
L
e

c
tu

re
 #

0
2

In-Memory Databases

@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

BACKGROUND

Much of the development history of DBMSs is
about dealing with the limitations of hardware.

Hardware was much different when the original
DBMSs were designed:
→ Uniprocessor (single-core CPU)
→ RAM was severely limited.
→ The database had to be stored on disk.
→ Disks were even slower than they are now.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BACKGROUND

But now DRAM capacities are large enough that
most databases can fit in memory.
→ Structured data sets are smaller.
→ Unstructured or semi-structured data sets are larger.

We need to understand why we can't always use a
"traditional" disk-oriented DBMS with a large
cache to get the best performance.

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TODAY'S AGENDA

Disk-Oriented DBMSs

In-Memory DBMSs

Concurrency Control Bottlenecks

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DISK-ORIENTED DBMS

The primary storage location of the database is on
non-volatile storage (e.g., HDD, SSD).

The database is organized as a set of fixed-length
pages (aka blocks).

The system uses an in-memory buffer pool to
cache pages fetched from disk.
→ Its job is to manage the movement of those pages back

and forth between disk and memory.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BUFFER POOL

When a query accesses a page, the DBMS checks
to see if that page is already in memory:
→ If it's not, then the DBMS must retrieve it from disk and

copy it into a frame in its buffer pool.
→ If there are no free frames, then find a page to evict.
→ If the page being evicted is dirty, then the DBMS must

write it back to disk.

Once the page is in memory, the DBMS translates
any on-disk addresses to their in-memory
addresses.

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Index

DISK-ORIENTED DATA ORGANIZATION

7

Buffer Pool

page6

page4
Page Id +

Slot #

Database (On-Disk)

Page Table

page0

page1

page2

page2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Index

DISK-ORIENTED DATA ORGANIZATION

7

Buffer Pool

page6

page4
Page Id +

Slot #

Database (On-Disk)

Page Table

page0

page1

page2

page2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Index

DISK-ORIENTED DATA ORGANIZATION

7

Buffer Pool

page6

page4
Page Id +

Slot #

Database (On-Disk)

Page Table

page0

page1

page2

page2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Index

DISK-ORIENTED DATA ORGANIZATION

7

Buffer Pool

page6

page4
Page Id +

Slot #

Database (On-Disk)

Page Table

page0

page1

page2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Index

DISK-ORIENTED DATA ORGANIZATION

7

Buffer Pool

page6

page4
Page Id +

Slot #

Database (On-Disk)

Page Table

page0

page1

page2

page1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Index

DISK-ORIENTED DATA ORGANIZATION

7

Buffer Pool

page6

page4
Page Id +

Slot #

Database (On-Disk)

Page Table

page0

page1

page2

page1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Index

DISK-ORIENTED DATA ORGANIZATION

7

Buffer Pool

page6

page4
Page Id +

Slot #

Database (On-Disk)

Page Table

page0

page1

page2

page1

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BUFFER POOL

Every tuple access goes through the buffer pool
manager regardless of whether that data will
always be in memory.
→ Always translate a tuple’s record id to its memory

location.
→ Worker thread must pin pages that it needs to make sure

that they are not swapped to disk.

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL

The systems assumes that a txn could stall at any
time whenever it tries to access data that is not in
memory.

Execute other txns at the same time so that if one
txn stalls then others can keep running.
→ Set locks to provide ACID guarantees for txns.
→ Locks are stored in a separate data structure to avoid

being swapped to disk.

9

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOGGING & RECOVERY

Most DBMSs use STEAL + NO-FORCE buffer
pool policies, so all modifications have to be
flushed to the WAL before a txn can commit.

Each log entry contains the before and after image
of record modified.

Lots of work to keep track of LSNs all throughout
the DBMS.

10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

DISK-ORIENTED DBMS OVERHEAD

11

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

16%
14%

34%

12%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD 2008

16%

7%

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/01-inmemory/hstore-lookingglass.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/01-inmemory/hstore-lookingglass.pdf

15-721 (Spring 2020)

IN-MEMORY DBMSS

Assume that the primary storage location of the
database is permanently in memory.

Early ideas proposed in the 1980s but it is now
feasible because DRAM prices are low and
capacities are high.

First commercial in-memory DBMSs were
released in the 1990s.
→ Examples: TimesTen, DataBlitz, Altibase

12

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/

15-721 (Spring 2020)

DATA ORGANIZATION

An in-memory DBMS does not need to store the
database in slotted pages but it will still organize
tuples in blocks/pages:
→ Direct memory pointers vs. record ids
→ Fixed-length vs. variable-length data pools
→ Use checksums to detect software errors from trashing

the database.

The OS organizes memory in pages too. We will
cover this later.

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

IN-MEMORY DATA ORGANIZATION

15

Fixed-Length
Data BlocksIndex

Block Id +
Offset

Variable-Length
Data Blocks

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

INDEXES

Specialized main-memory indexes were proposed
in 1980s when cache and memory access speeds
were roughly equivalent.

But then caches got faster than main memory:
→ Memory-optimized indexes performed worse than the

B+trees because they were not cache aware.

Indexes are usually rebuilt in an in-memory DBMS
after restart to avoid logging overhead.

16

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

QUERY PROCESSING

The best strategy for executing a query plan in a
DBMS changes when all of the data is already in
memory.
→ Sequential scans are no longer significantly faster than

random access.

The traditional tuple-at-a-time iterator model is
too slow because of function calls.
→ This problem is more significant in OLAP DBMSs.

17

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOGGING & RECOVERY

The DBMS still needs a WAL on non-volatile
storage since the system could halt at anytime.
→ Use group commit to batch log entries and flush them

together to amortize fsync cost.
→ May be possible to use more lightweight logging schemes

(e.g., only store redo information).

Since there are no "dirty" pages, there is no
need to track LSNs throughout the system.

18

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BOT TLENECKS

If I/O is no longer the slowest resource, much of
the DBMS’s architecture will have to change
account for other bottlenecks:
→ Locking/latching
→ Cache-line misses
→ Pointer chasing
→ Predicate evaluations
→ Data movement & copying
→ Networking (between application & DBMS)

20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL

The protocol to allow txns to access a database in a
multi-programmed fashion while preserving the
illusion that each of them is executing alone on a
dedicated system.
→ The goal is to have the effect of a group of txns on the

database’s state is equivalent to any serial execution of all
txns.

Provides Atomicity + Isolation in ACID

21

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL

For in-memory DBMSs, the cost of a txn acquiring
a lock is the same as accessing data.

New bottleneck is contention caused from txns
trying access data at the same time.

The DBMS can store locking information about
each tuple together with its data.
→ This helps with CPU cache locality.
→ Mutexes are too slow. Need to use compare-and-swap

(CAS) instructions.

22

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

23

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Compare
Value

Address
New

Value

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

23

M
__sync_bool_compare_and_swap(&M, 20, 30)30

Compare
Value

Address
New

Value

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)
→ Assume txns will conflict so they must acquire locks on

database objects before they are allowed to access them.

Timestamp Ordering (T/O)
→ Assume that conflicts are rare so txns do not need to first

acquire locks on database objects and instead check for
conflicts at commit time.

25

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)

Shrinking Phase

LOCK(A) LOCK(B)

Growing Phase

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #2

BE
GI

N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #2

BE
GI

N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #2

BE
GI

N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #2

BE
GI

N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #2

BE
GI

N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #2

BE
GI

N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

26

Txn #2

BE
GI

N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TWO-PHASE LOCKING

Deadlock Detection
→ Each txn maintains a queue of the txns that hold the locks

that it waiting for.
→ A separate thread checks these queues for deadlocks.
→ If deadlock found, use a heuristic to decide what txn to

kill in order to break deadlock.

Deadlock Prevention
→ Check whether another txn already holds a lock when

another txn requests it.
→ If lock is not available, the txn will either (1) wait, (2)

commit suicide, or (3) kill the other txn.

27

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIMESTAMP ORDERING

Basic T/O
→ Check for conflicts on each read/write.
→ Copy tuples on each access to ensure repeatable reads.

Optimistic Currency Control (OCC)
→ Store all changes in private workspace.
→ Check for conflicts at commit time and then merge.

28

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10000

10000

10000

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10000

10000

10000

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10001

10000

10000

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10001

10001

10000

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10001

10001

10000

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10001

10001

10000

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10001

10001

10005

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BASIC T/O

29

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

10001

10001

10005

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

Timestamp-ordering scheme where txns copy data
read/write into a private workspace that is not
visible to other active txns.

When a txn commits, the DBMS verifies that
there are no conflicts.

First proposed in 1981 at CMU by H.T. Kung.

30

ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung
http://dl.acm.org/citation.cfm?id=319567
http://dl.acm.org/citation.cfm?id=319567

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Read Phase
Record Value Write

Timestamp

B 456 10000

123A 10000

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OPTIMISTIC CONCURRENCY CONTROL

31

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

888

999 10001

10001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

When there is low contention, optimistic
protocols perform better because the DBMS
spends less time checking for conflicts.

At high contention, the both classes of protocols
degenerate to essentially the same serial execution.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL EVALUATION

Compare in-memory concurrency control
protocols at high levels of parallelism.
→ Single test-bed system.
→ Evaluate protocols using core counts beyond what is

available on today's CPUs.

Running in extreme environments exposes what
are the main bottlenecks in the DBMS.

33

STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY
CONTROL WITH ONE THOUSAND CORES
VLDB 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf

15-721 (Spring 2020)

1000-CORE CPU SIMUL ATOR

DBx1000 Database System
→ In-memory DBMS with pluggable lock manager.
→ No network access, logging, or concurrent indexes.
→ All txns execute using stored procedures.

MIT Graphite CPU Simulator
→ Single-socket, tile-based CPU.
→ Shared L2 cache for groups of cores.
→ Tiles communicate over 2D-mesh network.

34

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111

15-721 (Spring 2020)

TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)
→ 20 million tuples
→ Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.

Varying skew in transaction access patterns.

Serializable isolation level.

35

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL SCHEMES

36

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL SCHEMES

36

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CONCURRENCY CONTROL SCHEMES

36

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

READ-ONLY WORKLOAD

37

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-INTENSIVE / MEDIUM -CONTENTION

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-INTENSIVE / HIGH -CONTENTION

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-INTENSIVE / HIGH -CONTENTION

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

WRITE-INTENSIVE / HIGH -CONTENTION

39

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

BOT TLENECKS

Lock Thrashing
→ DL_DETECT, WAIT_DIE

Timestamp Allocation
→ All T/O algorithms + WAIT_DIE

Memory Allocations
→ OCC + MVCC

40

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOCK THRASHING

Each txn waits longer to acquire locks, causing
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing
deadlock detection/prevention overhead.
→ Force txns to acquire locks in primary key order.
→ Deadlocks are not possible.

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOCK THRASHING

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOCK THRASHING

42

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIMESTAMP ALLOCATION

Mutex
→ Worst option.

Atomic Addition
→ Requires cache invalidation on write.

Batched Atomic Addition
→ Needs a back-off mechanism to prevent fast burn.

Hardware Clock
→ Not sure if it will exist in future CPUs.

Hardware Counter
→ Not implemented in existing CPUs.

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TIMESTAMP ALLOCATION

44

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

MEMORY ALLOCATIONS

Copying data on every read/write access slows
down the DBMS because of contention on the
memory controller.
→ In-place updates and non-copying reads are not affected

as much.

Default libc malloc is slow. Never use it.
→ We will discuss this further later in the semester.

45

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

The design of a in-memory DBMS is significantly
different than a disk-oriented system.

The world has finally become comfortable with in-
memory data storage and processing.

Increases in DRAM capacities have stalled in
recent years compared to SSDs…

46

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

NEXT CL ASS

Multi-Version Concurrency Control

47

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

