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2020/papers/01-history/whatgoesaround-stonebraker.pdf
http://15721.courses.cs.cmu.edu/spring2020/papers/01-history/whatgoesaround-stonebraker.pdf
http://db.cs.cmu.edu/papers/2018/pavlo-newsql-sigmodrec2016.pdf
http://db.cs.cmu.edu/papers/2018/pavlo-newsql-sigmodrec2016.pdf

$2CMU-DB

HISTORY REPEATS ITSELF

Old database issues are still relevant today.

The SQL vs. NoSQL debate is reminiscent of

Relational vs. CODASYL debate from the 1970s.

— Spoiler: The relational model almost always wins.

Many of the ideas in today’s database systems are
not new.

15-721 (Spring 2020)

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

29

1960s — IDS

Integrated Data Store
Developed internally at GE in the early 1960s.

GE sold their computing division to
Honeywell in 1969.

One of the first DBMSs:
— Network data model. Honeywe“

— Tuple-at-a-time queries.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

1960s — CODASYL

COBOL people got together and proposed
a standard for how programs will access
a database. Lead by Charles Bachman.

— Network data model.
— Tuple-at-a-time queries.

Bachman also worked at Culliane Database
Systems in the 1970s to help build IDMS.

15-721 (Spring 2020)

y : -
v " b 4
i .
N\ o

Bachmrahn

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

NETWORK DATA MODEL

Schema
SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
SUPPLIES SUPPLIED_BY
SUPPLY
(qty, price)

S=CMU-DB 15-721 (Spring 2020)

31

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

NETWORK DATA MODEL

Instance
SUPPLIER PART
sno shame scity sstate pno |pname psize
1001 |Dirty Rick New York |NY 999 |Batteries [Large
1002 |Squirrels Boston MA
SUPPLIES SUPPLIED_BY
parent child parent child

SUPPLY

gty |price

10 $100

14 $99

15-721 (Spring 2020)

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

NETWORK DATA MODEL

Instance
SUPPLIER PART
sho sname scity sstate pno |pname psize
1001 |Dirty Rick New York |NY 999 |[Batteries |Large
1002 |Squirrels Boston MA
SUPPLIES SUPPLIED_BY
parent child pargnt child

SUPPLY
price
$100

14 $99

—]

15-721 (Spring 2020)

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

S

NETWORK DATA MODEL

A Complex Querles

$2CMU-DB

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

S2CMU-DB

1960S - IBM IMS

Information Management System

Early database system developed to keep track of

purchase orders for Apollo moon mission.
— Hierarchical data model.

— Programmer-defined physical storage format.
— Tuple-at-a-time queries.

15-721 (Spring 2020)

33

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

HIERARCHICAL DATA MODEL

Schema

SUPPLIER

(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

0

CMU-DB

i

Instance
sno shame scity sstate |parts
1001 ([Dirty Rick New York [NY
Squirrels Boston MA

pname

Batteries

pname

999

Batteries

Large

14

$99

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

34

HIERARCHICAL DATA MODEL

A Duplicate Data

(pno, pname, psize, qty, price)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

1970s — RELATIONAL MODEL

Ted Codd was a mathematician working
at IBM Research. He saw developers
spending their time rewriting IMS and
Codasyl programs every time the
database’s schema or layout changed.

Database abstraction to avoid this maintenance:
— Store database in simple data structures.

— Access data through high-level language.

— Physical storage left up to implementation.

15-721 (Spring 2020)

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

{H

CMuU-DB

DERIVABILITY

ABSTRACT: The 1ar%:‘“:‘s of various degree

contain many relat
not be unusual for

employed to impro

i to
hich happen
‘:xists, those res

i have some meal
about it and have e tot g
nsistencies in the t in tracking dow

incol

i h
king might be
:)'t‘zicsiblg fraudulent

R2 599(f 12343) August 19,

LIMITED DISTR
publication &
dissemination ©

should not be W

publication.

y be requ
Copies may b
Yorktown Heights,

improve accessibility of when either type o

CE - This
TBUTION NOTI! i
1sewhere and has b As a courtesy to

C RELATIONS
REDUNDANCY AND (ONSXSTENtSV OF REL
STORED IN LARGE DATA BANK
£. F. Codd .
e ch Division
S:‘:S]f::e. California

the future will
a:ksino‘stmcd form. It will
Jations to be redundant. %
i One type may
f information
f redundancy
a bank should know

;'1ogical"

integrated data b

d re
t of sto!eand discussed.

certain kinds ©

this se

t demand.
afor control of the

ting any "lo iikency
ni D{tdf:;ecstortd relations. Consi
al se

n unauthorized (and
contents.

ponsible

elpful 5
) changes in

1969

the data bank

report has been sub:i;:)zrioy(m sy
i Researc =
S the in&endidiz\ébhs e
: : ate of outs
s o sibsted until after the date
idely
£ iy
entar, Post Office Box 218,
184 Thomas). Watson Research Center, FO
jested from TBY
In::vnn 10598

it

ATION

maticia;
aw devg

riting
time {
yout ¢

avoid
data str
-level |
imples

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Cobp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not o satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additi for machine i
purposes. Accordingly, it provides a basis for a high level
data language which will vield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking

are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users

models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are infroduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model,

KEY WORDS AND PHRASES: data bank, dota base, dota structure, data
erganization, hierarchies of dato, networks of data, relations, derivability,
redundancy, comistency, composition, foin, retrieval language, predicate
calculus, security, dato integrity

CR CATEGORIES: 370, 3.73, 3.75, 4.20, 4.22, 429

L. Relational Model and Normal Form

L1 INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data, Except for a paper
by Childs (1], the principal application of relations to data
systems has been to deductive question-answering systems,
Levein and Maron (2] provide numerous references to work
in this area,

In contrast, the problems treated here are those of data
inde the independ. of applicati

the derivation of for the d of rela-
tions (see remarks in Section 2 on the “connection trap”).
Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of ing ions of data within a
single system. Examples of this clearer perspective are
cited in various parts of this Ppaper. Implementations of
systems to support the relational model are not discussed.
1.2. DAt DEPENDENCIES 1N PresEnT Systems
The provision of data description tables in recently de-
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain ¢ istics of the data repre-
sentation stored in a data bank., However, the variety of
data representation characteristics which can be changed
without logi impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.
12.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involy-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely iated with the hard dets d ordering

and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
nconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

of add: - For example, the records of a file concerni

parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of Ppresentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

T5=72T (Spring 2020)

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=1558336
http://dl.acm.org/citation.cfm?id=362685

$2CMU-DB

RELATIONAL DATA MODEL

Schema

SUPPLIER

(sno, sname, scity, sstate)

PART

(pno, pname, psize)

SUPPLY
(sno, pno, qgty, price)

15-721 (Spring 2020)

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

Ww

"

RELATIONAL DATA MODEL

Instance

SUPPLIER PART
sno shame scity sstate pno pname psize
1001 |Dirty Rick New York [NY 999 Batteries |Large
1002 |[Squirrels Boston MA

SUPPLY

sho pno qty price

1001 |999 10 $100

1002 |999 14 $99

CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

RELATIONAL DATA MODEL

Instance

SUPPLIER PART
sho shame scity sstate pno pname psize
1001 |Dirty Rick New York [NY 999 Batteries |Large
1002 [Squirrels Boston MA

SUPPLY

sho pno qty price

1001 |999 10 $100

1002 (999 $99

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

1970s — RELATIONAL MODEL

Early implementations of relational DBMS:
— System R - IBM Research

— INGRES - U.C. Berkeley
— Oracle - Larry Ellison

Stonebraker Ellison

15-721 (Spring 2020)

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

39

1980s — RELATIONAL MODEL

The relational model wins.
— IBM comes out with DB2 in 1983.
— “SEQUEL” becomes the standard (SQL).

. . Informisc
Many new “enterprise’ DBMSs -
but Oracle wins marketplace. ‘n SYBASE
Stonebraker creates Postgres. INGR=S

S=CMU-DB 15-721 (Spring 2020)

ORACLE
//’ITANDEM

TERADATA

InterBase

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

40

1980s — OBJECT-ORIENTED DATABASES

Avoid “relational-object impedance mismatch” by
tightly coupling objects and database.

Few of these original DBMSs from the 1980s still
exist today but many of the technologies exist in
other forms (JSON, XML)

VERSANT ObjeCtStore@ '.MarkLogiC"‘

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$=CMU-DB

OBJECT-ORIENTED MODEL

Application Code

class Student {
int id;
String name;
String email;
String phone[];

id name email

1001 [M.O.P. ante@up.com

sid phone

1001 |444-444-4444

1001 |555-555-5555

15-721 (Spring 2020)

Relational Schema

STUDENT

(id, name, email)

STUDENT_ PHONE
(sid, phone)

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

OBJECT-ORIENTED MODEL

Application Code

class Student { Student
int id; (
String name; :ig;;”?eg;,o -
Str';ng emall; “email’.’: “;n‘.ce(f.j)ué.com”,
String phone[]; i
“444-444-44447

“555-555-5555"”

]
¥

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

OBJECT-ORIENTED MODEL

A Complex Queries

. O 24, L‘ “email”: “ante@up.com”,
alke a

A No Standard API

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

1990s — BORING DAYS

No major advancements in database systems or

application workloads.

— Microsoft forks Sybase and creates SQL Server.
— MySQL is written as a replacement for mSQL.
— Postgres gets SQL support.

— SQLite started in early 2000.

PostgreSQL

B berver Mu=OL Wi

S=CMU-DB 15-721 (Spring 2020)

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

2000s — INTERNET BOOM

All the big players were heavyweight and
expensive. Open-source databases were missing
important features.

Many companies wrote their own custom

middleware to scale out database across single-
node DBMS instances.

15-721 (Spring 2020)

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

2000s — DATA WAREHOUSES

Rise of the special purpose OLAP DBMS:s.
— Distributed / Shared-Nothing

— Relational / SQL

— Usually closed-source.

Significant performance benefits from using
columnar data storage model.

N)NETEZZA PARACCEL monetdb)

Greenplum DATAllegro \/'||:RT|C'/\I

15-721 (Spring 2020)

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

45

2000s — NoSQL SYSTEMS

Focus on high-availability & high-scalability:

— Schemaless (i.e., “Schema Last”)

— Non-relational data models (document, key/value, etc)
— No ACID transactions

— Custom APIs instead of SQL
— Usually open-source

A
HBRASE amazon . mongoDB) @
& redis A Rethinkpp VoSt %~
Couchbase @neo f,j CouchDB
A7 .

cassandra ﬁ "Clk M%NDB

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

2010s — NewSOQL

Provide same performance for OLTP workloads as

NoSQL DBMSs without giving up ACID:
— Relational / SQL

— Distributed

— Usually closed-source

T Cockroach LABs

@ oAb Sh arels I]]-Store Clustrix o

A
O ScaleAc s VOUTDB NUODE ETIDB

) =
E5inner AMMEMSQL _awd HyPer (o
$=CMU-DB 15-721 (Spring 2020) WL LI

46

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

47

2010s — HYBRID SYSTEMS

Hybrid Transactional- Analytical Processing.

Execute fast OLTP like a NewSQL system while
also executing complex OLAP queries like a data

warehouse system.
— Distributed / Shared-Nothing

— Relational / SQL
— Mixed open/closed-source.

AN MEMSQL # HyPer = SNAPPY w
JusEOe0n SFM)"CG &5 Peloton -

ACHINE
S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

SlicingDice ’ F/\ U N /\ n%ﬂ%f.?:.‘na AUTeE ;

48

2010s — CLOUD SYSTEMS

First database-as-a-service (DBaaS) offerings were
"containerized" versions of existing DBMSs.

There are new DBMSs that are designed from
scratch explicitly for running in a cloud

environment.
xeround Google
~| i"o:?snowfloke i 2z The Cloud Datsbse - SO NNEY

Amazon + ®

B® Microsoft @

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

o

$2CMU-DB

2010s — SHARED-DISK ENGINES

Instead of writing a custom storage manager, the

DBMS leverages distributed storage.
— Scale execution layer independently of storage.
— Favors log-structured approaches.

This is what most people think of when they talk
about a data lake.

. cloudera

Asgﬁ'_ﬁ_ P!!SNGE Segsnowflake ~ IMPALA 2o

. Sk
presto. 7 [amazen & P

15-721 (Spring 2020) BS Microsoft

49

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

2010s — GRAPH SYSTEMS

Systems for storing and querying graph data.

Their main advantage over other data models is to
provide a graph-centric query API

— Recent research demonstrated that is unclear whether
there is any benefit to using a graph-centric execution
engine and storage manager.

Q/ TigerGraph

@neOLIJ Ig%EM aDgraph GjanusGraph

ff';f..f
£l
o

grésphbaseal TerminusDB

S=CMU-DB 15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf

2010s — TIMESERIES SYSTEMS

Specialized systems that are designed to store
timeseries / event data.

The design of these systems make deep
assumptions about the distribution of data and
workload query patterns.

OMS TIMESCALE) influxdb

¥, VICTORIA ClickHouse

M TRICS

S=CMU-DB 15-721 (Spring 2020)

53

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

2010s — SPECIALIZED SYSTEMS

Embedded DBMSs
Multi-Model DBMSs
Blockchain DBMSs
Hardware Acceleration

15-721 (Spring 2020)

54

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

p rSUMMIT|DB

SuUI l@@)gress [

Embedded DBMSs
Multi-Model DBMSs
. Blockchain DBMSs

LEMENT

S APACHE
NETEZZA BCELOT
L

b)
s f[EEDE

*”.ﬁssDB,; oy ,
N/ K‘ ,A __G
|)\ T To

‘%x K
NTER

’\ ’Lﬁ”
>‘ D' 1G5
5‘» T
; ll>l"ll

shbasas

o Db
it .\
ﬁNFOBR GHTY

Hardware Acceleratlcyj-ema "W"" Frrersors %t

w ZlinstantDs L ij’ o Nhar
== - d h ‘ ta R 7‘: Caanet s&,,
b ¥ o5k 6 Y

dion *"‘
evator# Q

_——

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbdb.io/

$=CMU-DB

55

PARTING THOUGHTS

The demarcation lines of DBMS categories will
continue to blur over time as specialized systems
expand the scope of their domains.

[believe that the relational model and declarative
query languages promote better data engineering.

15-721 (Spring 2020)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

NEXT CLASS

In-Memory Databases

Make sure that you submit the first reading review

https://cmudb.10/15721-s20-submit

15-721 (Spring 2020)

56

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://cmudb.io/15721-s20-submit

