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BACKGROUND

Much of the development history of DBMSs is
about dealing with the limitations of hardware.

Hardware was much different when the original
DBMSs were designed:

— Uniprocessor (single-core CPU)

— RAM was severely limited.

— The database had to be stored on disk.

— Disks were even slower than they are now.
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BACKGROUND

But now DRAM capacities are large enough that

most databases can fit in memory.
— Structured data sets are smaller.
— Unstructured or semi-structured data sets are larger.

We need to understand why we can't always use a
"traditional" disk-oriented DBMS with a large
cache to get the best performance.
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In-Memory DBMSs
Concurrency Control Bottlenecks
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DISK-ORIENTED DBMS

The primary storage location of the database is on
non-volatile storage (e.g., HDD, SSD).

The database is organized as a set of fixed-length
pages (aka blocks).

The system uses an in-memory buffer pool to
cache pages fetched from disk.

— Its job is to manage the movement of those pages back
and forth between disk and memory.
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BUFFER POOL

When a query accesses a page, the DBMS checks

to see if that page is already in memory:

— If it's not, then the DBMS must retrieve it from disk and
copy it into a frame in its buffer pool.

— If there are no free frames, then find a page to evict.

— If the page being evicted is dirty, then the DBMS must
write it back to disk.

Once the page is in memory, the DBMS translates

any on-disk addresses to their in-memory

addresses.
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BUFFER POOL

Every tuple access goes through the buffer pool
manager regardless of whether that data will

always be in memory.

— Always translate a tuple’s record id to its memory
location.

— Worker thread must pin pages that it needs to make sure
that they are not swapped to disk.
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CONCURRENCY CONTROL

The systems assumes that a txn could stall at any
time whenever it tries to access data that is not in
memory.

Execute other txns at the same time so that if one

txn stalls then others can keep running.

— Set locks to provide ACID guarantees for txns.

— Locks are stored in a separate data structure to avoid
being swapped to disk.
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LOGGING & RECOVERY

Most DBMSs use STEAL + NO-FORCE buffer

pool policies, so all modifications have to be
flushed to the WAL before a txn can commit.

Each log entry contains the before and after image
of record modified.

Lots of work to keep track of LSNs all throughout
the DBMS.
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Measured CPU Instructions
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IN-MEMORY DBMSS

Assume that the primary storage location of the
database is permanently in memory.

Early ideas proposed in the 1980s but it is now
feasible because DRAM prices are low and
capacities are high.

First commercial in-memory DBMSs were

released in the 1990s.
— Examples: TimesTen, DataBlitz, Altibase
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DATA ORGANIZATION

An in-memory DBMS does not need to store the
database in slotted pages but it will still organize
tuples in blocks/pages:

— Direct memory pointers vs. record ids

— Fixed-length vs. variable-length data pools

— Use checksums to detect software errors from trashing
the database.

The OS organizes memory in pages too. We will
cover this later.
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IN-MEMORY DATA ORGANIZATION

Fixed-Length Variable-Length
Index Data Blocks Data Blocks

| | |
v ¥ | |

= C=
I I =)
Block Id + il \

Offset

S=CMU-DB 15-721 (Spring 2020)

[



https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

$2CMU-DB

INDEXES

Specialized main-memory indexes were proposed
in 1980s when cache and memory access speeds
were roughly equivalent.

But then caches got faster than main memory:
— Memory-optimized indexes performed worse than the
B-+trees because they were not cache aware.

Indexes are usually rebuilt in an in-memory DBMS
after restart to avoid logging overhead.
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QUERY PROCESSING

The best strategy for executing a query plan in a
DBMS changes when all of the data is already in

memory.
— Sequential scans are no longer significantly faster than
random access.

The traditional tuple-at-a-time iterator model is

too slow because of function calls.
— This problem is more significant in OLAP DBMSs.
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LOGGING & RECOVERY

The DBMS still needs a WAL on non-volatile

storage since the system could halt at anytime.

— Use group commit to batch log entries and flush them
together to amortize fsync cost.

— May be possible to use more lightweight logging schemes
(e.g., only store redo information).

Since there are no "dirty" pages, there is no
need to track LSNs throughout the system.

15-721 (Spring 2020)
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BOTTLENECKS

If I/0 is no longer the slowest resource, much of
the DBMS'’s architecture will have to change
account for other bottlenecks:

— Locking/latching

— Cache-line misses

— Pointer chasing

— Predicate evaluations

— Data movement & copying

— Networking (between application & DBMS)
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CONCURRENCY CONTROL

The protocol to allow txns to access a database in a
multi-programmed fashion while preserving the
illusion that each of them is executing alone on a

dedicated system.

— The goal is to have the effect of a group of txns on the
database’s state is equivalent to any serial execution of all
txns.

Provides Atomicity + Isolation in ACID
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CONCURRENCY CONTROL

For in-memory DBMSs, the cost of a txn acquiring
a lock is the same as accessing data.

New bottleneck is contention caused from txns
trying access data at the same time.

The DBMS can store locking information about

each tuple together with its data.

— This helps with CPU cache locality.

— Mutexes are too slow. Need to use compare-and-swap
(CAS) instructions.
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COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V'’ in M
— Otherwise operation fails

New
Address Value

20 __sync_bool_compare_and_swap(&M, 20, 30)

Compare

Value
@CMU.DB 15-721 (Spring 2020)
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COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V'’ in M
— Otherwise operation fails

New
Address Value

30

__sync_bool_compare_and_swap(&M, 20, 30)

Compare
Value
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CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)

— Assume txns will conflict so they must acquire locks on
database objects before they are allowed to access them.

Timestamp Ordering (T/0)

— Assume that conflicts are rare so txns do not need to first
acquire locks on database objects and instead check for
conflicts at commit time.

15-721 (Spring 2020)
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TWO-PHASE LOCKING

O & o

Txn #1

Growing Phase

UNLOCK(A) | WRITE(B) | UNLOCK(B)

V
Shrinking Phase
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TWO-PHASE LOCKING

Txn #1

o

&l 0 al @
READ(A) LOCK(B) UNLOCK(A) | WRITE(B)

o

LOCK(A)

Txn #2

N

Lq

o

7 | &

LOCK(B) WRITECA) | UNLOCK(A)

WRITE(B) LOCK(A)
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TWO-PHASE LOCKING

Txn #1

o

LOCK(A)

&l 0 al @
READ(A) LOCK(B) UNLOCK(A) | WRITE(B)

o

Txn #2

8 @ 6 @ a

WRITECA) | UNLOCK(A)

LOCK(B) WRITE(B) LOCK(A)
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TWO-PHASE LOCKING

Txn #1

o

6ol 0 al @
READ(A) LOCK(B) UNLOCK(A) | WRITE(B)

o

LOCK(A)

Txn #2
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WRITE(B) LOCK(A)
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o

LOCK(A)

o

LOCK(B)

TWO-PHASE LOCKING
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TWO-PHASE LOCKING

Txn #1

“ | @

WRITE(B) | UNLOCK(B)

LOCK(A)

Txn #2

LOCK(B) WRITE(B) LOCK(A) WRITECA) | UNLOCK(A) | UNLOCK(B)
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LOCK(B)

TWO-PHASE LOCKING

N

4

WRITE(B)

N

WRITE(B)

UNLOCK(B)
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TWO-PHASE LOCKING

WRITE(B)

UNLOCK(A)

0

UNLOCK(B)

o

UNLOCK(B)
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TWO-PHASE LOCKING

Deadlock Detection

— Each txn maintains a queue of the txns that hold the locks
that it waiting for.

— A separate thread checks these queues for deadlocks.

— If deadlock found, use a heuristic to decide what txn to

kill in order to break deadlock.

Deadlock Prevention

— Check whether another txn already holds a lock when
another txn requests it.

— Iflock is not available, the txn will either (1) wait, (2)
commit suicide, or (3) kill the other txn.
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TIMESTAMP ORDERING

Basic T/O

— Check for conflicts on each read/write.

— Copy tuples on each access to ensure repeatable reads.

Optimistic Currency Control (OCC)

— Store all changes in private workspace.
— Check for conflicts at commit time and then merge.
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READ(A)
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WRITE(B) WRITE(A)
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READ(A)
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WRITE(B) WRITE(A)
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OPTIMISTIC CONCURRENCY CONTROL

Timestamp-ordering scheme where txns copy data
read/write into a private workspace that is not
visible to other active txns.

When a txn commits, the DBMS verifies that
there are no conflicts.

First proposed in 1981 at CMU by H.T. Kung.

~— |ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

READ(A) WRITE(A) WRITE(B)

Write

Record Value Timestamp

A 123 10000
B 456 10000
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A) WRITE(A) WRITE(B)

e

Read Phase

Write
Timestamp

Record Value

A 123 10000
B 456 10000
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

65| @ | @

READ(A) WRITE(A) WRITE(B)

Write
Timestamp

Record Value

A 123 10000

B 456 10000
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

65| @ | @

READ(A) WRITE(A) WRITE(B)

Workspace

Write
Timestamp

Write

Record Value Timestamp

Record Value

123
B 456 10000
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

5| @
READ(A) WRITE(A)

Workspace

Write
Timestamp

Record value

$=CMU-DB

WRITE(B)

Write
Timestamp

A 123 10000

Record Value

B 456 10000
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Txn #1

5| @
READ(A) WRITE(A)

Workspace

WRITE(B)

Write
Timestamp

Write
Timestamp

A 123 10000
B 456 10000

Record Value

Record value

S=CMU-DB 15-721 (Spring 2020)


https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Txn #1

||!!!!!!||

WRITE(A) WRITE(B)

Workspace

Write
Timestamp

A 123 10000
B 456 10000

‘arite
11mestamp

Record Value

Record Value

B 456 10000
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

||!!!!!!||

WRITE(A) WRITE(B)

Workspace

Write
Timestamp

A 123 10000
B 456 10000

‘arite
11mestamp

Record Value

Record Value

B 999
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

| @ N

WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

||!!!!!!||

W orkspace
Record Value Timgg‘ggmp Record Value Timg:’ggmp
A | sss 00 A | 123 | 10000
B 999 €9 B 456 10000
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OPTIMISTIC CONCURRENCY CONTROL

Txn #1

| @ N

WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

||!!!!!!||

Workspace

Write
Timestamp

A 888 €o A 123 10000
B 999 co B 456 10000

Write

Record Value Timestamp

Record Value
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OPTIMISTIC CONCURRENCY

Txn #1

WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

||!!!!!!||

Workspace

Write
Timestamp

A 888 €o A 123 10000
B 999 co B 456 10000

Write

Record Value Timestamp

Record Value
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OPTIMISTIC CONCURRENCY

Txn #1

WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

||!!!!!!||

Workspace

Write
Timestamp

A 888 ©o A 888 10001
B 999 00 B 999 10001

Write

Record Value Timestamp

Record Value
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OBSERVATION

When there is low contention, optimistic
protocols perform better because the DBMS
spends less time checking for conflicts.

At high contention, the both classes of protocols

degenerate to essentially the same serial execution.
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CONCURRENCY CONTROL EVALUATION

VLDB 2014

£=CMU-DB

Compare in-memory concurrency control

protocols at high levels of parallelism.

— Single test-bed system.

— Evaluate protocols using core counts beyond what is
available on today's CPUs.

Running in extreme environments exposes what
are the main bottlenecks in the DBMS.

= |STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY
CONTROL WITH ONE THOUSAND CORES

15-721 (Spring 2020)

33


https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/02-inmemory/p209-yu.pdf

$2CMU-DB

1000-CORE CPU SIMULATOR

DBx1000 Database System

— In-memory DBMS with pluggable lock manager.
— No network access, logging, or concurrent indexes.
— All txns execute using stored procedures.

MIT Graphite CPU Simulator

— Single-socket, tile-based CPU.
— Shared L2 cache for groups of cores.
— Tiles communicate over 2D-mesh network.
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TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)

— 20 million tuples
— Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.

Varying skew in transaction access patterns.

Serializable isolation level.
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CONCURRENCY CONTROL SCHEMES

DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2P

L w/ Non-waiting Prevention

WAIT_DIE 2PL w/ Wait-and-Die Prevention

TIMESTAMP  Basic T/O Algorithm
MVCC Multi-Version T/O
OCC Optimistic Concurrency Control
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CONCURRENCY CONTROL SCHEMES
DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention
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CONCURRENCY CONTROL SCHEMES

TIMESTAMP  Basic T/O Algorithm

MVCC Multi-Version T/O
OCC Optimistic Concurrency Control
PostgreSQL

ORACLE InformizC ¥ cockroach ass N
MMEMSQL _swf HyPer TTY NUO
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READ-ONLY WORKLOAD
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WRITE-INTENSIVE / HIGH-CONTENTION
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WRITE-INTENSIVE / HIGH-CONTENTION
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WRITE-INTENSIVE / HIGH-CONTENTION
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BOTTLENECKS

Lock Thrashing
— DL_DETECT, WAIT_DIE

Timestamp Allocation
— All T/O algorithms + WAIT_DIE

Memory Allocations
— OCC + MVCC
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LOCK THRASHING

Each txn waits longer to acquire locks, causing
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing

deadlock detection/prevention overhead.
— Force txns to acquire locks in primary key order.
— Deadlocks are not possible.
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Throughput (Million txn/s)
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TIMESTAMP ALLOCATION

Mutex
— Worst option.

Atomic Addition
— Requires cache invalidation on write.

Batched Atomic Addition
— Needs a back-off mechanism to prevent fast burn.

Hardware Clock

— Not sure if it will exist in future CPUs.

Hardware Counter
— Not implemented in existing CPUs.
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TIMESTAMP ALLOCATION
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MEMORY ALLOCATIONS

Copying data on every read/write access slows
down the DBMS because of contention on the

memory controller.
— In-place updates and non-copying reads are not affected
as much.

Default libc malloc is slow. Never use it.
— We will discuss this further later in the semester.
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PARTING THOUGHTS

The design of a in-memory DBMS is significantly
different than a disk-oriented system.

The world has finally become comfortable with in-
memory data storage and processing.

Increases in DRAM capacities have stalled in
recent years compared to SSDs...
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NEXT CLASS

Multi-Version Concurrency Control
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