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BACKGROUND

Much of the development history of DBMSs is 
about dealing with the limitations of hardware.

Hardware was much different when the original 
DBMSs were designed:
→ Uniprocessor (single-core CPU)
→ RAM was severely limited.
→ The database had to be stored on disk.
→ Disks were even slower than they are now.
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BACKGROUND

But now DRAM capacities are large enough that 
most databases can fit in memory.
→ Structured data sets are smaller.
→ Unstructured or semi-structured data sets are larger.

We need to understand why we can't always use a 
"traditional" disk-oriented DBMS with a large 
cache to get the best performance.
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TODAY'S  AGENDA

Disk-Oriented DBMSs

In-Memory DBMSs

Concurrency Control Bottlenecks
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DISK-ORIENTED DBMS

The primary storage location of the database is on 
non-volatile storage (e.g., HDD, SSD).

The database is organized as a set of fixed-length 
pages (aka blocks).

The system uses an in-memory buffer pool to 
cache pages fetched from disk.
→ Its job is to manage the movement of those pages back 

and forth between disk and memory.
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BUFFER POOL

When a query accesses a page, the DBMS checks 
to see if that page is already in memory:
→ If it's not, then the DBMS must retrieve it from disk and 

copy it into a frame in its buffer pool.
→ If there are no free frames, then find a page to evict.
→ If the page being evicted is dirty, then the DBMS must 

write it back to disk.

Once the page is in memory, the DBMS translates 
any on-disk addresses to their in-memory 
addresses.
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Index

DISK-ORIENTED DATA ORGANIZATION
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BUFFER POOL

Every tuple access goes through the buffer pool 
manager regardless of whether that data will 
always be in memory.
→ Always translate a tuple’s record id to its memory 

location.
→ Worker thread must pin pages that it needs to make sure 

that they are not swapped to disk.
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CONCURRENCY CONTROL

The systems assumes that a txn could stall at any 
time whenever it tries to access data that is not in 
memory.

Execute other txns at the same time so that if one 
txn stalls then others can keep running.
→ Set locks to provide ACID guarantees for txns.
→ Locks are stored in a separate data structure to avoid 

being swapped to disk.
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LOGGING & RECOVERY

Most DBMSs use STEAL + NO-FORCE buffer 
pool policies, so all modifications have to be 
flushed to the WAL before a txn can commit.

Each log entry contains the before and after image 
of record modified.

Lots of work to keep track of LSNs all throughout 
the DBMS.
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DISK-ORIENTED DBMS OVERHEAD
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IN-MEMORY DBMSS

Assume that the primary storage location of the 
database is permanently in memory.

Early ideas proposed in the 1980s but it is now 
feasible because DRAM prices are low and 
capacities are high.

First commercial in-memory DBMSs were 
released in the 1990s.
→ Examples: TimesTen, DataBlitz, Altibase
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DATA ORGANIZATION

An in-memory DBMS does not need to store the 
database in slotted pages but it will still organize 
tuples in blocks/pages:
→ Direct memory pointers vs. record ids
→ Fixed-length vs. variable-length data pools
→ Use checksums to detect software errors from trashing 

the database.

The OS organizes memory in pages too. We will 
cover this later.
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IN-MEMORY DATA ORGANIZATION
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INDEXES

Specialized main-memory indexes were proposed 
in 1980s when cache and memory access speeds 
were roughly equivalent.

But then caches got faster than main memory:
→ Memory-optimized indexes performed worse than the 

B+trees because they were not cache aware. 

Indexes are usually rebuilt in an in-memory DBMS 
after restart to avoid logging overhead.
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QUERY PROCESSING

The best strategy for executing a query plan in a 
DBMS changes when all of the data is already in 
memory.
→ Sequential scans are no longer significantly faster than 

random access.

The traditional tuple-at-a-time iterator model is 
too slow because of function calls.
→ This problem is more significant in OLAP DBMSs.
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LOGGING & RECOVERY

The DBMS still needs a WAL on non-volatile 
storage since the system could halt at anytime.
→ Use group commit to batch log entries and flush them 

together to amortize fsync cost.
→ May be possible to use more lightweight logging schemes 

(e.g., only store redo information).

Since there are no "dirty" pages, there is no 
need to track LSNs throughout the system.
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BOT TLENECKS

If I/O is no longer the slowest resource, much of 
the DBMS’s architecture will have to change 
account for other bottlenecks:
→ Locking/latching
→ Cache-line misses
→ Pointer chasing
→ Predicate evaluations
→ Data movement & copying
→ Networking (between application & DBMS)
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CONCURRENCY CONTROL

The protocol to allow txns to access a database in a 
multi-programmed fashion while preserving the 
illusion that each of them is executing alone on a 
dedicated system.
→ The goal is to have the effect of a group of txns on the 

database’s state is equivalent to any serial execution of all 
txns.

Provides Atomicity + Isolation in ACID
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CONCURRENCY CONTROL

For in-memory DBMSs, the cost of a txn acquiring 
a lock is the same as accessing data.

New bottleneck is contention caused from txns
trying access data at the same time.

The DBMS can store locking information about 
each tuple together with its data.
→ This helps with CPU cache locality.
→ Mutexes are too slow. Need to use compare-and-swap

(CAS) instructions.
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COMPARE-AND-SWAP

Atomic instruction that compares contents of a 
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

23
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CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)
→ Assume txns will conflict so they must acquire locks on 

database objects before they are allowed to access them.

Timestamp Ordering (T/O)
→ Assume that conflicts are rare so txns do not need to first 

acquire locks on database objects and instead check for 
conflicts at commit time.
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TWO-PHASE LOCKING
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TWO-PHASE LOCKING

Deadlock Detection
→ Each txn maintains a queue of the txns that hold the locks 

that it waiting for.
→ A separate thread checks these queues for deadlocks.
→ If deadlock found, use a heuristic to decide what txn to 

kill in order to break deadlock.

Deadlock Prevention
→ Check whether another txn already holds a lock when 

another txn requests it.
→ If lock is not available, the txn will either (1) wait, (2) 

commit suicide, or (3) kill the other txn.
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TIMESTAMP ORDERING

Basic T/O
→ Check for conflicts on each read/write.
→ Copy tuples on each access to ensure repeatable reads.

Optimistic Currency Control (OCC)
→ Store all changes in private workspace.
→ Check for conflicts at commit time and then merge.
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OPTIMISTIC CONCURRENCY CONTROL

Timestamp-ordering scheme where txns copy data 
read/write into a private workspace that is not 
visible to other active txns.

When a txn commits, the DBMS verifies that 
there are no conflicts.

First proposed in 1981 at CMU by H.T. Kung.
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OPTIMISTIC CONCURRENCY CONTROL
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OBSERVATION

When there is low contention, optimistic 
protocols perform better because the DBMS 
spends less time checking for conflicts.

At high contention, the both classes of protocols 
degenerate to essentially the same serial execution.
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CONCURRENCY CONTROL EVALUATION

Compare in-memory concurrency control 
protocols at high levels of parallelism.
→ Single test-bed system.
→ Evaluate protocols using core counts beyond what is 

available on today's CPUs.

Running in extreme environments exposes what 
are the main bottlenecks in the DBMS.
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1000-CORE CPU SIMUL ATOR

DBx1000 Database System
→ In-memory DBMS with pluggable lock manager.
→ No network access, logging, or concurrent indexes.
→ All txns execute using stored procedures.

MIT Graphite CPU Simulator
→ Single-socket, tile-based CPU.
→ Shared L2 cache for groups of cores.
→ Tiles communicate over 2D-mesh network.
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TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)
→ 20 million tuples
→ Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.

Varying skew in transaction access patterns.

Serializable isolation level.
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CONCURRENCY CONTROL SCHEMES
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NO_WAIT
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READ-ONLY WORKLOAD
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WRITE-INTENSIVE /  MEDIUM -CONTENTION
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WRITE-INTENSIVE /  HIGH -CONTENTION
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BOT TLENECKS

Lock Thrashing
→ DL_DETECT, WAIT_DIE

Timestamp Allocation
→ All T/O algorithms + WAIT_DIE

Memory Allocations
→ OCC + MVCC

40
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LOCK THRASHING

Each txn waits longer to acquire locks, causing 
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing 
deadlock detection/prevention overhead.
→ Force txns to acquire locks in primary key order.
→ Deadlocks are not possible.

41

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


15-721 (Spring 2020)

LOCK THRASHING
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TIMESTAMP ALLOCATION

Mutex
→ Worst option.

Atomic Addition
→ Requires cache invalidation on write.

Batched Atomic Addition
→ Needs a back-off mechanism to prevent fast burn.

Hardware Clock
→ Not sure if it will exist in future CPUs.

Hardware Counter
→ Not implemented in existing CPUs.
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TIMESTAMP ALLOCATION
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MEMORY ALLOCATIONS

Copying data on every read/write access slows 
down the DBMS because of contention on the 
memory controller.
→ In-place updates and non-copying reads are not affected 

as much.

Default libc malloc is slow. Never use it.
→ We will discuss this further later in the semester.
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PARTING THOUGHTS

The design of a in-memory DBMS is significantly 
different than a disk-oriented system.

The world has finally become comfortable with in-
memory data storage and processing.

Increases in DRAM capacities have stalled in 
recent years compared to SSDs…
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NEXT CL ASS

Multi-Version Concurrency Control
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